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Today
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• Announcements/Recap++

• Whirlwind Tour of Optimization

• DL Optimization

• Training Dynamics/Edge of stability

HW] is out
-



Recap++

3



A Computational Graph (aka the “Evaluation Trace”)
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•Compute : 




•The computation graph is the flow of operations.

•We say that:  and  and children of ;  is a child of ; etc.

f(w1, w2)
input: z0 = (w1, w2)

z1 = w1/w2
z2 = sin(2πz1)
z3 = exp(2w2)
z4 = 3z1 − z3
z5 = z2 + z4
z6 = z4z5

return: z6

z2 z4 z1 z5 z2



The Reverse Mode of AD
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 Forward pass:

1.Compute  and store in memory all the intermediate variables .

Backward pass: 

2. Initialize:  




3.Proceeding recursively, starting at  and going to  




4. Return:  



(which is the desired answer as )

f(w) z0:T

dzT

dzT
= 1

t = T − 1 t = 0
∂zT

∂zt
= ∑

c is a child of t

∂zT

∂zc

∂zc

∂zt

dzT

dz0
= df

dw
zT = f, z0 = w

Everything works if we allow  to be vectors or matrices.zt



Time Complexity
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• History of AD: Linnainmaa (Lin76), Werbos(82), …  

Theorem: [BaurStrassen 83] Suppose that  are of the form:

• Affine functions.

• A product of terms.

• Fixed functions, like , where computing  is no more than x the 

cost of computing 

The Reverse Mode of AD computes  in time no more than a factor of  than the program 
used to compute . 

Proof sketch (basically a book keeping argument): 

in the forward pass, we associate the computation along edges from parents to a child. In the 

backward pass, note  only is computed once.  

h ∈ ℋ

cos(), sin(), exp(), log() h′ (x) 5
h(x)

∇f(x) 5
f(x)

∂zc

∂zt∂zT

∂zt
= ∑

c is a child of t

∂zT

∂zc

∂zc

∂zt



The Reverse Mode of AD, with Checkpointing
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Assume  is only a function of the variables  (here let the intermediate variables be vectors)

Checkpoint indexes: , i.e. .

Forward pass: 
1.Compute  and store only the variables .

Backward pass: 
2. Initialize:  , set 

3.Proceeding recursively, for 


•Rematerialization:  
Redo forward pass, computing/storing the graph in “block” k, from  to 


•Backward pass in “block” k: Starting at  and going to  



4. Return:  

 
Memory required: store ; store all variables in a “block” rematerialization pass

Compute overhead: need to recompute all the “blocks”, which is at most the cost to compute .

zt+1 zt
C = {τ1 ≤ τ2… ≤ τk} C ⊂ {1,…T}

f(w) {zτ : τ ∈ C }
dzT

dzT
= 1 τk+1 = T

i = k, …1

t = τi t = τi+1
t = τi+1 t = τi∂zT

∂zt
= ∑c is a child of t

∂zT

∂zc

∂zc

∂zt
dzT

dz0

{zτ : τ ∈ C }
f(x)



GPUs vs CPUs

[Figure credit: Yasin Mazloumi]
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Compute , (for ) :

input: parameters (embedding and MLP weights), data 


: hidden dim, : batch size, : context size, : # layers, V: vocab size, : #heads 

• Embed data: 

• For 


• Attention:

• 

• 


• MLP layers: ( )

• 

• 

• 


• Compute , Return LogLoss  

With 

• Mem Transformer Params: 

• Sufficient Memory for Forward pass: 

• Memory Created in the Graph: 

What about with ? 

Loss() Bsz = 1,Nheads = 1
X ∈ {0,1}TxV

d B T L Nheads

X ← XWembed
ℓ = 0,…L − 1

Q = XWℓ
Q, K = XWℓ

K, V = XWℓ
V

X ← MaskedRowSoftmax(QK⊤)V
d → 4d → d

X ← σ(XWℓ
1 )

X ← σ(XWℓ
2 )

X ← XWℓ
proj

X ← XWunemebed

Nheads ≠ 1
12d2L + 2dV

4dT + NheadsT2 + VT
12LdT + LNheadsT2 + 2VT

B ≠ 1

Transformer Memory: Forward & Computational Graph
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: hidden dim, : batch size, : context size, : # layers, V: vocab size, : #headsd B T L Nheads
• Embed data: X ← XWembed
• For ℓ = 0,…L − 1

• “block input” X (checkpoint here)
• Attention:

• Q = XWℓ
Q, K = XWℓ

K, V = XWℓ
V

• X ← MaskedRowSoftmax(QK⊤)V
• MLP layers: ( )d → 4d → d

• X ← σ(XWℓ
1 )

• X ← σ(XWℓ
2 )

• X ← XWℓ
proj

• Compute , Return LogLoss  X ← XWunemebed

Checkpointing (  case)B = 1
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• MLP layers: ( )d → 4d → d

• X ← σ(XWℓ
1 )

• X ← σ(XWℓ
2 )

• X ← XWℓ
proj

• Compute , Return LogLoss  X ← XWunemebed

• Mem Transformer Params: 12d2L + 2dV
• Option 1: Checkpointing (ignoring the  part)V

• Memory for Checkpointing: LdT
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proj
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: hidden dim, : batch size, : context size, : # layers, V: vocab size, : #headsd B T L Nheads
• Embed data: X ← XWembed
• For ℓ = 0,…L − 1

• “block input” X (checkpoint here)
• Attention:

• Q = XWℓ
Q, K = XWℓ

K, V = XWℓ
V

• X ← MaskedRowSoftmax(QK⊤)V
• MLP layers: ( )d → 4d → d

• X ← σ(XWℓ
1 )

• X ← σ(XWℓ
2 )

• X ← XWℓ
proj

• Compute , Return LogLoss  X ← XWunemebed

• Mem Transformer Params: 12d2L + 2dV
• Option 1: Checkpointing (ignoring the  part)V

• Memory for Checkpointing: LdT
• Comp Graph Memory for Rematerialization: 12dT + NheadsT2

• Computational overhead is basically a full factor of 2  (everything but  must be recomputed)Wℓ
proj

• Option 2: checkpoint everything but the  attention matricesT × T
• This saves on compute (the weight matrix multiples often costly) and needs  memory12LdT

Checkpointing (  case)B = 1



11

• Single Head Attention: 

• This requires having  free memory, even though our output is of size 

• The computational cost is 


• Simpler case: Suppose we just wanted to do the following, where  is componentwise:  
	 

• Again, this require  free memory and the same flops.  

Can we do better on memory, using the same flops?

• Observe that that row  is equal to the t-th row of  times .


• What is the t-th row of ?

• This implies: 


• So we can compute  with a for loop over the  rows.

• The excess memory is now 

• The flops is still  

• Now do you see how compute  with less memory?

• FlashAttention: Now just checkpoint this approach.


• But why do we do this on a gpu?

• Fusing: the exp operations can be “fused” with vector multiplies to reduce memory movements on the GPU itself  

(this is why it is done on the GPU)

X ← MaskedRowSoftmax(QK⊤)V
T2 d × T

O(dT2)
exp()

X ← exp(QK⊤)V
T2

X[t, :] exp(QK⊤) V
exp(QK⊤)

X[t, :] = exp(Q[t, :] ⋅ K⊤)V
X T

O(T )
O(dT2)

X ← MaskedRowSoftmax(QK⊤)V

Flash Attention Simplified: 



Whirlwind Optimization Overview
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Today
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• Announcements/Recap++

• Whirlwind Tour of Optimization

• GD/Momentum/Newton’s Method

• SGD:

• LR scheduling+averaging

• batch size


• DL Optimization

• Training Dynamics/Edge of stability



Gradient Descent
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Gradient Descent: warmup 1-dim

15

• Our general optimization problem: min
w∈Rd

L(w)



Gradient Descent: warmup 1-dim
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• Our general optimization problem: min
w∈Rd

L(w)
• Gradient descent: 

 wt+1 = wt − η∇L(wt)



Gradient Descent: warmup 1-dim
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• Our general optimization problem: min
w∈Rd

L(w)
• Gradient descent: 

 wt+1 = wt − η∇L(wt)

• Consider the 1d convex quadratic case, . GD is:L(w) = 1
2 (w − c)2

VL(w) = w - c



Gradient Descent: warmup 1-dim

15

• Our general optimization problem: min
w∈Rd

L(w)
• Gradient descent: 

 wt+1 = wt − η∇L(wt)

• Consider the 1d convex quadratic case, . GD is:L(w) = 1
2 (w − c)2

• What is GD in terms of ? 
 

w⋆

• What learning rates guarantee convergence? 
 
 

= w- yX

PL(w)= w - c
wX = C

-wX -wa =Wy
-wa - /Wend

wow - y (w -wY) (+ + 1
-wa

= (1 - 2) (wt -wa)
1(1 -x)) < 1 n = z converge

M = 2 bounce around ,
- (1-x)t(40 - wa)

1-2 diverge =
- 1 : /w

+ wx)



Gradient Descent: warmup 1-dim
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• Our general optimization problem: min
w∈Rd

L(w)
• Gradient descent: 

 wt+1 = wt − η∇L(wt)

• Consider the 1d convex quadratic case, . GD is:L(w) = 1
2 (w − c)2

• What is GD in terms of ? 
 

w⋆

• What learning rates guarantee convergence? 
 
 

• What is a good setting of  for well behaved “smooth” functions?η



Gradient Descent: warmup 1-dim

15

• Our general optimization problem: min
w∈Rd

L(w)
• Gradient descent: 

 wt+1 = wt − η∇L(wt)

• Consider the 1d convex quadratic case, . GD is:L(w) = 1
2 (w − c)2

• What is GD in terms of ? 
 

w⋆

• What learning rates guarantee convergence? 
 
 

• What is a good setting of  for well behaved “smooth” functions?η
	 L(w + δ) ≈ L(w) + L′ (w)δ + 1

2 L′ ′ (w)δ2

S :Enn) n)

T
2 stopsize -



Gradient Descent: convex quadratics
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• Consider ,  

for positive def symmetric matrix , vector , scalar 

L(w) = 1
2 w⊤Aw + bw + c

A b c

XL(r) = Aw +b



Gradient Descent: convex quadratics
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• Consider ,  

for positive def symmetric matrix , vector , scalar 

L(w) = 1
2 w⊤Aw + bw + c

A b c
• Gradient descent: 

w ← w − η(Aw − b)



Gradient Descent: convex quadratics
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• Consider ,  

for positive def symmetric matrix , vector , scalar 

L(w) = 1
2 w⊤Aw + bw + c

A b c
• Gradient descent: 

w ← w − η(Aw − b)
• Gradient descent in terms of : w⋆

w
*
=Ab

↑
Aw*+b -O

I
b = -Aw)

w + w - n (Aw - Awx) -> ↳wk)f wer

(w -wY) X (I -mA)( - w = ) -
-nAlw -w+



Gradient Descent: convex quadratics
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• Consider ,  

for positive def symmetric matrix , vector , scalar 

L(w) = 1
2 w⊤Aw + bw + c

A b c
• Gradient descent: 

w ← w − η(Aw − b)
• Gradient descent in terms of : w⋆

• Let  be the SVD of A.A = UDU⊤ D = diag (X, .
-
- Xd)



Gradient Descent: convex quadratics
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• Consider ,  

for positive def symmetric matrix , vector , scalar 

L(w) = 1
2 w⊤Aw + bw + c

A b c
• Gradient descent: 

w ← w − η(Aw − b)
• Gradient descent in terms of : w⋆

• Let  be the SVD of A.A = UDU⊤

• Now let us rotate coordinates (to the the eigenbasis):  
 and w̃ = U⊤w, L(w̃) =

i . in = IT w

6V
e

5.

5 - VTb

- TDi + Bw + c

w = Un



Gradient Descent: convex quadratics
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• Consider ,  

for positive def symmetric matrix , vector , scalar 

L(w) = 1
2 w⊤Aw + bw + c

A b c
• Gradient descent: 

w ← w − η(Aw − b)
• Gradient descent in terms of : w⋆

• Let  be the SVD of A.A = UDU⊤

• Now let us rotate coordinates (to the the eigenbasis):  
 and w̃ = U⊤w, L(w̃) =

• What is the GD update rule in the new coordinate system?  
w̃ − w̃⋆ ← (I − ηD)(w̃ − w̃⋆)

Y =Z
X
max

·
~ - wo - (I - uA)(n-wa)



GD dynamics
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• The GD update rule (in the eigenbasis): 
w̃ − w̃⋆ ← (I − ηD)(w̃ − w̃⋆)

• What is the update rule per coordinate and what is the iterate at time ?  
 
 
 

t



GD dynamics
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• The GD update rule (in the eigenbasis): 
w̃ − w̃⋆ ← (I − ηD)(w̃ − w̃⋆)

• What is the update rule per coordinate and what is the iterate at time ?  
 
 
 

t

• What learning rates guarantee convergence? 
 
 

Dij = X ,

(i) -Exti)) = (1 -uxi) (()- (i)
= (1-mxi)t (u(i) - w (i))

14 -converse Fi Kluxil = 1X
max

n = Z - bounce in largest eig dir.Ymax

172 - diverse in of least one dire
,X

nax

T for >min dir tion
supposev =

X contraction
m (1- *) factor



GD dynamics
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• The GD update rule (in the eigenbasis): 
w̃ − w̃⋆ ← (I − ηD)(w̃ − w̃⋆)

• What is the update rule per coordinate and what is the iterate at time ?  
 
 
 

t

• What learning rates guarantee convergence? 
 
 

• Suppose . What are the dynamics “at the edge” (when )?  
 

λ1 > λ2 ≥ …λd η = 2/λ1



GD dynamics
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• The GD update rule (in the eigenbasis): 
w̃ − w̃⋆ ← (I − ηD)(w̃ − w̃⋆)

• What is the update rule per coordinate and what is the iterate at time ?  
 
 
 

t

• What learning rates guarantee convergence? 
 
 

• Suppose . What are the dynamics “at the edge” (when )?  
 

λ1 > λ2 ≥ …λd η = 2/λ1

• What is the convergence rate for ? η = 1/λmax

∥wt − w⋆∥2
2 ≤ exp(−t/κ)∥w0 − w⋆∥2

2,  where κ = λmax
λmin

(1-1 ett



GD dynamics
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makea large
S

.↓
-

lots of progress in this dim



GD dynamics
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GD + Momentum
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GD with Momentum  
(aka the “heavy ball” method, Polyak ‘64)
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GD with Momentum  
(aka the “heavy ball” method, Polyak ‘64)
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• Gradient descent: 
w ← w − η∇L(w)



GD with Momentum  
(aka the “heavy ball” method, Polyak ‘64)
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• Gradient descent: 
w ← w − η∇L(w)

• Gradient descent with momentum : 
 

 

0 ≤ γ < 1
m ← γm + ∇L(w)
w ← w − ηm



GD with Momentum  
(aka the “heavy ball” method, Polyak ‘64)

20

• Gradient descent: 
w ← w − η∇L(w)

• Gradient descent with momentum : 
 

 

0 ≤ γ < 1
m ← γm + ∇L(w)
w ← w − ηm

• GD+momentum (for quadratics) has convergence rate (with opt set params):  

 ∥wt − w⋆∥2
2 ≤ exp( − t/ κ)∥w0 − w⋆∥2

2,  where κ = λmax
λmin



GD + momentum dynamics
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&

&
&

--
-
---

-



GD + momentum dynamics

21



Newtons Method
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Newton’s Method

23

• Taylor’s theorem around  w
L(w + Δ) ≈ L(w) + ∇L(w) ⋅ Δ + 1

2 Δ⊤(∇2L(w⋆))Δ



Newton’s Method
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• Taylor’s theorem around  w
L(w + Δ) ≈ L(w) + ∇L(w) ⋅ Δ + 1

2 Δ⊤(∇2L(w⋆))Δ
• First, how do set the stepwise for GD?

m = x (
- (in=

)



Newton’s Method
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• Taylor’s theorem around  w
L(w + Δ) ≈ L(w) + ∇L(w) ⋅ Δ + 1

2 Δ⊤(∇2L(w⋆))Δ
• First, how do set the stepwise for GD?
• Let’s try to update  so as to minimize the RHS:  
 

 

w

w ← w − ??⑨ - = - (0"((w+ ))
"

P((u)
wa -d

naxa ER
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w
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Newton’s Method
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• Taylor’s theorem around  w
L(w + Δ) ≈ L(w) + ∇L(w) ⋅ Δ + 1

2 Δ⊤(∇2L(w⋆))Δ
• First, how do set the stepwise for GD?
• Let’s try to update  so as to minimize the RHS:  
 

 

w

w ← w − ??

• For quadratics, what happens with one step of Newton’s method?  
 

• More generally, Newton’s method and variants (like nonlinear conjugate 
gradient) are “very very good”.
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SGD
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• Suppose we can get unbiased estimates  of . SGD: ̂∇L(w) ∇L(w)
wt+1 = wt − ηt ̂∇L(wt)
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• Suppose we can get unbiased estimates  of . SGD: ̂∇L(w) ∇L(w)
wt+1 = wt − ηt ̂∇L(wt)

• What conditions might we want our stepsizes to satisfy?  
-

0((w) = V((n)
+ E
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• Robbins&Monro (’51) showed for convex functions,  
if  and  is finite, then  as . ∑t ηt → ∞ ∑t η2

t wt → w⋆ t → ∞
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• Suppose , where , and  is Gaussian with covariance y = w⋆ ⋅ x + ϵ ϵ ∼ N(0,σ2) x
E[xx⊤] = UDU⊤

• The optimal achievable rate over all algorithms is:  E[L(wt) − L(w⋆)] ≥ dσ2

t
• Iterate (tail) averaging, with constant LR, obtains the optimal rate: 

Algo:
• Run SGD with constant LR.

• Return the average over the last half:  ̂w = 1
T/2

T

∑
t=T/2

wt

• For more general convex case, the Polyak&Juditksy (’92) showed that both (a) decaying 
the LR and (b) integrate averaging obtains the optimal rate.

• Also, exponential weight averaging (EWA) essentially the same:  
  ̂w =
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- How to apply weight decay?: AdamW
-  would be a better default.β2 = .99
- For large models, smaller  values are 

needed.
ϵ

- Adafactor, 8bit Adam.

Lots of works on “Why Adam works?”, but no 
consensus:
- Derived from Adagrad, an online learning 
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Other Diagonal Preconditioner Optimizers

33

- Many methods such Adam, Adafactor, Lion perform 
very similarly, except SGD.

- All of these performant optimizers are related to 
signed gradient descent.

- If optimizer space is a bottleneck, use Adafactor or 
Lion along with low precision training

Zhao et al. 2024, “Deconstructing What Makes a Good Optimizer for Language Models”
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(Sometimes) Loss Spikes

Fig credit: A Theory on Adam Instability in Large-Scale Machine Learning
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Two important fixes:
• (Left) Various “layer normalizations” 
• (Right) Regularization/Weight decay 
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Learning Rate Schedules

38

- We saw that learning rate decay is needed  
to reduce variance/noise.

- Why do we need warmup?

- Starting and ending at .1x max lr seems like  
a good default.

- People have recently been trying some  
modified schedules with marginal gains.

- Schedules can also be combined with weight 
averaging (important for diffusion models) 
Popularly known under terms “EWA/SWA”



SGD: critical batch sizes

28

• Mini-batch SGD, with batchsize  :m
• Sample  points iid, m (x1, y1)…(xm, ym) ∼ D

• wt+1 = wt + ηt
1
m ∑

i
(yi − wt ⋅ xi)xi

• The mini-batching benefits:
• You can do the gradient computation updates in parallel.
• The hope: large batch sizes can (substantially) reduce the serial time of optimization 

(at the same overall flops).
• (serial compute vs total compute) When we double the batch size, we hope that the loss 

drops twice as fast (in terms of number of iterations). This happens for small  (for 
regression). 

m

• The critical batch size is the batch size where this stops happening (i.e. where there is 
demising returns for doubling the batch size).
• For regression, there is a sharp characterization of when this happens.
• The same behavior happens for neural nets.

halving the In

↑
double the batch

rve



Critical Batch Size: (same as before)
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Zhang et al. 2024, “Critical Batch Sizes in

Language Model Training”, upcoming

LR
UP1
-
2LR

-
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Hyperparameter choices for scaling

- Architecture:
- Model choices: Attention type (Standard, Mamba), MLP type (Standard 

GeLU/ReLU, Swiglu) etc
- Choices within architecture such as depth, width, vocabulary size.  

- Optimization:
- Batch Size
- Warmup
- Adam hyperparameters like β1, β2, ϵ
- Learning Rate

We want to optimize for 
- Best loss for given compute (#params*#tokens), 
- Best downstream evaluations for given compute.
- Best generalization for given data. 
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Model Type

- Standard Approach: Show the benefits at a nontrivial scale and hope the 
benefits generalize to larger scales. 

- Scaling Laws approach: Show benefits with scale.

Shazeer et al. 2020

Dosovitskiy et al. 2021 
“ViT”
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Within Model Family Choices

Choices such as #tokens, depth, width, number of attention heads etc: 
- Fit scaling laws.



45

Optimizer
- : Find values at medium scale and use them at large scale.β1, β2



45

Optimizer
- : Find values at medium scale and use them at large scale.β1, β2
- Batch Size: 



45

Optimizer
- : Find values at medium scale and use them at large scale.β1, β2
- Batch Size: 

- Fit scaling laws i.e. .  
(Porian et al. 2024, Deepseek-AI 2024)

optimal batch size = A + (model size)α

Porian et al. 2024  
“Resolving Discrepancies in Compute-Optimal Scaling of Language Models”



45

Optimizer
- : Find values at medium scale and use them at large scale.β1, β2
- Batch Size: 

- Fit scaling laws i.e. .  
(Porian et al. 2024, Deepseek-AI 2024)

optimal batch size = A + (model size)α

- Is sometimes changed during training (Llama3, Chinchilla)

Porian et al. 2024  
“Resolving Discrepancies in Compute-Optimal Scaling of Language Models”



45

Optimizer
- : Find values at medium scale and use them at large scale.β1, β2
- Batch Size: 

- Fit scaling laws i.e. .  
(Porian et al. 2024, Deepseek-AI 2024)

optimal batch size = A + (model size)α

- Is sometimes changed during training (Llama3, Chinchilla)
- Weight decay: Better to use decoupled weight decay (good defaults: 0,1e-4)  

i.e.  rather than wt = (1 − λ) ⋅ wt−1 − η ⋅ gt wt = (1 − ηλ) ⋅ wt−1 − η ⋅ gt

Porian et al. 2024  
“Resolving Discrepancies in Compute-Optimal Scaling of Language Models”



45

Optimizer
- : Find values at medium scale and use them at large scale.β1, β2
- Batch Size: 

- Fit scaling laws i.e. .  
(Porian et al. 2024, Deepseek-AI 2024)

optimal batch size = A + (model size)α

- Is sometimes changed during training (Llama3, Chinchilla)
- Weight decay: Better to use decoupled weight decay (good defaults: 0,1e-4)  

i.e.  rather than wt = (1 − λ) ⋅ wt−1 − η ⋅ gt wt = (1 − ηλ) ⋅ wt−1 − η ⋅ gt
- Warmup: No standard recommendations for LLMs, 20% might be a safe bet for medium 

sized models.

Porian et al. 2024  
“Resolving Discrepancies in Compute-Optimal Scaling of Language Models”



45

Optimizer
- : Find values at medium scale and use them at large scale.β1, β2
- Batch Size: 

- Fit scaling laws i.e. .  
(Porian et al. 2024, Deepseek-AI 2024)

optimal batch size = A + (model size)α

- Is sometimes changed during training (Llama3, Chinchilla)
- Weight decay: Better to use decoupled weight decay (good defaults: 0,1e-4)  

i.e.  rather than wt = (1 − λ) ⋅ wt−1 − η ⋅ gt wt = (1 − ηλ) ⋅ wt−1 − η ⋅ gt
- Warmup: No standard recommendations for LLMs, 20% might be a safe bet for medium 

sized models.

Porian et al. 2024  
“Resolving Discrepancies in Compute-Optimal Scaling of Language Models”



45

Optimizer
- : Find values at medium scale and use them at large scale.β1, β2
- Batch Size: 

- Fit scaling laws i.e. .  
(Porian et al. 2024, Deepseek-AI 2024)

optimal batch size = A + (model size)α

- Is sometimes changed during training (Llama3, Chinchilla)
- Weight decay: Better to use decoupled weight decay (good defaults: 0,1e-4)  

i.e.  rather than wt = (1 − λ) ⋅ wt−1 − η ⋅ gt wt = (1 − ηλ) ⋅ wt−1 − η ⋅ gt
- Warmup: No standard recommendations for LLMs, 20% might be a safe bet for medium 

sized models.

Porian et al. 2024  
“Resolving Discrepancies in Compute-Optimal Scaling of Language Models”



46

Learning Rate / μP
Learning rate (LR):
- Again fit scaling laws.
- Use learning rate transfer (Yang et al. 2022: Tensor Programs V/ μP): 



46

Learning Rate / μP
Learning rate (LR):
- Again fit scaling laws.
- Use learning rate transfer (Yang et al. 2022: Tensor Programs V/ μP): 

- To find optimal LR for a model of width , we search for optimal LR of a model 
with smaller width  (everything else like depth and batch size is held constant) 

wlarge
wsmall



46

Learning Rate / μP
Learning rate (LR):
- Again fit scaling laws.
- Use learning rate transfer (Yang et al. 2022: Tensor Programs V/ μP): 

- To find optimal LR for a model of width , we search for optimal LR of a model 
with smaller width  (everything else like depth and batch size is held constant) 

wlarge
wsmall

- Scale found optimal LR by .wsmall/wlarge 



46

Learning Rate / μP
Learning rate (LR):
- Again fit scaling laws.
- Use learning rate transfer (Yang et al. 2022: Tensor Programs V/ μP): 

- To find optimal LR for a model of width , we search for optimal LR of a model 
with smaller width  (everything else like depth and batch size is held constant) 

wlarge
wsmall

- Scale found optimal LR by .wsmall/wlarge 



46

Learning Rate / μP
Learning rate (LR):
- Again fit scaling laws.
- Use learning rate transfer (Yang et al. 2022: Tensor Programs V/ μP): 

- To find optimal LR for a model of width , we search for optimal LR of a model 
with smaller width  (everything else like depth and batch size is held constant) 

wlarge
wsmall

- Scale found optimal LR by .wsmall/wlarge 



Today

47

• Announcements/Recap++

• Whirlwind Tour of Optimization

• DL Optimization Pipeline

• Training Dynamics

• edge of stability

• math



Edge of Stability / Why Warmup?

48



‘Optimal’ Step size

49

• Reminder: In the quadratic model we need  for stability.η < 2/λmax ⟺ λmax < 2/η



‘Optimal’ Step size

49

• Reminder: In the quadratic model we need  for stability.η < 2/λmax ⟺ λmax < 2/η
• In deep learning,  can change with time: theory motivates using  for 

steepest descent.
λmax η = 1/λmax(θt)



‘Optimal’ Step size

49

• Reminder: In the quadratic model we need  for stability.η < 2/λmax ⟺ λmax < 2/η
• In deep learning,  can change with time: theory motivates using  for 

steepest descent.
λmax η = 1/λmax(θt)

• Let’s try using  and compare to a constant !η = 1/λmax(θt) η



‘Optimal’ Step size

49

• Reminder: In the quadratic model we need  for stability.η < 2/λmax ⟺ λmax < 2/η
• In deep learning,  can change with time: theory motivates using  for 

steepest descent.
λmax η = 1/λmax(θt)

• Let’s try using  and compare to a constant !η = 1/λmax(θt) η
• We define the sharpness as .λmax(θt)



‘Optimal’ Step size

49
“Edge of Stability”

Cohen et al. 2021

• Reminder: In the quadratic model we need  for stability.η < 2/λmax ⟺ λmax < 2/η
• In deep learning,  can change with time: theory motivates using  for 

steepest descent.
λmax η = 1/λmax(θt)

• Let’s try using  and compare to a constant !η = 1/λmax(θt) η
• We define the sharpness as .λmax(θt)



‘Optimal’ Step size

49
“Edge of Stability”

Cohen et al. 2021

• Reminder: In the quadratic model we need  for stability.η < 2/λmax ⟺ λmax < 2/η
• In deep learning,  can change with time: theory motivates using  for 

steepest descent.
λmax η = 1/λmax(θt)

• Let’s try using  and compare to a constant !η = 1/λmax(θt) η
• We define the sharpness as .λmax(θt)



‘Optimal’ Step size

49
“Edge of Stability”

Cohen et al. 2021

“Progressive sharpening”

• Reminder: In the quadratic model we need  for stability.η < 2/λmax ⟺ λmax < 2/η
• In deep learning,  can change with time: theory motivates using  for 

steepest descent.
λmax η = 1/λmax(θt)

• Let’s try using  and compare to a constant !η = 1/λmax(θt) η
• We define the sharpness as .λmax(θt)



‘Optimal’ Step size

49
“Edge of Stability”

Cohen et al. 2021

“Progressive sharpening”

• Reminder: In the quadratic model we need  for stability.η < 2/λmax ⟺ λmax < 2/η
• In deep learning,  can change with time: theory motivates using  for 

steepest descent.
λmax η = 1/λmax(θt)

• Let’s try using  and compare to a constant !η = 1/λmax(θt) η
• We define the sharpness as .λmax(θt)



50

Edge of Stability
• Define , which is the maxima eigenvalue that leads to stable dynamics for lr .

• If , then the dynamics should be unstable.

λ⋆(η) = 2/η η
λ(θ) > λ⋆(η)



50

Edge of Stability
• Define , which is the maxima eigenvalue that leads to stable dynamics for lr .

• If , then the dynamics should be unstable.

λ⋆(η) = 2/η η
λ(θ) > λ⋆(η)

“Edge of Stability”

Cohen et al. 2021



50

Edge of Stability
• Define , which is the maxima eigenvalue that leads to stable dynamics for lr .

• If , then the dynamics should be unstable.

λ⋆(η) = 2/η η
λ(θ) > λ⋆(η)

“Edge of Stability”

Cohen et al. 2021

T
-

T * (2)
- -2



50

Edge of Stability
• Define , which is the maxima eigenvalue that leads to stable dynamics for lr .

• If , then the dynamics should be unstable.

λ⋆(η) = 2/η η
λ(θ) > λ⋆(η)

“Edge of Stability”

Cohen et al. 2021



50

Edge of Stability
• Define , which is the maxima eigenvalue that leads to stable dynamics for lr .

• If , then the dynamics should be unstable.

λ⋆(η) = 2/η η
λ(θ) > λ⋆(η)

“Edge of Stability”

Cohen et al. 2021



51

Why warmup?
->2n=x*()
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Edge of Stability - Toy Model

ℒ(x, y) = (1 − x2y2)2
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• Let us consider a perturbation of  in the  direction. For ,  
 

	                
where the last step uses . (Do you see why??)

θt u α > 0
∇θL(θt + αu) ≈ ∇θL(θt) + α∇2

θL(θt)u + (α2/2)∇3
θL(θt) ⋅ (u ⊗ u)

= ∇θL(θt) + αS(θt)u + (α2/2)∇S(θt)
∇3

θL(θt) ⋅ (u ⊗ u) = ∇θS(θt)
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where the last step uses . (Do you see why??)

θt u α > 0
∇θL(θt + αu) ≈ ∇θL(θt) + α∇2

θL(θt)u + (α2/2)∇3
θL(θt) ⋅ (u ⊗ u)

= ∇θL(θt) + αS(θt)u + (α2/2)∇S(θt)
∇3

θL(θt) ⋅ (u ⊗ u) = ∇θS(θt)
• Therefore, for large , a gradient step after a large perturbation makes  smaller due to 

the  term. 
α S(θ)

(α2/2)∇S(θt)
• This makes the dynamics more stable because  increases after the perturbation.2/S(θ)
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