CS 2281: How to Train Your Foundation Model

Sham Kakade Fall 2024

Lect 1: Course Logistics + Auto-Differentiation / Compute Primitives

Sham Kakade and Nikhil Anand CS 2281: How to Train Your Foundation Model Fall 2024

- Course Logistics
- A Word on Foundation Models
- Auto-Differentiation & computational graphs
	- checkpointing
- GPU/Infrastructure Background
- AD with Transformers

Course Logistics

Info:

Check the website for all policies:

https://shamulent.github.io/CS_2281_2024.html

-
- The course will be in person only. • Attendance/participation is expected.
	- A number of guest lectures
- Course requirements
	- 3 HWs, first one by Monday
	- Final Project in groups of 3-4.
- Course Staff: **Aayush Karan, Clara Mohri, Han Qi**

Background Knowledge & Responsibilities

- Transformer models
- Strong ML background (stat, lin alg)
- Python programming
- applied DL experience a plus
- motivated to learn material offline that you are not familiar with...

Grad level topics: self/group study strongly encouraged.

- Course Logistics
- A Word on Foundation Models
- Auto-Differentiation & computational graphs
	- checkpointing
- GPU/Infrastructure Background
- AD with Transformers

Foundation Models

What is a Foundation Model?

A "model that is trained on broad data such that it can be applied across a wide range of use cases." (wiki).

Examples + Grapevine Estimates (of #params, training data, compute):

- LLMs:
	- GPT3.5: 200B param model, trained on 1-5T tokens
	-
	- Gemini: 2T param model (also MoE?), \approx 10T tokens (trained on TPUs)
	- Llama 3.1: 405B (dense), \approx 10T tokens
- Code: Copilot \approx 10-20B (?),
- Images/Video: MidJourney/Sora \approx 10-20B (?), 10K gpu for 1 month (?)
- Bio: AlphaFold

• GPT4.0: 1.6T (8x200B MoE model), ≈10T tokens, (flop equiv) 30K for several months

This course: Training Foundation Models

What are the issues related to training foundation models?

- Models/architectures
- Algorithms
- Systems/Hardware Constraints
- Data:
	- Pre/mid/post training
	- supervised/instruction fine-tuning; RLHF

Other topics:

- Inference
- Reliability

Should we bet on scale?

The course is (partly) designed around "scale" being a key component to human level AI.

- Current results used substantial amounts of computation.
- Moore's law in flops per dollar.
- Markets:
	- Aggressive growth in compute infrastructure: **300K H100s at \$10B** (e.g. Meta in 2024)
	- Nvidia market cap **3T** ≈
		- reported profit: ≈ 30B
		- market cap suggests future yearly profit should be:
		- crudely, if this profit came from (in todays) terms/H100-equivalent, then:

Nvidia H100 GPU Shipments by Customer

Estimated 2023 H100 shipments by end customer.

Source: Omdia Research

 $-\infty$

- Course Logistics
- A Word on Foundation Models
- Auto-Differentiation & computational graphs
	- checkpointing
- GPU/Infrastructure Background
- AD with Transformers

Auto-Differentiation

Automatic Differentiation

- The basic idea:
	- You write code to compute a scalar function $f: R^d \to R$.
	- AD computes $\nabla f(x)$ when you execute the code.
- This is the backbone of modern ML.
- Naively, one may expect that computing $\nabla f(x)$ to be more computationally expense than simply comping $f(x)$.
- "Theorem": The Reverse Mode of AD computes $\nabla f(x)$ in time at most 5x that of the computing $f(x)$. (the computational model is "straight line" programs)

Straight Line Programs: An Example

•Suppose we are interested in computing the function:

 $f(w_1, w_2) = (\sin(2\pi w_1/w_2) + 3w_1/w_2)$

"elementary" scalar functions at each step: input: $z_0 = (w_1, w_2)$

$$
z_1 = w_1/w_2
$$

\n
$$
z_2 = \sin(2\pi z_1)
$$

\n
$$
z_3 = \exp(2w_2)
$$

\n
$$
z_4 = 3z_1 - z_3
$$

\n
$$
z_5 = z_2 + z_4
$$

\n
$$
z_6 = z_4 z_5
$$

return: z_6

$$
v_2 - \exp(2w_2)
$$
 * $(3w_1/w_2 - \exp(2w_2))$

 \bullet Let us now consider a "straight line" program which computes our function f using

A Computational Graph (aka the "Evaluation Trace")

- •The computation graph is the flow of operations.
- •We say that: z_2 and z_4 and children of z_1 ; z_5 is a child of z_2 ; etc.

• Compute
$$
f(w_1, w_2)
$$
:
\ninput: $z_0 = (w_1, w_2)$
\n $z_1 = w_1/w_2$
\n $z_2 = \sin(2\pi z_1)$
\n $z_3 = \exp(2w_2)$
\n $z_4 = 3z_1 - z_3$
\n $z_5 = z_2 + z_4$
\n $z_6 = z_4z_5$

$$
w_{1}=[203]
$$

return: z_6

- Input: a vector $w \in R^d$
- All intermediate variables will be scalars (for clarity)
- Each step applies some differentiable real valued function $h \in \mathcal{H}$ to past variables, where each h is either
	- An affine functions.
	- A product of terms.
	-

t. $z_t = h_t$ (a fixed a subset of the variables in $z_{1:t-1}$, *w*) …

17 T. $z_T = h_T$ (a fixed a subset of the variables in $z_{1:T-1}$, *w*) • return: z_T

• A fixed differentiable function, like $\cos(), \sin(), \exp(), \log(),$ where we can compute $h'(x)$

$$
\text{pre}[z_0]_1 = w_1, [z_0]_2 = w_2, \dots [z_0]_d = w_d.
$$

$$
(w)
$$

Straight line program:

• input: $z_0 = w$.

…

We actually have d (scalar) input nodes where $[z_0]_1 = w_1, [z_0]_2 = w_2, ... [z_0]_d = w_d$.

1. $z_1 = h_1$ (a fixed subset of the variables in w)

Straight Line Programs

The Forward Mode of AD

We can compute $\frac{dy}{dx} = \frac{dy}{dx}$ directly with the chain rule: dz_T *dz*⁰ = *df dw*

• **input:** $[z_0]_1 = w_1$, $[z_0]_2 = w_2$, ... $[z_0]_d = w_d$.

 $\bullet\hspace{0.4mm}\bullet\hspace{0.4mm}\bullet\hspace{0.4mm}\bullet$

1. $z_1 = h_1$ (a fixed subset of the variables in w) & compute $z_1 = h_1$ (a fixed subset of the variables in *w*) & compute $\frac{dz_1}{dz_2}$

t.
$$
z_t = h_t(a \text{ fixed a subset of the variables in } z_{1:t-1}, w),
$$

\n
$$
\frac{dz_t}{dz_0} = \sum_{p \text{ is a parent of } t} \frac{dz_t}{dz_p} \frac{dz_p}{dz_0}
$$
\n...
\n• return: z_T and $\frac{dz_T}{dz_0}$

• How does the computational cost of this algo compare to just computing $f(w)$?

*dz*⁰

Can we do better? A different chain rule

• ∂z_T ∂z_t

 $\text{input: } [z_0]_1 = w_1, [z_0]_2 = w_2, ... [z_0]_3 = w_d.$ 1. $z_1 = h_1$ (a fixed subset of the variables in w) t. $z_t = h_t$ (a fixed a subset of the variables in $z_{1:t-1}$, *w*) T. $z_T = h_T$ (a fixed a subset of the variables in $z_{1:T-1}$, *w*) return: z_T ⋯ ⋯

•By the chain rule:

c is a child of *t* ∂*zT* ∂*zc* ∂z_c ∂z_t

$$
\frac{\partial z_T}{\partial z_t} = \sum_{c \text{ is a chil}}
$$

-
-

Let's think of $\frac{1}{n}$ as the derivative of z_T with respect to z_t , assuming that z_t is a "free" variable. z_T with respect to z_t , assuming that z_t

The Reverse Mode of AD

Forward pass:

1. Compute $f(w)$ and store in memory all the intermediate variables $z_{0:T}$. **Backward pass:**

2. Initialize:

 dz_T *dzT* $= 1$

> *c* is a child of *t* ∂*zc* ∂z_t

3.Proceeding recursively, starting at $t = T - 1$ and going to $t = 0$ ∂z_T ∂z_t $=$ \sum ∂z_T ∂*zc*

4. **Return:**

$$
\frac{dz_T}{dz_0} = \frac{df}{dw}
$$

(which is the desired answer as $z_T = f, z_0 = w$)

Everything works if we allow z_t to be vectors or matrices.

Time Complexity

• History of AD: Linnainmaa (Lin76), Werbos(82), ...

Theorem: [BaurStrassen 83] Suppose that $h\in \mathscr{H}$ are of the form:

Proof sketch (basically a book keeping argument): backward pass, note $\frac{1}{2}$ only is computed once. ∂*zc* ∂*zt* ∂z_T ∂z_t $=$ \sum *c* is a child of *t* ∂z_T ∂*zc* ∂*zc* ∂z_t

The Reverse Mode of AD computes $\nabla f(x)$ in time no more than a factor of 5 than the program

- Affine functions.
- A product of terms.
- Fixed functions, like $\cos()$, $\sin()$, $\exp()$, $\log()$, where computing $h'(x)$ is no more than 5x the cost of computing *h*(*x*)

used to compute $f(x)$.

- in the forward pass, we associate the computation along edges from parents to a child. In the
	-

Auto-Differentiation: Checkpointing and Memory

- Parameter/input memory:
- What free memory is sufficient to execute this program?
- How much memory would we need if ran reverse mode AD?

For
$$
\ell = 0,...L - 1
$$

\n $X \leftarrow \sigma(W_{\ell+1}X)$
\nCompute loss: $L = \frac{1}{m} ||Y - X^{\top}w||_2^2$

return: the loss *L*

Neural Net Example

Compute $Loss()$: $\textbf{input:}$ parameters $W_1, W_2, ... W_L \in R^{d \times d}, w \in R^d,$ & batch data: $(X, Y), X \in R^{d \times m}, Y \in R^m$

The Reverse Mode of AD, with Checkpointing

Assume z_{t+1} is only a function of the variables z_t (here let the intermediate variables be vectors) **Checkpoint** indexes: $C = \{\tau_1 \leq \tau_2 ... \leq \tau_k\}$, i.e. $C \subset \{1,...T\}$. **Forward pass:**

1. Compute $f(w)$ and store only the variables $\{z_\tau : \tau \in C\}$. **Backward pass:**

2. Initialize: $\frac{m}{l} = 1$, set dz_T dz_T $= 1$, set $\tau_{k+1} = T$

3.Proceeding recursively, for $i=k,...1$

• **Rematerialization:**

Redo forward pass, computing/storing the graph in "block" k, from $t = \tau$ _{*i*} to $t = \tau_{i+1}$

• Backward pass in "block" k: Starting at $t = \tau_{i+1}$ and going to $t = \tau_i$
 ∂z_T — \sum 4. **Return:** $\frac{\partial z_{I}}{\partial z_{t}} = \sum_{c}$ is a child of *t* ∂z_T ∂*zc* ∂z_{c} ∂z_t dz_T *dz*⁰

Memory required: store $\{z_\tau: \tau \in C\; \}$; store all variables in a "block" rematerialization pass Compute overhead: need to recompute all the "blocks", which is at most the cost to compute $f(x)$.

Let's return to AD for some "big" models

- Llama3.1: 400B $GPT4: \approx 2T$
- Bfloat16: 2 bytes/parameter
	- Specialized precision type for neural nets
- Memory required to store these models: Llama3.1: 0.8 Tbytes GPT4: 4 Tbytes
- H100s have 80GB memory each: Llama3.1: GPT4:

- Course Logistics
- A Word on Foundation Models
- Auto-Differentiation & computational graphs
	- checkpointing
- GPU/Infrastructure Background
	- AD with Transformers

GPU Background

GPU Background

• Goal is to understand roughly how GPUs work and **what the relevant scales are**, which lets us quickly estimate useful quantities that govern

- extremely interesting topic)
- training efficiency
- deeply (FlashAttention 1/2/3, kernel fusions, etc.)
- We'll take a bottom-up perspective

• The goal of this course isn't to deep dive into hardware (though it is an

• There is an intricate tension between **compute and memory (I/O)**, and many useful insights have come about from understanding this tension

• Modern ML stacks are complicated, but at the end of the day the primary operation we're doing is simple: **matrix multiplication**

• GPUs are just blocks of transistors organized in a way that makes them really great for parallel matmuls (SIMD = single instruction,

Why are GPUs useful?

- **(matmul)**
- multidata)
- Exact details are complicated; our goal is to understand how computation and memory works w.r.t model training

Some numbers

A100 SXM

- 624 TFLOPS at fp16 with 128 SMs
- **• 80 GB memory (DRAM)**
- ~2 TB/s memory bandwidth
- Unit cost: \$18-30,000

H100 SXM

- 1979 TFLOPS at fp16 with 132 SMs
- **• 80 GB memory (DRAM)**
- ~3.4 TB/s memory bandwidth
- Unit cost: \$25-40,000

GPUs vs CPUs

[Figure credit: Yasin Mazloumi]

Memory hierarchy

[Figure credit: Dao et al. 2022]

Memory hierarchy

Computation organization

- **Thread**: unit of parallel execution
- **Block**: 1024 threads (sometimes warp is used $=$ 32 threads)
- **Kernel**: function that's running on GPU

Single GPU training

Single GPU training

 $M_{\text{train}} = P_{\text{transformer}} + M_{\text{optimizer}} + M_{\text{activations}}$

For A100 40 GB, this is roughly a 2B model with batch size 16 with no optimizations

What do large models run on?

-
-
-
-
-
-
-
- - -

Node

What do large models run on?

What do large models run on?

Communication *between* nodes is typically much slower, **O(few * 10 GB/s)**

"InfiniBand"

AllReduce

There are many possible implementations! E.g., compute in a ring

Reduce

AllGather

ReduceScatter

Multi GPU Training: DDP

• When it makes sense to keep inter-GPU communication as simple as

When is DDP useful?

- When a model fits on a single GPU, and we want to increase data throughput i.e. train faster
- possible (e.g., smaller scale experiments)
- Models that are large enough that cannot be fit on a single GPU are trained with other distributed frameworks (FSDP, etc.)

$MFU = \frac{actual FLOPs}{theoretical FLOPs}$

 ${\rm arithmetic \text{ } intensity=\frac{total \text{ } arithmetic \text{ } operations}{bytes \text{ }accessed}}$

$MFU = \frac{actual FLOPs}{theoretical FLOPs}$

 ${\rm arithmetic \text{ } intensity=\frac{total \text{ } arithmetic \text{ } operations } } \\ {\rm bytes \text{ } accessed}$

A100 theoretical max: 312 TFLOPs

H100: 1979 TFLOPs, 1671 TFLOPs for SXM

$\text{MFU} = \frac{\text{actual FLOPs}}{\text{theoretical FLOPs}}.$

 $arithmetic$ intensity $=$ $\frac{\text{total arithmetic operations}}{\text{bytes accessed}}$

 $= \frac{6 \cdot 405 \times 10^9 \times 16.5 \times 10^{12}}{16 \times 10^3 \times 1671 \times 10^{12} \times 54 \times 24 \times 60 \times 60} \times 100 = 32\%.$ MFU

Llama 3 largest model: 16k H100s, 405B param on 16.5 T tokens over 54 days

$\mathrm{MFU} = \frac{\mathrm{actual}\ \mathrm{FLOPs}}{\mathrm{theoretical}\ \mathrm{FLOPs}}.$

GPU utilization. Through careful tuning of the parallelism configuration, hardware, and software, we achieve an overall BF16 Model FLOPs Utilization (MFU; Chowdhery et al. (2023)) of 38-43% for the configurations shown in Table 4. The slight drop in MFU to 41% on 16K GPUs with DP=128 compared to 43% on 8K GPUs with $DP=64$ is due to the lower batch size per DP group needed to keep the global tokens per batch constant during training.

$\frac{6 \cdot 405 \times 10^9 \times 16.5 \times 10^{12}}{16 \times 10^3 \times 1671 \times 10^{12} \times 54 \times 24 \times 60 \times 60} \times 100 = 32\%.$

Llama 3 largest model: 16k H100s, 405B param on 16.5 T tokens over 54 days

GPU utilization. Through careful tuning of the parallelism configuration, hardware, and software, we achieve an overall BF16 Model FLOPs Utilization (MFU; Chowdhery et al. (2023)) of 38-43% for the configurations shown in Table 4. The slight drop in MFU to 41% on 16K GPUs with DP=128 compared to 43% on 8K GPUs with $DP=64$ is due to the lower batch size per DP group needed to keep the global tokens per batch constant during training.

$6 \cdot 405 \times 10^9 \times 16.5 \times 10^{12}$ $\times 100 = 32\%$ $16 \times 10^3 \times 1671 \times 10^{12} \times 54 \times 24 \times 60 \times 60$

Llama 3 largest model: 16k H100s, 405B param on 16.5 T tokens over 54 days

$MFU = \frac{actual FLOPs}{theoretical FLOPs}$

 $arithmetic$ intensity $=$ $\frac{\text{total arithmetic operations}}{\text{bytes accessed}}$

 ${\rm arith.~inter} = \frac{5.4 \times 10^{14}~{\rm FLOPs~s^{-1}GPU^{-1}}}{3.35 \times 10^{12}~{\rm TB~s^{-1}}} = 160~{\rm FLOPs~byte^{-1}}$

Llama 3 largest model: 16k H100s, 405B param on 16.5 T tokens over 54 days

H100: 3.35 TB/s promised

$MFU = \frac{actual FLOPs}{theoretical FLOPs}$

 ${\rm arithmetic \text{ } intensity=\frac{total \text{ } arithmetic \text{ } operations } } \\ {\rm bytes \text{ } accessed}$

arith. inten = $\frac{5.4 \times 10^{14} \text{ FLOPs s}^{-1} \text{GPU}^{-1}}{3.35 \times 10^{12} \text{ TB s}^{-1}}$ = 160 FLOPs byte⁻¹

- Course Logistics
- A Word on Foundation Models
- Auto-Differentiation & computational graphs
	- checkpointing
- GPU/Infrastructure Background
	- AD with Transformers

Transformers: Brief Model Overview

Why Transformers?

Two important ideas:

- **computation:**
	- For an RNN/LSTM: the time to compute the loss, $\sum_{t=1}$ $\log \Pr(y_t | y_{< t}, \theta)$, on a T length sequence is O(T), and this is fundamentally a serial computation.
	- For a transformer, the serial compute can be $O(1)$, i.e. no T , dependence, while the total computational complexity is *O*(*T*²)
- **inductive bias:** (statistical/representational arguments) (granting the RNNs/LSTMs the serial overhead, they still seem to be worse)
	- The $#parameters$ have no T -dependence
	- The transformers are able to create (sparse) features of things far apart.
	-

• Transformer are also able to "recall/copy" factual information from their context very easily.

Transformers: Computational Graph Memory & Checkpointing

Transformer Memory: Forward & Computational Graph

Compute $Loss()$, (for $Bsz = 1, N_{heads} = 1$) :

 $\textsf{input:}\ \textsf{parameters}\ (\textsf{embedding}\ \textsf{and}\ \textsf{MLP}\ \textsf{weights})\textsf{, data}\ X \in \{0,1\}^{T_X V}$ d : hidden dim, B : batch size, T : context size, L : # layers, V: vocab size, N_{heads} : #heads

- Embed data: $X \leftarrow XW_{embed}$
- For $l' = 0,...L 1$
	- Attention:
		- $Q = XW_Q^{\ell}, K = XW_K^{\ell}, V = XW_V^{\ell}$
		- *X* ← MaskedRowSoftmax(*QK*⊤)*V*
	- MLP layers: (dim $d \rightarrow 4d \rightarrow d$)
		- $X \leftarrow \sigma(XW_1^{\ell})$
		- $X \leftarrow \sigma(XW_2^{\ell})$
		- $X \leftarrow XW_{proj}^{\ell}$
- Compute $X \leftarrow XW_{unembed},$ Return LogLoss
- Mem Transformer Params:
- Sufficient Memory for Forward pass:
- Memory Created in the Graph:

- Embed data: $X \leftarrow XW_{embed}$
- For $l' = 0,...L 1$
	- Attention:

- *X* ← MaskedRowSoftmax(*QK*⊤)*V*
- MLP layers: $(d \rightarrow 4d \rightarrow d)$
	- $X \leftarrow \sigma(XW_1^{\ell})$
	- $X \leftarrow \sigma(XW_2^{\ell})$
	- $X \leftarrow XW_{proj}^{\ell}$
- Compute $X \leftarrow XW_{unembed},$ Return LogLoss

With $N_{heads} \neq 1$

- Mem Transformer Params: $12d^2L + 2dV$
- Sufficient Memory for Forward pass: $4dT + N_{heads}T^2 + VT$
- Memory Created in the Graph: $12LdT + LN_{heads}T^2 + 2VT$ What about with $B\neq 1$?

•
$$
Q = XW_Q^{\ell}, K = XW_K^{\ell}, V = XW_V^{\ell}
$$

Transformer Memory: Forward & Computational Graph

Compute $Loss()$, (for $Bsz = 1, N_{heads} = 1$) :

 $\textsf{input:}\ \textsf{parameters}\ (\textsf{embedding}\ \textsf{and}\ \textsf{MLP}\ \textsf{weights})\textsf{, data}\ X \in \{0,1\}^{T_X V}$ d : hidden dim, B : batch size, T : context size, L : # layers, V: vocab size, N_{heads} : #heads

- Embed data: $X \leftarrow XW_{embed}$
- For $\ell = 0,...L-1$
	- "block input" X (checkpoint here)
	- Attention:

- *X* ← MaskedRowSoftmax(*QK*⊤)*V*
- MLP layers: $(d \rightarrow 4d \rightarrow d)$
	- $X \leftarrow \sigma(XW_1^{\ell})$

•
$$
Q = XW_Q^{\ell}, K = XW_K^{\ell}, V = XW_V^{\ell}
$$

•
$$
X \leftarrow \sigma(XW_2^{\ell})
$$

•
$$
X \leftarrow XW_{proj}^{\ell}
$$

- Compute $X \leftarrow XW_{unembed},$ Return LogLoss
- Mem Transformer Params: $12d^2L + 2dV$
- Option 1: Checkpointing (ignoring the V part)
	- Memory for Checkpointing: *LdT*
	- Comp Graph Memory for Rematerialization: $12dT + N_{heads}T^2$
	- Computational overhead is basically a full factor of 2 (everything but W_{proj}^{ℓ} must be recomputed)
- Option 2: checkpoint everything but the $T \times T$ attention matrices
	- This saves on compute (the weight matrix multiples often costly) and needs $12LdT$ memory

Checkpointing (*B* = 1 **case)**

 d : hidden dim, B : batch size, T : context size, L : # layers, V: vocab size, N_{heads} : #heads

- Single Head Attention: *X* ← MaskedRowSoftmax(*QK*⊤)*V*
	- This requires having T^2 free memory, even though our output is of size $d \times T$
	- The computational cost is *O*(*dT*²)
- Simpler case: Suppose we just wanted to do the following, where $exp()$ is componentwise: *X* ← exp(QK^{\perp})*V*
	- Again, this require T^2 free memory and the same flops.

Can we do better on memory, using the same flops?

- Observe that that row $X[t, :]$ is equal to the t-th row of $\exp(QK^\top)$ times V.
	- What is the t-th row of $\exp(QK^{\top})$?
	- This implies: $X[t, :] = exp(Q[t, :] \cdot K^T)V$
- So we can compute X with a for loop over the T rows.
	- The excess memory is now $O(T)$
	- The flops is still $O(dT^2)$
- Now do you see how compute $X \leftarrow \mathsf{MaskedRowSoftmax}(\mathcal{QK}^\top)V$ with less memory?
- FlashAttention: Now just checkpoint this approach.
	- But why do we do this on a gpu?
	- (this is why it is done on the GPU)

• Fusing: the exp operations can be "fused" with vector multiplies to reduce memory movements on the GPU itself

Flash Attention Simplified:

Summary:

1. AutoDifferentiation+Checkpointing: computational backbone

2. GPU+Hardware Basics?

How do we put this together to build big models?