
Lec 2: Optimization 
CS 2281, Fall 2024 

 
Sham Kakade and Nikhil Vyas 
(+Depen Morwani for contributions to the slides)

1

Today

2

• Announcements/Recap++

• Whirlwind Tour of Optimization

• DL Optimization

• Training Dynamics/Edge of stability

Recap++

3

A Computational Graph (aka the “Evaluation Trace”)

4

•Compute : 

•The computation graph is the flow of operations.

•We say that: and and children of ; is a child of ; etc.

f(w1, w2)
input: z0 = (w1, w2)

z1 = w1/w2

z2 = sin(2πz1)
z3 = exp(2w2)
z4 = 3z1 − z3
z5 = z2 + z4
z6 = z4z5

return: z6

z2 z4 z1 z5 z2

The Reverse Mode of AD

5

 Forward pass:

1.Compute and store in memory all the intermediate variables .

Backward pass:

2. Initialize:  

3.Proceeding recursively, starting at and going to  

4. Return:  

(which is the desired answer as)

f(w) z0:T

dzT

dzT
= 1

t = T − 1 t = 0
∂zT

∂zt
= ∑

c is a child of t

∂zT

∂zc

∂zc

∂zt

dzT

dz0
=

df
dw

zT = f, z0 = w

Everything works if we allow to be vectors or matrices.zt

Time Complexity

6

• History of AD: Linnainmaa (Lin76), Werbos(82), … 

Theorem: [BaurStrassen 83] Suppose that are of the form:

• Affine functions.

• A product of terms.

• Fixed functions, like , where computing is no more than x the

cost of computing

The Reverse Mode of AD computes in time no more than a factor of than the program
used to compute . 

Proof sketch (basically a book keeping argument):

in the forward pass, we associate the computation along edges from parents to a child. In the

backward pass, note only is computed once. 

h ∈ ℋ

cos(), sin(), exp(), log() h′ (x) 5
h(x)

∇f(x) 5
f(x)

∂zc

∂zt
∂zT

∂zt
= ∑

c is a child of t

∂zT

∂zc

∂zc

∂zt

The Reverse Mode of AD, with Checkpointing

7

Assume is only a function of the variables (here let the intermediate variables be vectors)

Checkpoint indexes: , i.e. .

Forward pass:
1.Compute and store only the variables .

Backward pass:
2. Initialize: , set

3.Proceeding recursively, for

•Rematerialization:  
Redo forward pass, computing/storing the graph in “block” k, from to

•Backward pass in “block” k: Starting at and going to  

4. Return:

 
Memory required: store ; store all variables in a “block” rematerialization pass

Compute overhead: need to recompute all the “blocks”, which is at most the cost to compute .

zt+1 zt
C = {τ1 ≤ τ2… ≤ τk} C ⊂ {1,…T}

f(w) {zτ : τ ∈ C }

dzT

dzT
= 1 τk+1 = T

i = k, …1

t = τi t = τi+1
t = τi+1 t = τi

∂zT

∂zt
= ∑c is a child of t

∂zT

∂zc

∂zc

∂zt
dzT

dz0

{zτ : τ ∈ C }
f(x)

GPUs vs CPUs

[Figure credit: Yasin Mazloumi]

α4

TRANSFORMERS RECAP - SELF-ATTENTION

The five boxing wizards jump quickly

score()x1, x4 score()x2, x4 score()x3, x4 score()x4, x4 score()x5, x4 score()x6, x4

x4x1 x2 x3 x5 x6

softmax

α1 α2 α3 α5 α6

𝗌𝗈𝖿𝗍𝗆𝖺𝗑(θ)τ =
exp(θτ)

∑T
t=1 exp(θt)

Only place of global interaction

x4

∑ αiϕ(xi)

𝗌𝖼𝗈𝗋𝖾(x, z) = ⟨WKx, WQz⟩

WQ, WK ∈ ℝd×d

xi ∈ ℝd

ϕ(x) = WV
⊤x

WV ∈ ℝd×d

Word embeddings

Self-attention weights

Key - Query

Positional encodings+p1 +p2 +p3 +p4 +p5 +p6

10

Compute , (for) :

input: parameters (embedding and MLP weights), data

: hidden dim, : batch size, : context size, : # layers, V: vocab size, : #heads 

• Embed data:

• For

• Attention:

•

•

• MLP layers: ()

•

•

•

• Compute , Return LogLoss  

With

• Mem Transformer Params:

• Sufficient Memory for Forward pass:

• Memory Created in the Graph:

What about with ? 

Loss() Bsz = 1,Nheads = 1
X ∈ {0,1}TxV

d B T L Nheads

X ← XWembed
ℓ = 0,…L − 1

Q = XWℓ
Q, K = XWℓ

K, V = XWℓ
V

X ← MaskedRowSoftmax(QK⊤)V
d → 4d → d

X ← σ(XWℓ
1)

X ← σ(XWℓ
2)

X ← XWℓ
proj

X ← XWunemebed

Nheads ≠ 1
12d2L + 2dV

4dT + NheadsT2 + VT
12LdT + LNheadsT2 + 2VT

B ≠ 1

Transformer Memory: Forward & Computational Graph

11

: hidden dim, : batch size, : context size, : # layers, V: vocab size, : #heads

• Embed data:

• For

• “block input” X (checkpoint here)

• Attention:

•

•

• MLP layers: ()

•

•

•

• Compute , Return LogLoss  

• Mem Transformer Params:

• Option 1: Checkpointing (ignoring the part)

• Memory for Checkpointing:

• Comp Graph Memory for Rematerialization:

• Computational overhead is basically a full factor of 2 (everything but must be recomputed)

• Option 2: checkpoint everything but the attention matrices

• This saves on compute (the weight matrix multiples often costly) and needs memory

d B T L Nheads
X ← XWembed

ℓ = 0,…L − 1

Q = XWℓ
Q, K = XWℓ

K, V = XWℓ
V

X ← MaskedRowSoftmax(QK⊤)V
d → 4d → d

X ← σ(XWℓ
1)

X ← σ(XWℓ
2)

X ← XWℓ
proj

X ← XWunemebed

12d2L + 2dV
V

LdT
12dT + NheadsT2

Wℓ
proj

T × T
12LdT

Checkpointing (case)B = 1

12

• Single Head Attention:

• This requires having free memory, even though our output is of size

• The computational cost is

• Simpler case: Suppose we just wanted to do the following, where is componentwise: 
	

• Again, this require free memory and the same flops. 

Can we do better on memory, using the same flops?

• Observe that that row is equal to the t-th row of times .

• What is the t-th row of ?

• This implies:

• So we can compute with a for loop over the rows.

• The excess memory is now

• The flops is still  

• Now do you see how compute with less memory?

• FlashAttention: Now just checkpoint this approach.

• But why do we do this on a gpu?

• Fusing: the exp operations can be “fused” with vector multiplies to reduce memory movements on the GPU itself 

(this is why it is done on the GPU)

X ← MaskedRowSoftmax(QK⊤)V
T2 d × T

O(dT2)
exp()

X ← exp(QK⊤)V
T2

X[t, :] exp(QK⊤) V
exp(QK⊤)

X[t, :] = exp(Q[t, :] ⋅ K⊤)V
X T

O(T)
O(dT2)

X ← MaskedRowSoftmax(QK⊤)V

Flash Attention Simplified:

Whirlwind Optimization Overview

13

Today

14

• Announcements/Recap++

• Whirlwind Tour of Optimization

• GD/Momentum/Newton’s Method

• SGD:

• LR scheduling+averaging

• batch size

• DL Optimization

• Training Dynamics/Edge of stability

Gradient Descent

15

Gradient Descent: warmup 1-dim

16

• Our general optimization problem:

• Gradient descent: 
 

• Consider the 1d convex quadratic case, . GD is:

• What is GD in terms of ? 
 

• What learning rates guarantee convergence? 
 
 

• What is a good setting of for well behaved “smooth” functions?

	  

min
w∈Rd

L(w)

wt+1 = wt − η∇L(wt)

L(w) =
1
2

(w − c)2

w⋆

η
L(w + δ) ≈ L(w) + L′ (w)δ + 1

2 L′ ′ (w)δ2

Gradient Descent: convex quadratics

17

• Consider ,  

for positive def symmetric matrix , vector , scalar

• Gradient descent: 

• Gradient descent in terms of : 

• Let be the SVD of A.

• Now let us rotate coordinates (to the the eigenbasis): 

 and

• What is the GD update rule in the new coordinate system? 

L(w) =
1
2

w⊤Aw + bw + c

A b c

w ← w − η(Aw − b)
w⋆

A = UDU⊤

w̃ = U⊤w, L(w̃) =

w̃ − w̃⋆ ← (I − ηD)(w̃ − w̃⋆)

GD dynamics

18

• The GD update rule (in the eigenbasis): 

• What is the update rule per coordinate and what is the iterate at time ? 
 
 
 

• What learning rates guarantee convergence? 
 
 

• Suppose . What are the dynamics “at the edge” (when)? 
 

• What is the convergence rate for ? 

 

w̃ − w̃⋆ ← (I − ηD)(w̃ − w̃⋆)
t

λ1 > λ2 ≥ …λd η = 2/λ1

η = 1/λmax

∥wt − w⋆∥2
2 ≤ exp(−t/κ)∥w0 − w⋆∥2

2, where κ =
λmax

λmin

GD dynamics

19

GD + Momentum

20

GD with Momentum  
(aka the “heavy ball” method, Polyak ‘64)

21

• Gradient descent: 

• Gradient descent with momentum : 
 

 

• GD+momentum (for quadratics) has convergence rate (with opt set params):  

 

 

w ← w − η∇L(w)
0 ≤ γ < 1

m ← γm + ∇L(w)
w ← w − ηm

∥wt − w⋆∥2
2 ≤ exp(− t/ κ)∥w0 − w⋆∥2

2, where κ =
λmax

λmin

GD + momentum dynamics

22

Newtons Method

23

Newton’s Method

24

• Taylor’s theorem around  

• Let’s try to update so as to minimize the RHS: 
 

 

• For quadratics, what happens with one step of Newton’s method? 
 

• More generally, Newton’s method and variants (like nonlinear conjugate
gradient) are “very very good”. 

w
L(w + Δ) ≈ L(w) + ∇L(w) ⋅ Δ +

1
2

Δ⊤(∇2L(w⋆))Δ

w

w ← w − ??

SGD

25

SGD

26

• Suppose we can get unbiased estimates of . SGD: 

• What conditions might we want our stepsizes to satisfy? 

• Robbins&Monro (’51) showed for convex functions,  
if and is finite, then as . 

• Example: suppose and we can sample .

̂∇L(w) ∇L(w)
wt+1 = wt − ηt

̂∇L(wt)

∑t ηt → ∞ ∑t η2
t wt → w⋆ t → ∞

L(w) = E(x,y)∼D[(y − w ⋅ x)2] (x, y) ∼ D

• Suppose and we can sample . 
 

• How do we optimally set for the quadratic case?

• Suppose , where , and is Gaussian with covariance

• It is subtle, even for this case!

• The optimal achievable rate over all algorithms is:

• “classical” lr decay schedule (like), have converge rates like which are condition number worse. 

• “geometric+piecewise” decay is near opt, though worse: 

• optimal (eigencurve) decay looks like cosine! 
(and no under certain spectrum conditions)

• note: need to know the end time for setting the the decay

L(w) = E(x,y)∼D[(y − w ⋅ x)2] (x, y) ∼ D
wt+1 = wt + ηt(yt − wt ⋅ xt)xt

ηt
y = w⋆ ⋅ x + ϵ ϵ ∼ N(0,σ2) x E[xx⊤] = UDU⊤

E[L(wt) − L(w⋆)] ≥
dσ2

t
ηt = 1/tα

E[L(wt) − L(w⋆)] ≲ κ
dσ2

t
, for large t

log(κ)

E[L(wt) − L(w⋆)] ≲ log(κ)
dσ2

t
, for large t

log(κ)
t

SGD: quadratic case

27

SGD: iterative averaging

28

• Suppose , where , and is Gaussian with covariance

• The optimal achievable rate over all algorithms is:

• Iterate (tail) averaging, with constant LR, obtains the optimal rate: 
Algo:

• Run SGD with constant LR.

• Return the average over the last half:  

• For more general convex case, the Polyak&Juditksy (’92) showed that both (a) decaying
the LR and (b) integrate averaging obtains the optimal rate.

• Also, exponential weight averaging (EWA) essentially the same:  
 

y = w⋆ ⋅ x + ϵ ϵ ∼ N(0,σ2) x
E[xx⊤] = UDU⊤

E[L(wt) − L(w⋆)] ≥
dσ2

t

̂w =
1

T/2

T

∑
t=T/2

wt

̂w =

SGD: critical batch sizes

29

• Mini-batch SGD, with batchsize :

• Sample points iid,

•

• The mini-batching benefits:

• You can do the gradient computation updates in parallel.

• The hope: large batch sizes can (substantially) reduce the serial time of optimization

(at the same overall flops).

• (serial compute vs total compute) When we double the batch size, we hope that the loss

drops twice as fast (in terms of number of iterations). This happens for small (for
regression).

• The critical batch size is the batch size where this stops happening (i.e. where there is
demising returns for doubling the batch size).

• For regression, there is a sharp characterization of when this happens.

• The same behavior happens for neural nets.

m
m (x1, y1)…(xm, ym) ∼ D

wt+1 = wt + ηt
1
m ∑

i

(yi − wt ⋅ xi)xi

m

DL

30

Today

31

• Announcements/Recap++

• Whirlwind Tour of Optimization

• DL Optimization Pipeline

• Optimizers/Adam

• Stability/Architecture Modifications

• Learning rate scheduling/Batch size

• Scaling Laws…

• Training Dynamics/Edge of stability

Adam Algo

32

Changes:

- How to apply weight decay?: AdamW

- would be a better default.

- For large models, smaller values are

needed.

- Adafactor, 8bit Adam.

β2 = .99
ϵ

Lots of works on “Why Adam works?”, but no
consensus:

- Derived from Adagrad, an online learning

method.

- At , it becomes signed

gradient descent, this connection is used
in a lot of theoretical analysis of Adam.

- Also has connections to Newton’s method. 
 

- Modern transformers need Adam, they
cannot be trained with SGD.

β1 = β2 = ϵ = 0

Kingma and Ba 2014

Adam Algo

33

Changes:

- How to apply weight decay?: AdamW

- would be a better default.

- For large models, smaller values are

needed.

- Adafactor, 8bit Adam.

β2 = .99
ϵ

Lots of works on “Why Adam works?”, but no
consensus:

- Derived from Adagrad, an online learning

method.

- At , it becomes signed

gradient descent, this connection is used
in a lot of theoretical analysis of Adam.

- Also has connections to Newton’s method. 
 

- Modern transformers need Adam, they
cannot be trained with SGD.

β1 = β2 = ϵ = 0

Kingma and Ba 2014

Other Diagonal Preconditioner Optimizers

34

- Many methods such Adam, Adafactor, Lion perform
very similarly, except SGD.

- All of these performant optimizers are related to
signed gradient descent.

- If optimizer space is a bottleneck, use Adafactor or
Lion along with low precision training

Zhao et al. 2024, “Deconstructing What Makes a Good Optimizer for Language Models”

Today

35

• Announcements/Recap++

• Whirlwind Tour of Optimization

• DL Optimization Pipeline

• Optimizers/Adam

• Stability/Architecture Modifications

• Learning rate scheduling/Batch size

• Scaling Laws…

• Training Dynamics/Edge of stability

36

(Sometimes) Loss Spikes

Fig credit: A Theory on Adam Instability in Large-Scale Machine Learning

Stability Fixes:

37

Two important fixes:

• (Left) Various “layer normalizations”

• (Right) Regularization/Weight decay

Today

38

• Announcements/Recap++

• Whirlwind Tour of Optimization

• DL Optimization Pipeline

• Optimizers/Adam

• Stability/Architecture Modifications

• Learning rate scheduling/Batch size

• Scaling Laws…

• Training Dynamics/Edge of stability

Learning Rate Schedules

39

- We saw that learning rate decay is needed  
to reduce variance/noise.

- Why do we need warmup?

- Starting and ending at .1x max lr seems like  
a good default.

- People have recently been trying some  
modified schedules with marginal gains.

- Schedules can also be combined with weight 
averaging (important for diffusion models) 
Popularly known under terms “EWA/SWA”

Critical Batch Size: (same as before)

40

Zhang et al. 2024, “Critical Batch Sizes in

Language Model Training”, upcoming

Today

41

• Announcements/Recap++

• Whirlwind Tour of Optimization

• DL Optimization Pipeline

• Optimizers/Adam

• Stability/Architecture Modifications

• Learning rate scheduling/Batch size

• Scaling Laws…

• Training Dynamics/Edge of stability

How To Scale Up?:  
Scaling Laws For Everything

42

43

Hyperparameter choices for scaling

- Architecture:

- Model choices: Attention type (Standard, Mamba), MLP type (Standard

GeLU/ReLU, Swiglu) etc

- Choices within architecture such as depth, width, vocabulary size. 

- Optimization:

- Batch Size

- Warmup

- Adam hyperparameters like

- Learning Rate

β1, β2, ϵ

We want to optimize for

- Best loss for given compute (#params*#tokens),

- Best downstream evaluations for given compute.

- Best generalization for given data.

44

Model Type

- Standard Approach: Show the benefits at a nontrivial scale and hope the
benefits generalize to larger scales.

- Scaling Laws approach: Show benefits with scale.

Shazeer et al. 2020

Dosovitskiy et al. 2021 
“ViT”

45

Within Model Family Choices

Choices such as #tokens, depth, width, number of attention heads etc:

- Fit scaling laws.

46

Optimizer
- : Find values at medium scale and use them at large scale.

- Batch Size:

- Fit scaling laws i.e. .  
(Porian et al. 2024, Deepseek-AI 2024)

- Is sometimes changed during training (Llama3, Chinchilla)

- Weight decay: Better to use decoupled weight decay (good defaults: 0,1e-4)  

i.e. rather than

- Warmup: No standard recommendations for LLMs, 20% might be a safe bet for medium

sized models.

β1, β2

optimal batch size = A + (model size)α

wt = (1 − λ) ⋅ wt−1 − η ⋅ gt wt = (1 − ηλ) ⋅ wt−1 − η ⋅ gt

Porian et al. 2024 
“Resolving Discrepancies in Compute-Optimal Scaling of Language Models”

47

Learning Rate / μP
Learning rate (LR):

- Again fit scaling laws.

- Use learning rate transfer (Yang et al. 2022: Tensor Programs V/ μP):

- To find optimal LR for a model of width , we search for optimal LR of a model
with smaller width (everything else like depth and batch size is held constant)

- Scale found optimal LR by .

wlarge
wsmall

wsmall/wlarge

Today

48

• Announcements/Recap++

• Whirlwind Tour of Optimization

• DL Optimization Pipeline

• Training Dynamics

• edge of stability

• math

Edge of Stability / Why Warmup?

49

‘Optimal’ Step size

50
“Edge of Stability”

Cohen et al. 2021

“Progressive sharpening”

• Reminder: In the quadratic model we need for stability.

• In deep learning, can change with time: theory motivates using for

steepest descent.

• Let’s try using and compare to a constant !

• We define the sharpness as .

η < 2/λmax ⟺ λmax < 2/η
λmax η = 1/λmax(θt)

η = 1/λmax(θt) η
λmax(θt)

51

Edge of Stability
• Define , which is the maxima eigenvalue that leads to stable dynamics for lr .

• If , then the dynamics should be unstable.

λ⋆(η) = 2/η η
λ(θ) > λ⋆(η)

“Edge of Stability”

Cohen et al. 2021

52

Why warmup?

53

Edge of Stability - Toy Model

ℒ(x, y) = (1 − x2y2)2

54

Edge of Stability - A generic explanation

• is the loss function. Let represent the sharpness, i.e, .

• Stage 1: Suppose progressive sharpening has occurred and that we reach a point where

, i.e. we are at point where we should are unstable (and oscillating).  
Let be the largest eigenvector of .

• Stage 2: Why don’t we diverge?

• Let us consider a perturbation of in the direction. For , 

 
	  
where the last step uses . (Do you see why??)

• Therefore, for large , a gradient step after a large perturbation makes smaller due to
the term.

• This makes the dynamics more stable because increases after the perturbation.

ℒ(θ) S(θ) S(θ) = λmax[∇2ℒ(θ)]
θt

η = 2/S(θt)
u ∇2ℒ(θt)

θt u α > 0
∇θL(θt + αu) ≈ ∇θL(θt) + α∇2

θL(θt)u + (α2/2)∇3
θL(θt) ⋅ (u ⊗ u)

= ∇θL(θt) + αS(θt)u + (α2/2)∇S(θt)
∇3

θL(θt) ⋅ (u ⊗ u) = ∇θS(θt)
α S(θ)

(α2/2)∇S(θt)
2/S(θ)

55

References

- Tay et al. 2022: https://arxiv.org/abs/2207.10551

- Clark et al. 2022: https://arxiv.org/abs/2202.01169

- Dosovitskiy et al. 2021: https://arxiv.org/pdf/2010.11929

- Other papers: “Getting ViT in Shape”, “SCALE EFFICIENTLY: INSIGHTS FROM PRE-

TRAINING AND FINE-TUNING TRANSFORMERS”.

Porian et al. 2024

https://arxiv.org/abs/2207.10551
https://arxiv.org/abs/2202.01169
https://arxiv.org/pdf/2010.11929

