CS 2281: How to Train Your
Foundation Model

Fall 2024

Lect 1: Course Logistics +
Auto-Differentiation /

Compute Primitives

CS 2281: How to Train Your Foundation Model
Fall 2024

Today

Course Logistics

A Word on Foundation Models
Auto-Differentiation & computational graphs
* checkpointing

GPU/Infrastructure Background

AD with Transformers

Course Logistics

INfo;

Check the website for all policies:

* [he course will be in person only.
» Attendance/participation is expected.
* A number of guest lectures
* Course requirements
3 HWSs, first one by Monday
* Final Project in groups of 3-4.

 Course Staff: Aayush Karan, Clara Mohri, Han Qi

https://shamulent.github.io/CS_2281_2024.html

Background Knowledge & Responsibllities

Grad level topics: self/group study strongly encouraged.
* Transformer models

» Strong ML background (stat, lin alg)

* Python programming

* applied DL experience a plus

 motivated to learn material offline that you are not familiar with...

Today

Course Logistics

A Word on Foundation Models
Auto-Differentiation & computational graphs
* checkpointing

GPU/Infrastructure Background

AD with Transformers

Founaation Models

What is a Foundation Model?

A “model that is trained on broad data such that it can be applied across a wide range of use
cases.” (wiki).

Examples + Grapevine Estimates (of #params, training data, compute):
e | LMs:

« GPT3.5: 200B param model, trained on 1-5T tokens
e GPT4.0: 1.6T (8x200B MoE model), 10T tokens, (flop equiv) 30K for several months
e Gemini: 2T param model (also MoE?), ~10T tokens (trained on TPUs)
e Llama 3.1: 4058 (dense), ~10T1 tokens
e Code: Copilot ~10-20B (7),

e Images/Video: MidJourney/Sora ~10-20B (?7), 10K gpu for 1 month (?7)
* Bio: AlphaFold

This course: Training Foundation Models

What are the issues related to training foundation models?
* Models/architectures
* Algorithms
* Pre/mid/post training
» supervised/instruction fine-tuning; RLHF
Other topics:

e |nference
* Reliablility

10

MECHANICAL RELAY VATCUUB%M TRANSISTOR INTEGRATED CIRCUIT

~
6/77
s}

Should we bet on scale?

~
6"77
\Y

The course is (partly) designed around “scale” being
a key component to human level Al.

—
Q
@)
©
-
-
)
-
2}
-
o
o
—
)
Q
©
-
@]
O
O]
wn
—
)
Q
(2]
-
9
-
o
-]
L)
)
O

Current results used substantial amounts of computation.
 Moore’s law In flops per dollar.
 Markets:

7900 7905 7970 7975 7990]923 7930 7935 7940 7945 7950 7955]960 7965 79)0 7975 7980 7985 7990 7995 2000 2005 2070 3075 2020

* Aggressive growth in compute infrastructure: =
(e-. Meta in 2024) Nvidia H100 GPU
* Nvidia market cap ~ Shipments by F'
* reported profit: ~ 30B Customer
* market cap suggests future yearly profit s
should be: by end customer.
* crudely, if this profit came from P
(in todays) terms/H100-equivalent, then: > ' eeeeeeeeeeee s
Ba|@ 50k 50k 50k 50k

—
Y ' ?

|

20k 20k |

15k | |

11 |

Source: Omdia Research

Today

Course Logistics

A Word on Foundation Models
Auto-Differentiation & computational graphs
* checkpointing

GPU/Infrastructure Background

AD with Transformers

12

Auto-Differentiation

Automatic Differentiation

The basic idea:
* You write code to compute a scalar function f : RY - R.

« AD computes V f(x) when you execute the code.
This is the backbone of modern ML.

Naively, one may expect that computing V f(x) to be more
computationally expense than simply comping f(x).

“Theorem”: The Reverse Mode of AD computes Vf{(x) in time at most 5x

that of the computing f(x).
(the computational model is “straight line” programs)

14

Straight Line Programs: An Example

*Suppose we are interested in computing the function:
fwy, wy) = (sinQaw,/w,) + 3w /1w, — exp(w,)) * (3w, /w, — exp(2w,))

-Let us now consider a “straight line" program which computes our function f using

“elementary” scalar functions at each step:
input: 7o = (W, W)

Zl — WI/WZ
7, = sSin(2xz;)
Z3 = exp(2w,)

24 =371 — X
s =2+ 2y
{6 — K445

return: 26

15

A Computational Graph (aka the “Evaluation Trace”)

?r?&?uz]im?w?’}z&z) Wz [ZOY ; Ly (2)
1 = wilw, ;: /,,,.77 /-7
2 =sinCm) gy L5 s >, >
73 = exp(2w,) - ‘\\ ;,‘1 5 ey Ty 8 -
24 =37 — & o O
{5 — <o + <4
26 = 24%s
return: Zg

» The computation graph is the flow of operations.
-We say that: z, and z, and children of z;; Z5 is a child of z,; etc.

16

Straight Line Programs

. Input: a vector w € R?
* All intermediate variables will be scalars (for clarity)

« Each step applies some differentiable real valued function i € # to past variables,

where each /1 is either
e An affine functions.
* A product of terms.

» A fixed differentiable function, like cos(), sin(), exp(), log(), where we can compute /'(x)

Straight line program:

* input: 75, = w.
We actually have d (scalar) input nodes where[zy], = wy, [29], = W», ...[20]; = W,
1. Z;, = h,(a fixed subset of the variables in w)

t. z, = h/(a fixed a subset of the variables in z;.,_;, W)

T. zp = hy(a fixed a subset of the variables in z;.7_{, W)
» return: z; N

The Forward Mode of AD

dzr df
dZ() dW

° iﬂpUt: [Zo]l — Wl’ [ZO]Z — W2, . [Zo]d — Wd
1. z; = h,(a fixed subset of the variables in w) & compute —

We can compute — directly with the chain rule:

dz,
dZ()

t. z. = h(a fixed a subset of the variables in z;.,_{, W),

dzg p is a parent of 0z 0%
dZT
. return: z; and o
0

« How does the computational cost of this algo compare to just computing f(w)?

18

Can we do better? A different chain rule

inPUt: [ZO]l = Wy, [Z0]2 = Wh, .. .[Zo]3 — W,.
1. z; = h,(a fixed subset of the variables in w)

t. z = h(a fixed a subset of the variables in z;.,_{, W)

T. zp = hy(a fixed a subset of the variables in z;.7_{, W)

return: Z,
. 0Zr -
,Let’s think of o as the derivative of z, with respect to z,, assuming that z, is a “free” variable.
<t
* By the chain rule:
aZT B Z 8ZT aZC

c IS a child of ¢

19

The Reverse Mode of AD

Forward pass:

1.Compute f(w) and store in memory all the intermediate variables z,.7-
Backward pass:

2. Initialize:
dZT B
dZT
3.Proceeding recursively, startingatt = 7 — 1 and goingto ¢t = (
aZT B Z GZT aZC
0z ¢ is a child of ¢ 0z 0%,
4. Return:
dzp df
dZ() dw

(which is the desired answer as z; = f, 7y = W)

20

Time Complexity

* History of AD: Linnainmaa (Lin76), Werbos(82), ...

[BaurStrassen 83] Suppose that 1 € # are of the form:
* Affine functions.
* A product of terms.

» Fixed functions, like cos(), sin(), exp(), log(), where computing /'(x) is no more than 5x the
cost of computing A(x)

The Reverse Mode of AD computes V f(x) in time no more than a factor of 5 than the program

used to compute f(x).

Proof sketch (basically a book keeping argument):
in the forward pass, we associate the computation along edges from parents to a child. In the

07
backward pass, note a—c only is computed once.
<t
aZT B Z @ZT aZC

c IS a child of ¢

21

Auto-Differentiation:
Checkpointing and Memory

Neural Net Example

Compute Loss():
input: parameters W, W,, ...W, € R4 w € RY, &
batch data: (X, Y),X € R¥*™ Y € R"

For =0,..L—1
X < G(Wf_|_1X)

Compute loss: L = —||Y — XTWH%
m

return: the loss L

 Parameter/input memory:
 What free memory is sufficient to execute this program?

 How much memory would we need if ran reverse mode AD?

23

The Reverse Mode of AD, with Checkpointing

Assume Z,. ; is only a function of the variables z, (here let the intermediate variables be vectors)
indexes: C = {7, £ 1,... < 1.}, i.e. C C {1,...T}.

Forward pass:

1.Compute f(w) and store only the variables {z_: 7 € C }.

Backward pass:
T dzy
2. Initialize: 7 = l,setr,, =T

3.Proceeding recursively, fori =k, ...1

Redo forward pass, computing/storing the graph in “block™ k, from = 7;to f = 7;_
- Backward pass in “block” k: Starting at# = 7,, ; and going to 7 = 7,

0zr z 0zZr 02,

0z, “cis achildofr oz oz
dZT
4. Return: —
dZ()

Memory required: store {z. : 7 € C }; store all variables in a “block” rematerialization pass
Compute overhead: need to recompute all the “blocks”, which is at most the cost to compute f(x).

24

Let’s return to AD for some “big” models

Sign Exponent Significand
5 bits 10 (+1) bits
Llama3.1: 4008
GPT4: =~2T
Sign Exponent Significand

8 bits 7 (+1) bits

SHloat1o: 2 bytes/parameter T e
. .. bHoatl16
* Specialized precision type for neural nets

Memory required to store these models:
Llama3.1: 0.8 Tbytes
GPT4: 4 Tbytes

H100s have 80GB memory each:
Llamag3.1:
GPT4:

25

Today

Course Logistics

A Word on Foundation Models
Auto-Differentiation & computational graphs
* checkpointing

GPU/Infrastructure Background

AD with Transformers

26

GPU Background

GPU Background

The goal of this course isn't to deep dive into hardware (though it is an
extremely interesting topic)

Goal is to understand roughly how GPUs work and what the relevant
scales are, which lets us quickly estimate useful quantities that govern
training efficiency

There is an intricate tension between compute and memory (I/0), and
many useful insights have come about from understanding this tension
deeply (FlashAttention 1/2/3, kernel fusions, etc.)

We’ll take a bottom-up perspective

Why are GPUs useful?

» Modern ML stacks are complicated, but at the end of the day the
primary operation we’re doing is simple: matrix multiplication
(matmul)

 GPUs are just blocks of transistors organized in a way that makes
them really great for parallel matmuls (SIMD = single instruction,

multidata)

* Exact detalls are complicated; our goal Iis to understand how
computation and memory works w.r.t model training

Some numbers

A100 SXM H100 SXM
624 TFLOPS at fp16 with 128 SMs 1979 TFLOPS at fp16 with 132 SMs
80 GB memory (DRAM) « 80 GB memory (DRAM)
~2 TB/s memory bandwidth « ~3.4 TB/s memory bandwidth

Unit cost: $18-30,000 e Unit cost: $25-40,000

GPUs vs CPUs

Core Core

L1 Cache L1 Cache

Core Core

[0I1UO0D) [[[01IU0D
[0I1U0D) || [0IIU0D

L1 Cache L1 Cache

[Figure credit: Yasin Mazloumi]

Memory hierarchy

SM-0 SM-1 SM-(N-1)

Registers
(256 KB per SM in A100)

Registers
(256 KB per SM in A100)

Registers
(256 KB per SM in A100)

L1/SMEM
(192 KB in A100)

|

L1/SMEM
(192 KB in A100)

L1/SMEM
(192 KB in A100)

: 19TB/s (20 MB)

HBM: 1.5 TB/s (40 GB)

:12.8 GB/s
L2 Cache (40 MB in A100) (>1TB)
Global Memory (DRAM, 40 GB in A100) Memory Hierarchy with
Bandwidth & Memory Size

[Figure credit: Dao et al. 2022]

SM-0

Registers
(256 KB per SM in A100)

L1/SMEM
(192 KB in A100)

Memory hierarchy

SM-1

Registers
(256 KB per SM in A100)

L1/SMEM
(192 KB in A100)

SM-(N-1)

Registers
(256 KB per SM in A100)

L1/SMEM
(192 KB in A100)

I

L2 Cache (40 MB in A100)

I

Global Memory (DRAM, 40 GB in A100)

Parenthetical comment: TPUs

14GiB/s

PCle Gon3 x16

g 14 GiB/s

<~

Host Interface

Woight FIFO
(Weight Fetcher) |

& 30 GiB/s

Matrix Multiply
Unit
(64K per cycle)

167 Gig/s

Accumulators

Activation

Normalize / Pool

—

Computation organization

CUDA thread

CUDA thread block

CUDA kernel grid

CUDA core

CUDA streaming
Multiprocessor(SM)

= [N

CUDA-capable GPU

il

 Thread: unit of parallel execution

 Block: 1024 threads (sometimes
warp is used = 32 threads)

* Kernel: function that’s running on
GPU

Single GPU training

GPU O

1 2
\

Single GPU training

GPU O

Mtrain — Ptransformcr + Moptimizcr + Mactivations

Resource Units | Multiplicative Factor
Compute FLOPs | 2

Memory (Parameters) | Bytes | 2 (bfloat16) or 4 (float32)
Memory (Optimizer) | Bytes | 4 (float32)

For A100 40 GB, this is roughly a
2B model with batch size 16 with
no optimizations

What do large models run on?

Node

What do large models run on?

Node

Communication between
GPUs in a node is typically
fast, approaching O(TB/s)

NVLink At-Scale Performance
2,100

1,800 GB200

5t Generation NVLink

1,500

1,200

GB / sec

900 H200

4t Generation NVLink

600 A100

3 Generation NVLink

300 V100
P100)

O 1st Generation NVLink

Generation NVLink

2014 < » 2024
Architecture Release

What do large models run on?

Node O Node 1

Communication between
nodes is typically much
GPU (0, 1) slower, O(few * 10 GB/s)

NCCL communication primitives

AllReduce

GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

all reduce

There are many possible implementations! E.g., compute in a ring

NCCL communication primitives

Reduce

GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

reduce
C)

NCCL communication primitives

AllGather

GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

e]

A A

all-gather

NCCL communication primitives

ReduceScatter

GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

AO+BO+ § A1+B1+ § A2+B2+ § A3+B3
Co+D0 § C1+D1 C2+D2 § C3+D3

reduce-
scatter

)

Multi GPU Training: DDP

~

! GPU 0

Micro

$ AlReduce
GPU 1)

Global batch

Micro

When is DDP useful?

 When a model fits on a single GPU, and we want to increase data
throughput i.e. train faster

 When it makes sense to keep inter-GPU communication as simple as
possible (e.g., smaller scale experiments)

 Models that are large enough that cannot be fit on a single GPU are
trained with other distributed frameworks (FSDP, etc.)

Bulk metrics for GPU performance

actual FLOPs

MEU = theoretical FLOPs

total arithmetic operations

arithmetic intensity = ot T
ytes accesse

Bulk metrics for GPU performance

actual FLLOPs A100 theoretical max: 312

MEU = theoretical FLOPs TFLOPs

H100: 1979 TFLOPs, 1671
TFLOPs for SXM

total arithmetic operations

arithmetic intensity = ot T
ytes accesse

Bulk metrics for GPU performance

Llama 3 largest model:

MFU = _ actual FLOPs 16k H100s, 405B param
theoretical FLOPs on 16.5 T tokens over 54
days

total arithmetic operations

arithmetic intensity = ot T
ytes accesse

6-405 x 10° x 16.5 x 102
MFU = 100 = 32%.
v 16><103><1671><1012><54><24><6O><6O>< 00 = 327

Bulk metrics for GPU performance

Llama 3 largest model:
MFU = _ actual FLOPs 16k H100s, 405B param
theoretical FLOPs on 16.5 T tokens over 54

days

GPU utilization. Through careful tuning of the parallelism configuration, hardware, and software, we achieve
an overall BF16 Model FLOPs Utilization (MFITCHSFFARSFFETa1"(2023)) of 38-43% for the configurations
shown in Table 4. The slight drop in MFU to/41% on 16K GPUs with DP=128 compared to 43% on 8K

GPUs with DP=64 is due to the lower batch sizesper-iBi=group-needed to keep the global tokens per batch
constant during training.

6-405 x 107 x 16.5 x 1012

MFU = 100 = 32%.
v 16><103><1671><1()12><54><24><60><60>< 00 = 327%

Component Category Interruption Count % of Interruptions

Faulty GPU GPU 148 30.1%
GPU HBM3 Memory GPU 72 17.2%
Software Bug Dependency 54 12.9%
Network Switch/Cable Network 35 8.4%

nglanned 39 7 6%
Maintenance

GPU SRAM Memory GPU 19 4.5%
GPU System Processor GPU 17 4.1%
NIC Host 1.7%

NCCL Watchdog Timeouts Unknown 1.7% LI am a 3 Iarg eSt m Od el :

Silent Data Corruption GPU 1.4%

GPU Thermal Interface + Sensor GPU (1)32 1 6 k H 1 OOS, 405 B param

SSD Host
0.7%

Power Supply Host
5% on 16.5 T tokens over 54

Server Chassis Host
0.5%

I0 Expansion Board Host
Dependency Dependency 0.5%

0.5% days
0.5%

Host Maintenance

\]

CPU Host
System Memory Host

NN DNDNDDNWWO O

GPU utilization. Through careful tuning of the parallelism configuration, hardware, and software, we achieve
an overall BF16 Model FLOPs Utilization (MFUTCHSFARETFETa1"(2023)) of 38-43% for the configurations
shown in Table 4. The slight drop in MFU to/41% on 16K GPUs with DP=128 compared to 43% on 8K
GPUs with DP=64 is due to the lower batch sizesper-idi=group-needed to keep the global tokens per batch

constant during training.

6-405 x 102 x 16.5 x 1012
MFU = 100 = 32%.
v 16><103><1671><1012><54><24><6O><60X 00 = 327

Bulk metrics for GPU performance

actual FLOPs Llama 3 largest model: 16k
VD = theoretical FLOPs R100s, 4058 param on
16.5 T tokens over 54
days

total arithmetic operations

arithmetic intensity = bytos accossed H100: 3.35 TB/s promised

5.4 x 10'* FLOPs s 'GPU!
arith. Inten = . OPs s “GPU —= 160 FLOPs byte ™’

3.35 x 1012 TB s~ *

Bulk metrics for GPU performance

Source: arXiv:2304.01433

DLRMO[(162) :LLM (340):
BERTO|(158) | |

& S
o =]

actual FLOPs
theoretical FLOPs

MFU — BER[T1 (87) . . l A100

DLRM1 (/5 | I !
" | /II | TPU v4

I |

1 | A

CNN1 (54) |
TPU v3

TeraOperations/Sec (log scale)

. . , total arithmetic operations
arithmetic intensity =

o
—
o

50 # #100 ’ %
bYteS accessed Operational Intensity (log scale)

5.4 x 104 FLOPs s 'GPU!

arith. inten = —
3.35 x 10?2 TB s

—= 160 FLOPs byte ™’

Today

Course Logistics

A Word on Foundation Models
Auto-Differentiation & computational graphs
* checkpointing

GPU/Infrastructure Background

AD with Transformers

53

Transformers:
Brief Model Overview

x; € RY

TRANSFORMERS RECAP - SELF-AT TENTION W, € R

Wy, Wy € R

P(x) = WVTx

Self-attention weights

exp(0,)

softmax(0), =

Z tT: 1 eXp (et)

score(x, z) = (Wix, Wyz)

Key - Query

Word embeddings

The +Py five +p, boxing+P3 wizards +pP; jump +P5 quickly +Pe Positional encodings

TRANSFORMERS RECAP - AT TENTION HEAD

The +p;

five +p,

boxing +P3

wizards + Py

jump +pPs

-attention weights

Attention
head

softma

exp(0,)

ZIT=1 eXp(Ht)

quickly +Pg

9 Z) — <WKx9 WQZ>

TRANSFORMERS RECAP - TRANSFORMER LAYER

linear classifier abel
Identical fully
connected net
(1) () yl)) w w)
W, Wb, Wi W, W, Wi

[CLS]

Why Transformers?
Two important ideas:

« computation:
« For an RNN/LSTM: the time to compute the loss, thl — log Pr(y,| y,, 0), on a T length

sequence is O(T), and this is fundamentally a serial computation.
* For a transformer, the serial compute can be O(1), i.e. no 1, dependence, while the total
computational complexity is O(T?)

* inductive bias: (statistical/representational arguments)
(granting the RNNs/LSTMs the serial overhead, they still seem to be worse)

* The #parameters have no 1-dependence

* The transformers are able to create (sparse) features of things far apart.
* Transformer are also able to “recall/copy” factual information from their context very easily.

58

Transformers:

Computational Graph Memory &
Checkpointing

Transformer Memory: Forward & Computational Graph
Compute Loss(), (for Bsz = I,N,, ., = 1):

input: parameters (embedding and MLP weights), data X € {0,1}*V
d: hidden dim, B: batch size, T: context size, L: # layers, V: vocab size, N, #heads

+ Embed data: X « XW, .
e For£ =0,...L—1
e Attention:
. 0=XW,, K=XW,V=XW,
e X « MaskedRowSoftmax(QKT)V
o MLP layers: (dim d = 4d — d)
e X « G(XWf)
e X « a(wa)
e X « XW°

proj

« Compute X « XW_ Return LogLoss

nemebed’

e Mem Transformer Params:
« Sufficient Memory for Forward pass:

« Memory Created in the Graph:

60

Transformer Memory: Forward & Computational Graph

Compute Loss(), (for Bsz = 1,N,, ., = 1):
input: parameters (embedding and MLP weights), data X € {0,1
d: hidden dim, B: batch size, T: context size, L: # layers, V: vocab size, N, #heads

} IxV

+ Embed data: X « XW, .
e For£ =0,...L—1
e Attention:
. Q=XW) K=XW,V=XW,
e X « MaskedRowSoftmax(QKT)V
e MLP layers: (d — 4d — d)
e X « G(XWf)
e X « G(XWZK)

4
e X «— XWpI’Oj

« Compute X « XW_ Return LogLoss

nemebed’

With N, # 1
« Mem Transformer Params: 12d2L + 2dV
. Sufficient Memory for Forward pass: 4dT + N, T* + VT

- Memory Created in the Graph: 12LdT + LN, , T + 2VT
What about with B # 1?

61

Checkpointing (B = 1 case)
d: hidden dim, B: batch size, T: context size, L: # layers, V: vocab size, N, ,.: #heads
« Embeddata: X « XW, . .-

e For=0,...L—1
* “block input” X (checkpoint here)
* Attention:

. 0=XW,, K=XW,V=XW,

e X « MaskedRowSoftmax(QKT)V
e MLP layers: (d — 4d — d)

e X « G(XWf)

e X « a(wa)

4
e X «— XWpFOj

« Compute X <« XW, Return LoglLoss

nemebed’

+ Mem Transformer Params: 12d%L + 2dV
« Option 1: Checkpointing (ignoring the V part)
« Memory for Checkpointing: LdT
. Comp Graph Memory for Rematerialization: 12dT + N, ;. T*

« Computational overhead is basically a full factor of 2 (everything but W]fmj must be recomputed)

« Option 2: checkpoint everything but the 1" X T attention matrices
» This saves on compute (the weight matrix multiples often costly) and needs 12LdT memory

62

Flash Attention Simplified:

. Single Head Attention: X «— MaskedRowSoftmax(QK ")V
. , even though our output is of size d X T
» The computational cost is O(dT?)
 Simpler case: Suppose we just wanted to do the following, where exp() is componentwise:
X « exp(QK"V
 Again, this require T? free memory and the same flops.

Can we do better on memory, using the same flops?

. Observe that that row X[, :] is equal to the t-th row of exp(QK) times V.
. What is the t-th row of exp(QK ')?
. This implies: X[¢, :] = exp(Q[t, :] - K"V

* So we can compute X with a for loop over the 1 rows.

e The excess memory is now O(T)
« The flops is still O(dT?)

. Now do you see how compute X < MaskedRowSoftmax(QK ")V with less memory?
* FlashAttention: Now just checkpoint this approach.
e But why do we do this on a gpu?
* Fusing: the exp operations can be “fused” with vector multiplies to reduce memory movements on the GPU itself
(this is why it is done on the GPU)

63

Summary:

1. AutoDifferentiation+Checkpointing: computational backbone
2. GPU+Hardware Basics?

How do we put this together to build big models?

64

