
CS 2281: How to Train Your
Foundation Model

 
Sham Kakade 

Fall 2024

1

Lect 1: Course Logistics +
Auto-Differentiation /
Compute Primitives 

 
Sham Kakade and Nikhil Anand 

CS 2281: How to Train Your Foundation Model 
Fall 2024

2

Today

3

• Course Logistics

• A Word on Foundation Models

• Auto-Differentiation & computational graphs

• checkpointing

• GPU/Infrastructure Background

• AD with Transformers

Course Logistics

4

Info:

5

Check the website for all policies:
https://shamulent.github.io/CS_2281_2024.html

• The course will be in person only.

• Attendance/participation is expected.

• A number of guest lectures

• Course requirements

• 3 HWs, first one by Monday

• Final Project in groups of 3-4.

• Course Staff: Aayush Karan, Clara Mohri, Han Qi

https://shamulent.github.io/CS_2281_2024.html

Background Knowledge & Responsibilities

6

Grad level topics: self/group study strongly encouraged.

• Transformer models

• Strong ML background (stat, lin alg)

• Python programming

• applied DL experience a plus

• motivated to learn material offline that you are not familiar with…

Today

7

• Course Logistics

• A Word on Foundation Models

• Auto-Differentiation & computational graphs

• checkpointing

• GPU/Infrastructure Background

• AD with Transformers

Foundation Models

8

What is a Foundation Model?

9

A “model that is trained on broad data such that it can be applied across a wide range of use
cases.” (wiki). 

Examples + Grapevine Estimates (of #params, training data, compute):

• LLMs:

• GPT3.5: 200B param model, trained on 1-5T tokens

• GPT4.0: 1.6T (8x200B MoE model), 10T tokens, (flop equiv) 30K for several months

• Gemini: 2T param model (also MoE?), 10T tokens (trained on TPUs)

• Llama 3.1: 405B (dense), 10T tokens

• Code: Copilot 10-20B (?),

• Images/Video: MidJourney/Sora 10-20B (?), 10K gpu for 1 month (?)

• Bio: AlphaFold

≈
≈

≈
≈

≈

This course: Training Foundation Models

10

What are the issues related to training foundation models? 

• Models/architectures

• Algorithms

• Systems/Hardware Constraints

• Data:

• Pre/mid/post training

• supervised/instruction fine-tuning; RLHF 

Other topics:

• Inference

• Reliability	  

Should we bet on scale?

11

The course is (partly) designed around “scale” being 
a key component to human level AI. 

• Current results used substantial amounts of computation.

• Moore’s law in flops per dollar.

• Markets:

• Aggressive growth in compute infrastructure:  

300K H100s at $10B (e.g. Meta in 2024)

• Nvidia market cap 3T

• reported profit: 30B

• market cap suggests future yearly profit 

should be:

• crudely, if this profit came from  

(in todays) terms/H100-equivalent, then:

≈
≈

Today

12

• Course Logistics

• A Word on Foundation Models

• Auto-Differentiation & computational graphs

• checkpointing

• GPU/Infrastructure Background

• AD with Transformers

Auto-Differentiation

13

Automatic Differentiation

14

• The basic idea:

• You write code to compute a scalar function .

• AD computes when you execute the code.

• This is the backbone of modern ML.

• Naively, one may expect that computing to be more

computationally expense than simply comping . 

• “Theorem”: The Reverse Mode of AD computes in time at most 5x
that of the computing .  
(the computational model is “straight line” programs) 

f : Rd → R
∇f(x)

∇f(x)
f(x)

∇f(x)
f(x)

Straight Line Programs: An Example

15

•Suppose we are interested in computing the function: 
 

 

•Let us now consider a “straight line" program which computes our function using
“elementary” scalar functions at each step:

f(w1, w2) = (sin(2πw1/w2) + 3w1/w2 − exp(2w2)) * (3w1/w2 − exp(2w2))
f

input: z0 = (w1, w2)
z1 = w1/w2

z2 = sin(2πz1)
z3 = exp(2w2)
z4 = 3z1 − z3
z5 = z2 + z4
z6 = z4z5

return: z6

A Computational Graph (aka the “Evaluation Trace”)

16

•Compute : 

•The computation graph is the flow of operations.

•We say that: and and children of ; is a child of ; etc.

f(w1, w2)
input: z0 = (w1, w2)

z1 = w1/w2

z2 = sin(2πz1)
z3 = exp(2w2)
z4 = 3z1 − z3
z5 = z2 + z4
z6 = z4z5

return: z6

z2 z4 z1 z5 z2

17

• Input: a vector

• All intermediate variables will be scalars (for clarity)

• Each step applies some differentiable real valued function to past variables, 

where each is either

• An affine functions.

• A product of terms.

• A fixed differentiable function, like , where we can compute  

Straight line program:

• input: .  

We actually have (scalar) input nodes where .

 1.  

 t.

 T.

• return:

w ∈ Rd

h ∈ ℋ
h

cos(), sin(), exp(), log() h′￼(x)

z0 = w
d [z0]1 = w1, [z0]2 = w2, …[z0]d = wd

z1 = h1(a fixed subset of the variables in w)
…

zt = ht(a fixed a subset of the variables in z1:t−1, w)
…

zT = hT(a fixed a subset of the variables in z1:T−1, w)
zT

Straight Line Programs

The Forward Mode of AD

18

We can compute directly with the chain rule:

• input: .

 1. & compute  

 t. ,

	

• return: and  

• How does the computational cost of this algo compare to just computing ?

dzT

dz0
= df

dw
[z0]1 = w1, [z0]2 = w2, …[z0]d = wd

z1 = h1(a fixed subset of the variables in w) dz1

dz0

⋯
zt = ht(a fixed a subset of the variables in z1:t−1, w)

dzt

dz0
= ∑

p is a parent of t

dzt

∂zp

dzp

∂z0

⋯
zT

dzT

dz0

f(w)

Can we do better? A different chain rule

19

input: .

 1.  

 t.

 T.

return:

•Let’s think of as the derivative of with respect to , assuming that is a “free” variable. 

•By the chain rule: 

	 	 	

[z0]1 = w1, [z0]2 = w2, …[z0]3 = wd
z1 = h1(a fixed subset of the variables in w)

⋯
zt = ht(a fixed a subset of the variables in z1:t−1, w)

⋯
zT = hT(a fixed a subset of the variables in z1:T−1, w)

zT

∂zT

∂zt
zT zt zt

∂zT

∂zt
= ∑

c is a child of t

∂zT

∂zc

∂zc

∂zt

The Reverse Mode of AD

20

 Forward pass:

1.Compute and store in memory all the intermediate variables .

Backward pass:

2. Initialize:  

3.Proceeding recursively, starting at and going to  

4. Return:  

(which is the desired answer as)

f(w) z0:T

dzT

dzT
= 1

t = T − 1 t = 0
∂zT

∂zt
= ∑

c is a child of t

∂zT

∂zc

∂zc

∂zt

dzT

dz0
=

df
dw

zT = f, z0 = w

Everything works if we allow to be vectors or matrices.zt

Time Complexity

21

• History of AD: Linnainmaa (Lin76), Werbos(82), … 

Theorem: [BaurStrassen 83] Suppose that are of the form:

• Affine functions.

• A product of terms.

• Fixed functions, like , where computing is no more than x the

cost of computing

The Reverse Mode of AD computes in time no more than a factor of than the program
used to compute . 

Proof sketch (basically a book keeping argument):

in the forward pass, we associate the computation along edges from parents to a child. In the

backward pass, note only is computed once. 

h ∈ ℋ

cos(), sin(), exp(), log() h′￼(x) 5
h(x)

∇f(x) 5
f(x)

∂zc

∂zt
∂zT

∂zt
= ∑

c is a child of t

∂zT

∂zc

∂zc

∂zt

Auto-Differentiation:

Checkpointing and Memory

22

23

Compute :

input: parameters , & 
 batch data:

 
For  
	  

Compute loss:  

return: the loss  

• Parameter/input memory: 
 

• What free memory is sufficient to execute this program? 
 

• How much memory would we need if ran reverse mode AD?

Loss()
W1, W2, …WL ∈ Rd×d, w ∈ Rd

(X, Y), X ∈ Rd×m, Y ∈ Rm

ℓ = 0,…L − 1
X ← σ(Wℓ+1X)

L =
1
m

∥Y − X⊤w∥2
2

L

Neural Net Example

The Reverse Mode of AD, with Checkpointing

24

Assume is only a function of the variables (here let the intermediate variables be vectors)

Checkpoint indexes: , i.e. .

Forward pass:
1.Compute and store only the variables .

Backward pass:
2. Initialize: , set

3.Proceeding recursively, for

•Rematerialization:  
Redo forward pass, computing/storing the graph in “block” k, from to

•Backward pass in “block” k: Starting at and going to  

4. Return:

 
Memory required: store ; store all variables in a “block” rematerialization pass

Compute overhead: need to recompute all the “blocks”, which is at most the cost to compute .

zt+1 zt
C = {τ1 ≤ τ2… ≤ τk} C ⊂ {1,…T}

f(w) {zτ : τ ∈ C }

dzT

dzT
= 1 τk+1 = T

i = k, …1

t = τi t = τi+1
t = τi+1 t = τi

∂zT

∂zt
= ∑c is a child of t

∂zT

∂zc

∂zc

∂zt
dzT

dz0

{zτ : τ ∈ C }
f(x)

Let’s return to AD for some “big” models

25

• Llama3.1: 400B 
GPT4: 2T 

• Bfloat16: 2 bytes/parameter

• Specialized precision type for neural nets 

• Memory required to store these models: 
Llama3.1: 0.8 Tbytes  
GPT4: 4 Tbytes 

• H100s have 80GB memory each: 
Llama3.1:  
GPT4:

≈

Today

26

• Course Logistics

• A Word on Foundation Models

• Auto-Differentiation & computational graphs

• checkpointing

• GPU/Infrastructure Background

• AD with Transformers

GPU Background

GPU Background
• The goal of this course isn't to deep dive into hardware (though it is an

extremely interesting topic)

• Goal is to understand roughly how GPUs work and what the relevant
scales are, which lets us quickly estimate useful quantities that govern
training efficiency

• There is an intricate tension between compute and memory (I/O), and
many useful insights have come about from understanding this tension
deeply (FlashAttention 1/2/3, kernel fusions, etc.)

• We’ll take a bottom-up perspective

Why are GPUs useful?

• Modern ML stacks are complicated, but at the end of the day the
primary operation we’re doing is simple: matrix multiplication
(matmul)

• GPUs are just blocks of transistors organized in a way that makes
them really great for parallel matmuls (SIMD = single instruction,
multidata)

• Exact details are complicated; our goal is to understand how
computation and memory works w.r.t model training

Some numbers

A100 SXM

• 624 TFLOPS at fp16 with 128 SMs

• 80 GB memory (DRAM)

• ~2 TB/s memory bandwidth

• Unit cost: $18-30,000

H100 SXM

• 1979 TFLOPS at fp16 with 132 SMs

• 80 GB memory (DRAM)

• ~3.4 TB/s memory bandwidth

• Unit cost: $25-40,000

GPUs vs CPUs

[Figure credit: Yasin Mazloumi]

Memory hierarchy

[Figure credit: Dao et al. 2022]

Memory hierarchy
Parenthetical comment: TPUs

Computation organization

• Thread: unit of parallel execution

• Block: 1024 threads (sometimes
warp is used = 32 threads)

• Kernel: function that’s running on
GPU

Single GPU training

Layer
1

Layer
2

GPU 0

Single GPU training

Layer
1

Layer
2

For A100 40 GB, this is roughly a
2B model with batch size 16 with
no optimizations

GPU 0

What do large models run on?

GPU 0

GPU 1

GPU 2

GPU 3

Node

What do large models run on?

GPU 0

GPU 1

GPU 2

GPU 3

Communication between
GPUs in a node is typically
fast, approaching O(TB/s)

Node

What do large models run on?

GPU (0, 0)

GPU (0, 1)

GPU (0, 2)

GPU (0, 3)

GPU (1, 0)

GPU (1, 1)

GPU (1, 2)

GPU (1, 3)

Communication between
nodes is typically much
slower, O(few * 10 GB/s)

“InfiniBand”

Node 0 Node 1

NCCL communication primitives
AllReduce

There are many possible implementations! E.g., compute in a ring

NCCL communication primitives
Reduce

NCCL communication primitives
AllGather

NCCL communication primitives
ReduceScatter

Multi GPU Training: DDP

Layer
1

Layer
2

GPU 0

Layer
1

Layer
2

GPU 1

Global batch

AllReduce
M

ic
ro

M

ic
ro

When is DDP useful?

• When a model fits on a single GPU, and we want to increase data
throughput i.e. train faster

• When it makes sense to keep inter-GPU communication as simple as
possible (e.g., smaller scale experiments)

• Models that are large enough that cannot be fit on a single GPU are
trained with other distributed frameworks (FSDP, etc.)

Bulk metrics for GPU performance

Bulk metrics for GPU performance
A100 theoretical max: 312
TFLOPs

H100: 1979 TFLOPs, 1671
TFLOPs for SXM

Bulk metrics for GPU performance
Llama 3 largest model:
16k H100s, 405B param
on 16.5 T tokens over 54
days

Bulk metrics for GPU performance
Llama 3 largest model:
16k H100s, 405B param
on 16.5 T tokens over 54
days

Llama 3 largest model:
16k H100s, 405B param
on 16.5 T tokens over 54
days

Bulk metrics for GPU performance
Llama 3 largest model: 16k
H100s, 405B param on
16.5 T tokens over 54
days

H100: 3.35 TB/s promised

Bulk metrics for GPU performance
Source: arXiv:2304.01433

Today

53

• Course Logistics

• A Word on Foundation Models

• Auto-Differentiation & computational graphs

• checkpointing

• GPU/Infrastructure Background

• AD with Transformers

Transformers:

Brief Model Overview

54

α4

TRANSFORMERS RECAP - SELF-ATTENTION

The five boxing wizards jump quickly

score()x1, x4 score()x2, x4 score()x3, x4 score()x4, x4 score()x5, x4 score()x6, x4

x4x1 x2 x3 x5 x6

softmax

α1 α2 α3 α5 α6

𝗌𝗈𝖿𝗍𝗆𝖺𝗑(θ)τ =
exp(θτ)

∑T
t=1 exp(θt)

Only place of global interaction

x4

∑ αiϕ(xi)

𝗌𝖼𝗈𝗋𝖾(x, z) = ⟨WKx, WQz⟩

WQ, WK ∈ ℝd×d

xi ∈ ℝd

ϕ(x) = WV
⊤x

WV ∈ ℝd×d

Word embeddings

Self-attention weights

Key - Query

Positional encodings+p1 +p2 +p3 +p4 +p5 +p6

TRANSFORMERS RECAP - ATTENTION HEAD

x4x1 x2 x3 x5 x6

WQ, WK ∈ ℝd×d

xi ∈ ℝd

WV ∈ ℝd×d

WQ, WK, WV
Trainable weights }Attention

head

The five boxing wizards jump quickly+p1 +p2 +p3 +p4 +p5 +p6

pi ∈ ℝd

α4α1 α2 α3 α5 α6

𝗌𝗈𝖿𝗍𝗆𝖺𝗑(θ)τ =
exp(θτ)

∑T
t=1 exp(θt)

𝗌𝖼𝗈𝗋𝖾(x, z) = ⟨WKx, WQz⟩

WQ, WK ∈ ℝd×d

ϕ(x) = WV
⊤x

WV ∈ ℝd×d

Self-attention weights

∑ αiϕ(xi)

TRANSFORMERS RECAP - TRANSFORMER LAYER

W(1)
Q , W(1)

K , W(1)
V W(2)

Q , W(2)
K , W(2)

V W(3)
Q , W(3)

K , W(3)
V

Concatenate (and Normalize)

Identical fully
connected net

linear classifier
label

[CLS]

Why Transformers?

58

Two important ideas: 

• computation:

• For an RNN/LSTM: the time to compute the loss, , on a length

sequence is O(T), and this is fundamentally a serial computation.

• For a transformer, the serial compute can be O(1), i.e. no , dependence, while the total

computational complexity is

• inductive bias: (statistical/representational arguments) 
(granting the RNNs/LSTMs the serial overhead, they still seem to be worse)

• The #parameters have no -dependence

• The transformers are able to create (sparse) features of things far apart.

• Transformer are also able to “recall/copy” factual information from their context very easily.

∑t=1 − log Pr(yt |y<t, θ) T

T
O(T2)

T

Transformers:

Computational Graph Memory &

Checkpointing

59

60

Compute , (for) :

input: parameters (embedding and MLP weights), data

: hidden dim, : batch size, : context size, : # layers, V: vocab size, : #heads 

• Embed data:

• For

• Attention:

•

•

• MLP layers: (dim)

•

•

•

• Compute , Return LogLoss  

• Mem Transformer Params: 

• Sufficient Memory for Forward pass: 

• Memory Created in the Graph:

Loss() Bsz = 1,Nheads = 1
X ∈ {0,1}TxV

d B T L Nheads

X ← XWembed
ℓ = 0,…L − 1

Q = XWℓ
Q, K = XWℓ

K, V = XWℓ
V

X ← MaskedRowSoftmax(QK⊤)V
d → 4d → d

X ← σ(XWℓ
1)

X ← σ(XWℓ
2)

X ← XWℓ
proj

X ← XWunemebed

Transformer Memory: Forward & Computational Graph

61

Compute , (for) :

input: parameters (embedding and MLP weights), data

: hidden dim, : batch size, : context size, : # layers, V: vocab size, : #heads 

• Embed data:

• For

• Attention:

•

•

• MLP layers: ()

•

•

•

• Compute , Return LogLoss  

With

• Mem Transformer Params:

• Sufficient Memory for Forward pass:

• Memory Created in the Graph:

What about with ? 

Loss() Bsz = 1,Nheads = 1
X ∈ {0,1}TxV

d B T L Nheads

X ← XWembed
ℓ = 0,…L − 1

Q = XWℓ
Q, K = XWℓ

K, V = XWℓ
V

X ← MaskedRowSoftmax(QK⊤)V
d → 4d → d

X ← σ(XWℓ
1)

X ← σ(XWℓ
2)

X ← XWℓ
proj

X ← XWunemebed

Nheads ≠ 1
12d2L + 2dV

4dT + NheadsT2 + VT
12LdT + LNheadsT2 + 2VT

B ≠ 1

Transformer Memory: Forward & Computational Graph

62

: hidden dim, : batch size, : context size, : # layers, V: vocab size, : #heads

• Embed data:

• For

• “block input” X (checkpoint here)

• Attention:

•

•

• MLP layers: ()

•

•

•

• Compute , Return LogLoss  

• Mem Transformer Params:

• Option 1: Checkpointing (ignoring the part)

• Memory for Checkpointing:

• Comp Graph Memory for Rematerialization:

• Computational overhead is basically a full factor of 2 (everything but must be recomputed)

• Option 2: checkpoint everything but the attention matrices

• This saves on compute (the weight matrix multiples often costly) and needs memory

d B T L Nheads
X ← XWembed

ℓ = 0,…L − 1

Q = XWℓ
Q, K = XWℓ

K, V = XWℓ
V

X ← MaskedRowSoftmax(QK⊤)V
d → 4d → d

X ← σ(XWℓ
1)

X ← σ(XWℓ
2)

X ← XWℓ
proj

X ← XWunemebed

12d2L + 2dV
V

LdT
12dT + NheadsT2

Wℓ
proj

T × T
12LdT

Checkpointing (case)B = 1

63

• Single Head Attention:

• This requires having free memory, even though our output is of size

• The computational cost is

• Simpler case: Suppose we just wanted to do the following, where is componentwise: 
	

• Again, this require free memory and the same flops. 

Can we do better on memory, using the same flops?

• Observe that that row is equal to the t-th row of times .

• What is the t-th row of ?

• This implies:

• So we can compute with a for loop over the rows.

• The excess memory is now

• The flops is still  

• Now do you see how compute with less memory?

• FlashAttention: Now just checkpoint this approach.

• But why do we do this on a gpu?

• Fusing: the exp operations can be “fused” with vector multiplies to reduce memory movements on the GPU itself 

(this is why it is done on the GPU)

X ← MaskedRowSoftmax(QK⊤)V
T2 d × T

O(dT2)
exp()

X ← exp(QK⊤)V
T2

X[t, :] exp(QK⊤) V
exp(QK⊤)

X[t, :] = exp(Q[t, :] ⋅ K⊤)V
X T

O(T)
O(dT2)

X ← MaskedRowSoftmax(QK⊤)V

Flash Attention Simplified:

Summary:

64

1. AutoDifferentiation+Checkpointing: computational backbone

2. GPU+Hardware Basics?

How do we put this together to build big models?

