CS 2281: How to Train Your **Foundation Model**

Sham Kakade **Fall 2024**

Lect 1: Course Logistics + Auto-Differentiation / Compute Primitives

Sham Kakade and Nikhil Anand CS 2281: How to Train Your Foundation Model Fall 2024

- Course Logistics
- A Word on Foundation Models
- Auto-Differentiation & computational graphs
 - checkpointing
- GPU/Infrastructure Background
- AD with Transformers

Course Logistics

Info:

Check the website for all policies:

https://shamulent.github.io/CS 2281 2024.html

- The course will be in person only. Attendance/participation is expected.
 - A number of guest lectures
- Course requirements
 - 3 HWs, first one by Monday
 - Final Project in groups of 3-4.
- Course Staff: Aayush Karan, Clara Mohri, Han Qi

Background Knowledge & Responsibilities

- Transformer models
- Strong ML background (stat, lin alg)
- Python programming
- applied DL experience a plus
- motivated to learn material offline that you are not familiar with...

Grad level topics: self/group study strongly encouraged.

- Course Logistics
- A Word on Foundation Models
- Auto-Differentiation & computational graphs
 - checkpointing
- GPU/Infrastructure Background
- AD with Transformers

Foundation Models

What is a Foundation Model?

A "model that is trained on broad data such that it can be applied across a wide range of use cases." (wiki).

Examples + Grapevine Estimates (of #params, training data, compute):

- LLMs:
 - GPT3.5: 200B param model, trained on 1-5T tokens

 - Gemini: 2T param model (also MoE?), \approx 10T tokens (trained on TPUs)
 - Llama 3.1: 405B (dense), \approx 10T tokens
- Code: Copilot $\approx 10-20B$ (?),
- Images/Video: MidJourney/Sora $\approx 10-20B$ (?), 10K gpu for 1 month (?)
- Bio: AlphaFold

• GPT4.0: 1.6T (8x200B MoE model), \approx 10T tokens, (flop equiv) 30K for several months

This course: Training Foundation Models

What are the issues related to training foundation models?

- Models/architectures
- Algorithms
- Systems/Hardware Constraints
- Data:
 - Pre/mid/post training
 - supervised/instruction fine-tuning; RLHF

Other topics:

- Inference
- Reliability

Should we bet on scale?

The course is (partly) designed around "scale" being a key component to human level AI.

- Current results used substantial amounts of computation.
- Moore's law in flops per dollar.
- Markets:
 - Aggressive growth in compute infrastructure: 300K H100s at \$10B (e.g. Meta in 2024)
 - Nvidia market cap $\approx 3T$
 - reported profit: $\approx 30B$
 - market cap suggests future yearly profit should be:
 - crudely, if this profit came from (in todays) terms/H100-equivalent, then:

Nvidia H100 GPU Shipments by Customer

Estimated 2023 H100 shipments by end customer.

- Course Logistics
- A Word on Foundation Models
- Auto-Differentiation & computational graphs
 - checkpointing
- GPU/Infrastructure Background
- AD with Transformers

Auto-Differentiation

- The basic idea:
 - You write code to compute a scalar function $f: \mathbb{R}^d \to \mathbb{R}$.
 - AD computes $\nabla f(x)$ when you execute the code.
- This is the backbone of modern ML.
- Naively, one may expect that computing $\nabla f(x)$ to be more computationally expense than simply comping f(x).
- "Theorem": The Reverse Mode of AD computes $\nabla f(x)$ in time at most 5x that of the computing f(x). (the computational model is "straight line" programs)

Automatic Differentiation

Straight Line Programs: An Example

• Suppose we are interested in computing the function:

 $f(w_1, w_2) = \left(\sin(2\pi w_1/w_2) + \frac{3w_1}{w_2}\right)$

"elementary" scalar functions at each step: input: $z_0 = (w_1, w_2)$

$$z_{1} = w_{1}/w_{2}$$

$$z_{2} = \sin(2\pi z_{1})$$

$$z_{3} = \exp(2w_{2})$$

$$z_{4} = 3z_{1} - z_{3}$$

$$z_{5} = z_{2} + z_{4}$$

$$z_{6} = z_{4}z_{5}$$

return: z_6

$$v_2 - \exp(2w_2) + (3w_1/w_2 - \exp(2w_2))$$

•Let us now consider a "straight line" program which computes our function f using

A Computational Graph (aka the "Evaluation Trace")

•Compute
$$f(w_1, w_2)$$
:
input: $z_0 = (w_1, w_2)$
 $z_1 = w_1/w_2$
 $z_2 = \sin(2\pi z_1)$
 $z_3 = \exp(2w_2)$
 $z_4 = 3z_1 - z_3$
 $z_5 = z_2 + z_4$
 $z_6 = z_4 z_5$

$$w_1 = (z_0)$$

 $w_2 = (z_0)$

return: z₆

- The computation graph is the flow of operations.
- •We say that: z_2 and z_4 and children of z_1 ; z_5 is a child of z_2 ; etc.

s. a child of z_2 ; etc.

Straight Line Programs

- Input: a vector $w \in \mathbb{R}^d$
- All intermediate variables will be scalars (for clarity)
- Each step applies some differentiable real valued function $h \in \mathcal{H}$ to past variables, where each h is either
 - An affine functions.
 - A product of terms.

Straight line program:

• input: $z_0 = w$.

• • •

We actually have d (scalar) input nodes whe

1. $z_1 = h_1$ (a fixed subset of the variables in

• • • t. $z_t = h_t$ (a fixed a subset of the variables in $z_{1,t-1}, w$)

T. $z_T = h_T$ (a fixed a subset of the variables in $z_{1:T-1}, w$) • return: Z_T 17

• A fixed differentiable function, like cos(), sin(), exp(), log(), where we can compute h'(x)

$$\operatorname{ere}[z_0]_1 = w_1, [z_0]_2 = w_2, \dots [z_0]_d = w_d.$$
(w)

The Forward Mode of AD

We can compute $\frac{dz_T}{dz_0} = \frac{df}{dw}$ directly with the chain rule:

• input: $[z_0]_1 = w_1, [z_0]_2 = w_2, \dots [z_0]_d = w_d$.

• • •

1. $z_1 = h_1$ (a fixed subset of the variables in w) & compute $\frac{dz_1}{dz_0}$

t.
$$z_t = h_t$$
 (a fixed a subset of the variables
 $\frac{dz_t}{dz_0} = \sum_{p \text{ is a parent of } t} \frac{dz_t}{\partial z_p} \frac{dz_p}{\partial z_0}$
...
return: z_T and $\frac{dz_T}{dz_0}$

• How does the computational cost of this algo compare to just computing f(w)?

in $z_{1:t-1}, w$),

Can we do better? A different chain rule

input: $[z_0]_1 = w_1, [z_0]_2 = w_2, \dots [z_0]_3 = w_d$. 1. $z_1 = h_1$ (a fixed subset of the variables in w) • • • t. $z_t = h_t$ (a fixed a subset of the variables in $z_{1,t-1}, w$) • • • T. $z_T = h_T$ (a fixed a subset of the variables in $z_{1,T-1}, w$) return: Z_T

Let's think of $\frac{\partial z_T}{\partial z_t}$ as the derivative of z_T with respect to z_t , assuming that z_t is a "free" variable.

•By the chain rule:

$$\frac{\partial z_T}{\partial z_t} = c \text{ is a}$$

 $\partial Z_T \partial Z_C$ $\begin{array}{c} & & \\ \hline \\ \text{child of } t \end{array} \partial z_c \ \partial z_t \end{array}$

The Reverse Mode of AD

Forward pass:

1.Compute f(w) and store in memory all the intermediate variables $z_{0,T}$. **Backward pass:**

2. Initialize:

 $\frac{dz_T}{dt} = 1$ dz_T

3. Proceeding recursively, starting at t = T - 1 and going to t = 0 $\frac{\partial z_T}{\partial z_t} = \sum_{\substack{c \text{ is a child of } t}} \frac{\partial z_T}{\partial z_c} \frac{\partial z_C}{\partial z_c}$

4. Return:

$$\frac{dz_T}{dz_0} = \frac{df}{dw}$$

(which is the desired answer as $z_T = f, z_0 = w$)

Everything works if we allow z_t to be vectors or matrices.

Time Complexity

• History of AD: Linnainmaa (Lin76), Werbos(82), ...

Theorem: [BaurStrassen 83] Suppose that $h \in \mathcal{H}$ are of the form:

- Affine functions.
- A product of terms.
- Fixed functions, like cos(), sin(), exp(), log(), where computing h'(x) is no more than 5x the cost of computing h(x)

used to compute f(x).

Proof sketch (basically a book keeping argument): backward pass, note $\frac{\partial z_c}{\partial z_t}$ only is computed once. $\frac{\partial z_T}{\partial z_t} = \sum_{\substack{c \text{ is a child of } t}} \frac{\partial z_T}{\partial z_c} \frac{\partial z_C}{\partial z_c}$

The Reverse Mode of AD computes $\nabla f(x)$ in time no more than a factor of 5 than the program

- in the forward pass, we associate the computation along edges from parents to a child. In the

Auto-Differentiation: Checkpointing and Memory

Neural Net Example

Compute *Loss(*): input: parameters $W_1, W_2, \ldots W_L \in \mathbb{R}^{d \times d}, w \in \mathbb{R}^d$, & batch data: $(X, Y), X \in \mathbb{R}^{d \times m}, Y \in \mathbb{R}^{m}$

For
$$\ell = 0, \dots L - 1$$

 $X \leftarrow \sigma(W_{\ell+1}X)$
Compute loss: $L = \frac{1}{m} \|Y - X^{\mathsf{T}}w\|_2^2$

return: the loss L

- Parameter/input memory:
- What free memory is sufficient to execute this program? \bullet
- How much memory would we need if ran reverse mode AD?

The Reverse Mode of AD, with Checkpointing

Assume z_{t+1} is only a function of the variables z_t (here let the intermediate variables be vectors) **Checkpoint** indexes: $C = \{\tau_1 \le \tau_2 \dots \le \tau_k\}$, i.e. $C \subset \{1, \dots, T\}$. **Forward pass:**

1.Compute f(w) and store only the variables $\{z_{\tau} : \tau \in C\}$. **Backward pass:**

2. Initialize: $\frac{dz_T}{dz_T} = 1$, set $\tau_{k+1} = T$

3. Proceeding recursively, for i = k, ... 1

Rematerialization:

Redo forward pass, computing/storing the graph in "block" k, from $t = \tau_i$ to $t = \tau_{i+1}$

• Backward pass in "block" k: Starting at $t = \tau_{i+1}$ and going to $t = \tau_i$ $\frac{\partial z_T}{\partial z_t} = \sum_{c \text{ is a child of } t} \frac{\partial z_T}{\partial z_c} \frac{\partial z_c}{\partial z_t}$ 4. **Return:** $\frac{dz_T}{dz_0}$

Memory required: store $\{z_{\tau} : \tau \in C\}$; store all variables in a "block" rematerialization pass Compute overhead: need to recompute all the "blocks", which is at most the cost to compute f(x).

Let's return to AD for some "big" models

- Llama3.1: 400B
 GPT4: ≈2T
- Bfloat16: 2 bytes/parameter
 - Specialized precision type for neural nets
- Memory required to store these models: Llama3.1: 0.8 Tbytes GPT4: 4 Tbytes
- H100s have 80GB memory each: Llama3.1: GPT4:

- Course Logistics
- A Word on Foundation Models
- Auto-Differentiation & computational graphs
 - checkpointing
- GPU/Infrastructure Background
 - AD with Transformers

GPU Background

GPU Background

- extremely interesting topic)
- training efficiency
- deeply (FlashAttention 1/2/3, kernel fusions, etc.)
- We'll take a bottom-up perspective

• The goal of this course isn't to deep dive into hardware (though it is an

 Goal is to understand roughly how GPUs work and what the relevant scales are, which lets us quickly estimate useful quantities that govern

 There is an intricate tension between compute and memory (I/O), and many useful insights have come about from understanding this tension

Why are GPUs useful?

- (matmul)
- multidata)
- Exact details are complicated; our goal is to understand how computation and memory works w.r.t model training

• Modern ML stacks are complicated, but at the end of the day the primary operation we're doing is simple: matrix multiplication

• GPUs are just blocks of transistors organized in a way that makes them really great for parallel matmuls (SIMD = single instruction,

A100 SXM

- 624 TFLOPS at fp16 with 128 SMs
- 80 GB memory (DRAM)
- ~2 TB/s memory bandwidth
- Unit cost: \$18-30,000

Some numbers

H100 SXM

- 1979 TFLOPS at fp16 with 132 SMs
- 80 GB memory (DRAM)
- ~3.4 TB/s memory bandwidth
- Unit cost: \$25-40,000

[Figure credit: Yasin Mazloumi]

GPUs vs CPUs

Memory hierarchy

[Figure credit: Dao et al. 2022]

Memory hierarchy

Parenthetical comment: TPUs

Computation organization

- Thread: unit of parallel execution
- **Block**: 1024 threads (sometimes warp is used = 32 threads)
- Kernel: function that's running on GPU

Single GPU training

Single GPU training

Resource	Units	Multiplicative Factor
Compute	FLOPs	2
Memory (Parameters)	Bytes	2 (bfloat16) or 4 (float32)
Memory (Optimizer)	Bytes	4 (float32)

 $M_{\rm train} = P_{\rm transformer} + M_{\rm optimizer} + M_{\rm activations}$

For A100 40 GB, this is roughly a 2B model with batch size 16 with no optimizations

What do large models run on?

Node

What do large models run on?

Architecture Release

What do large models run on?

Node 0

Communication *between* nodes is typically much slower, **O(few * 10 GB/s)**

"InfiniBand"

AllReduce

There are many possible implementations! E.g., compute in a ring

Reduce

AllGather

ReduceScatter

GPU0	GPU1	GPU2	GPU3
A0	B0	C0	DO
A1	B1	C1	D1
A2	B2	C2	D2
A3	B3	C3	D3

Multi GPU Training: DDP

When is DDP useful?

- When a model fits on a single GPU, and we want to increase data throughput i.e. train faster
- possible (e.g., smaller scale experiments)
- Models that are large enough that cannot be fit on a single GPU are trained with other distributed frameworks (FSDP, etc.)

When it makes sense to keep inter-GPU communication as simple as

$MFU = \frac{actual \ FLOPs}{theoretical \ FLOPs}$

arithmetic intensity = $\frac{\text{total arithmetic operations}}{\text{bytes accessed}}$

$MFU = \frac{actual \ FLOPs}{theoretical \ FLOPs}$

arithmetic intensity = $\frac{\text{total arithmetic operations}}{\text{bytes accessed}}$

A100 theoretical max: 312 TFLOPs

H100: 1979 TFLOPs, 1671 TFLOPs for SXM

$MFU = \frac{actual \ FLOPs}{theoretical \ FLOPs}$

arithmetic intensity = $\frac{\text{total arithmetic operations}}{\text{bytes accessed}}$

 $MFU = \frac{6 \cdot 405 \times 10^9 \times 16.5 \times 10^{12}}{16 \times 10^3 \times 1671 \times 10^{12} \times 54 \times 24 \times 60 \times 60} \times 100 = 32\%.$

Llama 3 largest model: 16k H100s, 405B param on 16.5 T tokens over 54 days

$MFU = \frac{actual \ FLOPs}{theoretical \ FLOPs}$

GPU utilization. Through careful tuning of the parallelism configuration, hardware, and software, we achieve an overall BF16 Model FLOPs Utilization (MFU; Chowdhery et al. (2023)) of 38-43% for the configurations shown in Table 4. The slight drop in MFU to 41% on 16K GPUs with DP=128 compared to 43% on 8K GPUs with DP=64 is due to the lower batch size per DP group needed to keep the global tokens per batch constant during training.

$MFU = \frac{6 \cdot 405 \times 10^9 \times 16.5 \times 10^{12}}{16 \times 10^3 \times 1671 \times 10^{12} \times 54 \times 24 \times 60 \times 60} \times 100 = 32\%.$

Llama 3 largest model: 16k H100s, 405B param on 16.5 T tokens over 54 days

Component	Category	Interruption Count	% of Interruptions
Faulty GPU	GPU	148	30.1%
GPU HBM3 Memory	GPU	72	17.2%
Software Bug	Dependency	54	12.9%
Network Switch/Cable	Network	35	8.4%
Host Maintenance	Unplanned Maintenance	32	7.6%
GPU SRAM Memory	GPU	19	4.5%
GPU System Processor	GPU	17	4.1%
NIC	Host	7	1.7%
NCCL Watchdog Timeouts	Unknown	7	1.7%
Silent Data Corruption	GPU	6	1.4%
GPU Thermal Interface $+$ Sensor	GPU	6	1.4%
SSD	Host	3	0.7%
Power Supply	Host	3	0.7%
Server Chassis	Host	2	0.5%
IO Expansion Board	Host	2	0.5%
Dependency	Dependency	2	0.5%
CPU	Host	2	0.5%
System Memory	Host	2	0.5%

GPU utilization. Through careful tuning of the parallelism configuration, hardware, and software, we achieve an overall BF16 Model FLOPs Utilization (MFU; Chowdhery et al. (2023)) of 38-43% for the configurations shown in Table 4. The slight drop in MFU to 41% on 16K GPUs with DP=128 compared to 43% on 8K GPUs with DP=64 is due to the lower batch size per DP group needed to keep the global tokens per batch constant during training.

$MFU = \frac{6 \cdot 405 \times 10^9 \times 16.5 \times 10^{12}}{16 \times 10^3 \times 1671 \times 10^{12} \times 54 \times 24 \times 60 \times 60} \times 100 = 32\%.$

Llama 3 largest model: 16k H100s, 405B param on 16.5 T tokens over 54 days

$MFU = \frac{actual \ FLOPs}{theoretical \ FLOPs}$

arithmetic intensity = $\frac{\text{total arithmetic operations}}{\text{bytes accessed}}$

arith. inten = $\frac{5.4 \times 10^{14} \text{ FLOPs s}^{-1} \text{GPU}^{-1}}{3.35 \times 10^{12} \text{ TB s}^{-1}} = 160 \text{ FLOPs byte}^{-1}$

Llama 3 largest model: 16k H100s, 405B param on 16.5 T tokens over 54 days

H100: 3.35 TB/s promised

$MFU = \frac{actual \ FLOPs}{theoretical \ FLOPs}$

arithmetic intensity = $\frac{\text{total arithmetic operations}}{\text{bytes accessed}}$

arith. inten = $\frac{5.4 \times 10^{14} \text{ FLOPs s}^{-1} \text{GPU}^{-1}}{3.35 \times 10^{12} \text{ TB s}^{-1}} = 160 \text{ FLOPs byte}^{-1}$

- Course Logistics
- A Word on Foundation Models
- Auto-Differentiation & computational graphs
 - checkpointing
- GPU/Infrastructure Background
 - AD with Transformers

Transformers: Brief Model Overview

Why Transformers?

Two important ideas:

- computation:
 - For an RNN/LSTM: the time to compute the loss, $\sum_{t=1} -\log \Pr(y_t | y_{< t}, \theta)$, on a T length sequence is O(T), and this is fundamentally a serial computation.
 - For a transformer, the serial compute can be O(1), i.e. no T, dependence, while the total computational complexity is $O(T^2)$
- **inductive bias:** (statistical/representational arguments) (granting the RNNs/LSTMs the serial overhead, they still seem to be worse)
 - The #parameters have no T-dependence
 - The transformers are able to create (sparse) features of things far apart.

• Transformer are also able to "recall/copy" factual information from their context very easily.

Transformers: Computational Graph Memory & Checkpointing

Transformer Memory: Forward & Computational Graph

Compute Loss(), (for $Bsz = 1, N_{heads} = 1$):

input: parameters (embedding and MLP weights), data $X \in \{0,1\}^{TxV}$ *d*: hidden dim, *B*: batch size, *T*: context size, *L*: # layers, V: vocab size, N_{heads} : #heads

- Embed data: $X \leftarrow XW_{embed}$
- For $\ell = 0, \dots L 1$
 - Attention:
 - $Q = XW_Q^{\ell}, K = XW_K^{\ell}, V = XW_V^{\ell}$
 - $X \leftarrow \mathsf{MaskedRowSoftmax}(QK^{\mathsf{T}})V$
 - MLP layers: (dim $d \rightarrow 4d \rightarrow d$)
 - $X \leftarrow \sigma(XW_1^{\ell})$
 - $X \leftarrow \sigma(XW_2^{\ell})$
 - $X \leftarrow XW_{proj}^{\ell}$
- Compute $X \leftarrow XW_{unemebed}$, Return LogLoss
- Mem Transformer Params:
- Sufficient Memory for Forward pass:
- Memory Created in the Graph:

Transformer Memory: Forward & Computational Graph

Compute Loss(), (for $Bsz = 1, N_{heads} = 1$):

input: parameters (embedding and MLP weights), data $X \in \{0,1\}^{TxV}$ *d*: hidden dim, *B*: batch size, *T*: context size, *L*: # layers, V: vocab size, N_{heads} : #heads

- Embed data: $X \leftarrow XW_{embed}$
- For $\ell = 0, \dots L 1$
 - Attention:

•
$$Q = XW_Q^{\ell}, K = XW_K^{\ell}, V = XW_V^{\ell}$$

- $X \leftarrow \mathsf{MaskedRowSoftmax}(QK^{\top})V$
- MLP layers: $(d \rightarrow 4d \rightarrow d)$
 - $X \leftarrow \sigma(XW_1^{\ell})$
 - $X \leftarrow \sigma(XW_2^{\ell})$
 - $X \leftarrow XW_{proj}^{\ell}$
- Compute $X \leftarrow XW_{unemebed}$, Return LogLoss

With $N_{heads} \neq 1$

- Mem Transformer Params: $12d^2L + 2dV$
- Sufficient Memory for Forward pass: $4dT + N_{heads}T^2 + VT$
- Memory Created in the Graph: $12LdT + LN_{heads}T^2 + 2VT$ What about with $B \neq 1$?

Checkpointing (B = 1 case)

d: hidden dim, B: batch size, T: context size, L: # layers, V: vocab size, N_{heads} : #heads

- Embed data: $X \leftarrow XW_{embed}$
- For $\ell = 0, ..., L 1$
 - "block input" X (checkpoint here)
 - Attention:

•
$$Q = XW_Q^{\ell}, K = XW_K^{\ell}, V = XW_V^{\ell}$$

- $X \leftarrow \mathsf{MaskedRowSoftmax}(QK^{\top})V$
- MLP layers: $(d \rightarrow 4d \rightarrow d)$
 - $X \leftarrow \sigma(XW_1^{\ell})$

•
$$X \leftarrow \sigma(XW_2^{\ell})$$

•
$$X \leftarrow XW_{proj}^{\ell}$$

- Compute $X \leftarrow XW_{unemelted}$, Return LogLoss
- Mem Transformer Params: $12d^2L + 2dV$
- Option 1: Checkpointing (ignoring the V part)
 - Memory for Checkpointing: LdT
 - Comp Graph Memory for Rematerialization: $12dT + N_{heads}T^2$
 - Computational overhead is basically a full factor of 2 (everything but W_{proj}^{ℓ} must be recomputed)
- Option 2: checkpoint everything but the $T \times T$ attention matrices
 - This saves on compute (the weight matrix multiples often costly) and needs 12LdT memory

Flash Attention Simplified:

- Single Head Attention: $X \leftarrow MaskedRowSoftmax(QK^{+})V$
 - This requires having T^2 free memory, even though our output is of size $d \times T$
 - The computational cost is $O(dT^2)$
- Simpler case: Suppose we just wanted to do the following, where exp() is componentwise:

$$X \leftarrow \exp(QK^{\top})V$$

• Again, this require T^2 free memory and the same flops.

Can we do better on memory, using the same flops?

- Observe that that row X[t, :] is equal to the t-th row of $\exp(QK^{\top})$ times V.
 - What is the t-th row of $\exp(QK^{\top})$?
 - This implies: $X[t, :] = \exp(Q[t, :] \cdot K^{\mathsf{T}})V$
- So we can compute X with a for loop over the T rows.
 - The excess memory is now O(T)
 - The flops is still $O(dT^2)$
- Now do you see how compute $X \leftarrow MaskedRowSoftmax(QK^{\top})V$ with less memory?
- FlashAttention: Now just checkpoint this approach.
 - But why do we do this on a gpu?
 - (this is why it is done on the GPU)

Fusing: the exp operations can be "fused" with vector multiplies to reduce memory movements on the GPU itself

Summary:

1. AutoDifferentiation+Checkpointing: computational backbone

2. GPU+Hardware Basics?

How do we put this together to build big models?