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Recap++



A Computational Graph (aka the “Evaluation Trace”)
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» The computation graph is the flow of operations.
-We say that: z, and z, and children of z;; Z5 is a child of z,; etc.



The Reverse Mode of AD

Forward pass:

1.Compute f(w) and store in memory all the intermediate variables z,.7-
Backward pass:

2. Initialize:
dZT B
dZT
3.Proceeding recursively, startingatt =7 — 1 and goingto ¢t = (
aZT B Z GZT aZC
0z ¢ is a child of ¢ 0z 0%,
4. Return:
dzp  df
dZ() dw

(which is the desired answer as z; = f, 7y = W)



Time Complexity

* History of AD: Linnainmaa (Lin76), Werbos(82), ...

[BaurStrassen 83] Suppose that i1 € # are of the form:
* Affine functions.
* A product of terms.

» Fixed functions, like cos(), sin(), exp(), log(), where computing /'(x) is no more than 5x the
cost of computing A(x)

The Reverse Mode of AD computes V f(x) in time no more than a factor of 5 than the program

used to compute f(x).

Proof sketch (basically a book keeping argument):
in the forward pass, we associate the computation along edges from parents to a child. In the

07
backward pass, note a—c only is computed once.
<t
aZT B Z @ZT aZC

c IS a child of ¢



The Reverse Mode of AD, with Checkpointing

Assume z,. ; is only a function of the variables z, (here let the intermediate variables be vectors)
indexes: C = {7, £ 1,... < 1.}, i.e. C C {1,...T}.

Forward pass:

1.Compute f(w) and store only the variables {z_: 7 € C }.

Backward pass:
T dzy
2. Initialize: 7 = l,setr,, =T

3.Proceeding recursively, fori =k, ...1

Redo forward pass, computing/storing the graph in “block™ k, from = 7;to f = 7;_
- Backward pass in “block” k: Starting at# = 7,, ; and going to 7 = 7,

0zr z 0zZr 02,

0z, “cis achildofr oz oz
dZT
4. Return: —
dZ()

Memory required: store {z. : 7 € C }; store all variables in a “block” rematerialization pass
Compute overhead: need to recompute all the “blocks”, which is at most the cost to compute f(x).



GPUs vs CPUs

Core Core

L1 Cache L1 Cache

Core Core

[0I1UO0D) [[[01IU0D
[0I1U0D) || [0IIU0D

L1 Cache L1 Cache

[Figure credit: Yasin Mazloumi]



Transformer Memory: Forward & Computational Graph

Compute Loss(), (for Bsz = 1,N,, ., = 1):
input: parameters (embedding and MLP weights), data X € {0,1
d: hidden dim, B: batch size, T: context size, L: # layers, V: vocab size, N, #heads

} IxV

+ Embed data: X « XW, .
e For£ =0,...L—1
e Attention:
. Q=XW) K=XW,V=XW,
e X « MaskedRowSoftmax(QKT)V
e MLP layers: (d — 4d — d)
e X « G(XWf)
e X « G(XWZK)

4
e X «— XWpI’Oj

« Compute X « XW_ Return LogLoss

nemebed’

With N, # 1
«  Mem Transformer Params: 12d2L + 2dV
. Sufficient Memory for Forward pass: 4dT + N, T* + VT

- Memory Created in the Graph: 12LdT + LN, , T + 2VT
What about with B # 1?



Checkpointing (B = 1 case)
d: hidden dim, B: batch size, T: context size, L: # layers, V: vocab size, N, ,.: #heads
« Embeddata: X « XW, . .-

e For=0,...L—1
* “block input” X (checkpoint here)
* Attention:

. 0=XW,, K=XW,V=XW,

e X « MaskedRowSoftmax(QKT)V
e MLP layers: (d — 4d — d)

e X « G(XWf)

e X « a(wa)

4
e X «— XWpFOj

« Compute X <« XW, Return LoglLoss

nemebed’
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Checkpointing (B = 1 case)
d: hidden dim, B: batch size, T: context size, L: # layers, V: vocab size, N, ,.: #heads
« Embeddata: X « XW, . .-

e For=0,...L—1
* “block input” X (checkpoint here)
* Attention:

. 0=XW,, K=XW,V=XW,

e X « MaskedRowSoftmax(QKT)V
e MLP layers: (d — 4d — d)

e X « G(XWf)

e X « a(wa)

4
e X «— XWpFOj

« Compute X <« XW, Return LoglLoss

nemebed’

« Mem Transformer Params: 12d%L + 2dV
« Option 1: Checkpointing (ignoring the V part)
e Memory for Checkpointing: LdT
. Comp Graph Memory for Rematerialization: 12dT + N, ;. T*

« Computational overhead is basically a full factor of 2 (everything but W]fmj must be recomputed)
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Checkpointing (B = 1 case)
d: hidden dim, B: batch size, T: context size, L: # layers, V: vocab size, N, ,.: #heads
« Embeddata: X « XW, . .-

e For=0,...L—1
* “block input” X (checkpoint here)
* Attention:

. 0=XW,, K=XW,V=XW,

e X « MaskedRowSoftmax(QKT)V
e MLP layers: (d — 4d — d)

e X « G(XWf)

e X « a(wa)

4
e X «— XWpFOj

« Compute X <« XW, Return LoglLoss

nemebed’

« Mem Transformer Params: 12d%L + 2dV
« Option 1: Checkpointing (ignoring the V part)
e Memory for Checkpointing: LdT
. Comp Graph Memory for Rematerialization: 12dT + N, ;. T*

« Computational overhead is basically a full factor of 2 (everything but W]fmj must be recomputed)

« Option 2: checkpoint everything but the 1" X T attention matrices
» This saves on compute (the weight matrix multiples often costly) and needs 12LdT memory

10



Flash Attention Simplified:

. Single Head Attention: X «— MaskedRowSoftmax(QK ")V
. , even though our output is of size d X T
» The computational cost is O(dT?)
 Simpler case: Suppose we just wanted to do the following, where exp() is componentwise:
X « exp(QK"V
 Again, this require T? free memory and the same flops.

Can we do better on memory, using the same flops?

. Observe that that row X[, :] is equal to the t-th row of exp(QK ) times V.
. What is the t-th row of exp(QK ')?
. This implies: X[¢, :] = exp(Q[t, :] - K"V

* So we can compute X with a for loop over the 1 rows.

e The excess memory is now O(T)
« The flops is still O(dT?)

. Now do you see how compute X < MaskedRowSoftmax(QK ")V with less memory?
* FlashAttention: Now just checkpoint this approach.
e But why do we do this on a gpu?
* Fusing: the exp operations can be “fused” with vector multiplies to reduce memory movements on the GPU itself
(this is why it is done on the GPU)

11



Whirlwind Optimization Overview



Today

Announcements/Recap++
Whirlwind Tour of Optimization
 GD/Momentum/Newton’s Method
« SGD:

* LR scheduling+averaging

e batch size
DL Optimization
Training Dynamics/Edge of stability
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GGradient Descent



Gradient Descent: warmup 1-dim

. Our general optimization problem: min L(w)

weR?
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Gradient Descent: warmup 1-dim

. Our general optimization problem: min L(w)

eR? ( _
» (Gradient descent: " VL (’OB = W —

W1 =Ww,—nVL(w,)

. Consider the 1d convex quadratic case, L(w) = E(W —¢)%. GD is:
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Gradient Descent: warmup 1-dim = v- .~

. Our general optimization problem: min L(w) 7[/ [OL)>'.; Ww — &

weR?
o Gradient descent: w ¥ - [

Wi = w,—nVL(w,)

. Consider the 1d convex quadratic case, L(w) = E(W — c)z. GD is:
. WhatﬁqGD in temn’s of w*? B _ W, -~ (/1/%, — ﬁ[ W“%/)GJ
Wep—Wy) = 7 -
P AREL [wew™*) -
 What learning rates guarantee convergence? b Q | — ﬁ?/) Q\A) . ‘—WX )

KU,WA 9 N < /. Couveyye
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Gradient Descent: warmup 1-dim

Our general optimization problem: min L(w)

weR?
Gradient descent:
Wi = w,—n VL(w,)
Consider the 1d convex quadratic case, L(w) = —(w — ¢)%. GD is:

2
What is GD in terms of w*?

What learning rates guarantee convergence?

What is a good setting of # for well behaved “smooth” functions?

15



Gradient Descent: warmup 1-dim

Our general optimization problem: mlnd L(w)
WER

Gradient descent:
Wip1 =W, —nVL(w)

Consider the 1d convex quadratic case, L(w) = E(W — 6)2. GD is:

What is GD in terms of w*?

What learning rates guarantee convergence? g é /éw)
/
/ [OVS

What is a good setting of # for well behaved “smooth” functions?
L(w + 8) = L(w) + L'(W)5 + }LL"(w)52
S FQ@@ , e -

15



Gradient Descent: convex quadratics

|
. Consider L(w) = EWTAW + bw + c,

for positive def symmetric matrix A, vector b, scalar ¢

) () = Aw vb



Gradient Descent: convex quadratics

|
. Consider L(w) = EWTAW + bw + c,

for positive def symmetric matrix A, vector b, scalar ¢

e (Gradient descent:

w<—w—nAw — b)



Gradient Descent: convex quadratics

1 W " = AL é
. Consider L(w) = EWTAW + bw + c,
for positive def symmetric matrix A, vector b, } lar ¢ 5 <
* Gradient descent; AW +nh =D
w — w —n(Aw + b) b= —/ )(>
» Gradient descent in terms of w* - Y

wf:/w ‘VL(A(/U*’AWX’) —> = 5»(”:%/”
(wew™) & (- A fo-w ™) é — )




Gradient Descent: convex quadratics

|
Consider L(w) = EWTAW + bw + c,

for positive def symmetric matrix A, vector b, scalar ¢
Gradient descent:

w<—w—nAw — b)
Gradient descent in terms of w*:

Let A = UDU' be the SVD of A. D:\/ %C\qﬁ/(xf/ o AC‘/(>

16



E7 >’ = O w
Gradient Descent: convex quadratics
o\ &

|
Consider L(w) = —w 'Aw + b +c,
2 "y

for positive def symmetric matrix A, vector b, scalar ¢
Gradient descent:

w<—w—nAw — b)
Gradient descent in terms of w*:

: R= UTK
Let A = UDU ' be the SVD of A.
Now let us rotate coordinates (to the the eigenbasis):

w=U"w, and L(W) = 3/2 A’TDW A %/c/u -
W= )@

16



Gradient Descent: convex quadratics

|
Consider L(w) = EWTAW + bw + c,

for positive def symmetric matrix A, vector b, scalar ¢
Gradient descent:

w<—w—nAw — b)
Gradient descent in terms of w™:
A C(,C/ %A\ Lf/l)— w’°>
Let A = UDU" be the SVD of A.
Now let us rotate coordinates (to the the eigenbasis):

w=U"w, and L(W) =
What is the GD update rule in the new coordinate system?
Ww—w* — {—-nD)(Ww—w")

16



GD dynamics

 The GD update rule (in the eigenbasis):
Ww—w* —{—-nD)(Ww—w")

 What is the update rule per coordinate and what is the iterate at time ¢?

17



GD dynamics

 The GD update rule (in the eigenbasis): D‘_ .= ,X (
W —Ww* — (I — nD)(Ww — W) C ¢

. /b/at Is the update rule per coordinate and what is the iterate at time 7?
- L , A . e
C/k)éé[c\ — WOp o i‘g] = (jzdb}\&> w}([cj - w (: )
— | =M K- ‘ L ) _
( ) ((/Up [—L\(_ \/1()—;‘_[:))

 What learning rates guarantee convergence?

/VL £ /i/”m)c —_ Ccvux/e/\‘g_a \7[€ {[“%xc ) < j\
%'C ‘z\/‘w &7 @ b@UﬂCQ =g (1/\7254\ ij D/;V‘
%



GD dynamics

The GD update rule (in the eigenbasis):
Ww—w* —{—-nD)(Ww—w")

What is the update rule per coordinate and what is the iterate at time 77

What learning rates guarantee convergence?

Suppose 4; > 4, > ...4, What are the dynamics “at the edge” (when 1 = 2/4,)?

17



GD dynamics

The GD update rule (in the eigenbasis):
Ww—w* —{—-nD)(Ww—w")

What is the update rule per coordinate and what is the iterate at time 77

A
AR

What learning rates guarantee convergence?

Suppose 4; > 4, > ...4, What are the dynamics “at the edge” (when 1 = 2/4,)?

What is the convergence rate forn = 1/4,.,,?

max

lw, — w*||2 < exp(—t/x)||wy — w*||3, where k =
t 2 | 0 2
/Imin

17



GD dynamics

~ N\

Starting Point

optimum ,"f.';:’h

Solution

We often think of Momentum as a means of dampening oscillations
and speeding up the iterations, leading to faster convergence. But it
has other interesting behavior. It allows a larger range of step-sizes

to be used, and creates its own oscillationsArat-ts-goHrg-0r2

Step-size a = 0.0022 / omentum B = 0.0
|

ote b progrecs s, FhSS

18



GD dynamics

Starting Point

Optimum

e

Solution

Step-size a = 0.0022 Momentum 8 = 0.0
L ®

Starting Point [
Optimum,

We often think of Momentum as a means of dampening oscillations

and speeding up the iterations, leading to faster convergence. But it
has other interesting behavior. It allows a larger range of step-sizes

to be used, and creates its own oscillations. What is going on?

Step-size a = 0.0051 Momentum 8 = 0.0
L o

18



GD + Momentum



GD with Momentum
(aka the “heavy ball” method, Polyak ‘64)



GD with Momentum
(aka the “heavy ball” method, Polyak ‘64)

e Gradient descent:
w < w—nVL(w)



GD with Momentum
(aka the “heavy ball” method, Polyak ‘64)

* Gradient descent:
w < w—nVL(w)

 Gradient descent with momentum 0 < y < 1:
m «— ym+ VL(w)
W — w—nm

20



GD with Momentum
(aka the “heavy ball” method, Polyak ‘64)

* Gradient descent:
w < w—nVL(w)

 Gradient descent with momentum 0 < y < 1:
m «— ym+ VL(w)
W — w—nm

 GD+momentum (for quadratics) has convergence rate (with opt set params):

max

|lw, — W*H% < exp( — t/ )Hwo — W*H%, where Kk =
/lmin

20



GD + momentum dynamics

(€)) starting Point

Optimum

O

Solution

We often think of Momentum as a means of dampening oscillations
and speeding up the iterations, leading to faster convergence. But it
® @ : : . .

has other interesting behavior. It allows a larger range of step-sizes
to be used, and creates its own oscillations. What is going on?

Step-size a = 0.0022 Momentum 8 = 0.0
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GD + momentum dynamics

(: :) Starting Point

Optimum

O

Solution

Step-size a = 0.0022 Momentum 8 = 0.0
@ ®

((2)) starting Point

We often think of Momentum as a means of dampening oscillations

and speeding up the iterations, leading to faster convergence. But it
¢ ¢ has other interesting behavior. It allows a larger range of step-sizes

to be used, and creates its own oscillations. What is going on?

Step-size a = 0.0022 Momentum 8 = 0.85

21



Newtons Method



Newton’s Method

e Taylor's theorem around w

1
Lw+ A)~ Lw)+ VL(w) - A + EAT( VZL(w*)) A



Newton’s Method

e Taylor's theorem around w
1
Lw+ A)~ Lw)+ VL(w) - A + EAT( VZL(w*)) A

* First, how do set the stepwise for GD? \

.

N )




Newton’s Method

e Taylor's theorem around w
1
Lw+ A)~ Lw)+ VL(w) - A + EAT( VZL(w*)) A

* First, how do set the stepwise for GD?
o Let’s try to update w so as to minimize the RHS:

e A=~ (@%/@*’))474/&0)

i



Newton’s Method

Taylor’s theorem around w
1
Lw+ A)~ Lw)+ VL(w) - A + EAT( VZL(w*)) A

First, how do set the stepwise for GD?
Let’s try to update w so as to minimize the RHS:

W w— 77

For quadratics, what happens with one step of Newton’s method?
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Newton’s Method

Taylor’s theorem around w
1
Lw+ A)~ Lw)+ VL(w) - A + EAT( VZL(w*)) A

First, how do set the stepwise for GD?
Let’s try to update w so as to minimize the RHS:

W w— 77

For quadratics, what happens with one step of Newton’s method?

More generally, Newton’s method and variants (like nonlinear conjugate
gradient) are “very very good”.

23



SGD



SGD

A

« Suppose we can get unbiased estimates VL(w) of V.L(w). SGD:
W1 = W, — 1, VL(w,)

25



SGD

A

« Suppose we can get unbiased estimates VL(w) of V.L(w). SGD/:\
W1 = W, — 1,V L(w)) | | \
. VVtrJ;at conditions might we want our stepsizes to satisfy? VA [ Q/) = D Z /% >

aks

25



SGD

A

« Suppose we can get unbiased estimates VL(w) of V.L(w). SGD:
W1 = W, — 1, VL(w)
 What conditions might we want our stepsizes to satisfy?

 Robbins&Monro (’51) showed for convex functions,
if Y 5, — coand Y. 5/ is finite, then w, » w* as t — 0.

25



SGD

A

Suppose we can get unbiased estimates V L(w) of VL(w). SGD:
W1 =W, — 1,V L(w,)
What conditions might we want our stepsizes to satisfy?

Robbins&Monro ('51) showed for convex functions,
if Y 5, — coand Y. 5/ is finite, then w, » w* as t — 0.

Example: suppose L(w) = E(x,y)ND[(y — w - x)?] and we can sample (x, y) ~ D.

—

25



SGD: quadratic case

« Suppose L(w) = E(x,y)ND[(y — w - x)?] and we can sample (x, y) ~ D.

Wi =W+ 1,0, — W, - X)X,

26
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Wi =W+ 1,0, — W, - X)X,

. Suppose y = w* - x + €, where € ~ N(0,6°), and x is Gaussian with covariance E[xx'] = UDU'
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« Suppose L(w) = E(x,y)ND[(y — w - x)?] and we can sample (x, y) ~ D.

Wi =W+ 1,0, — W, - X)X,

 Supposey = w* - x + ¢, where € ~ N(0,6?), and x is Gaussian with covariance E[xx'] = UDU"
e |tis subtle, even for this case!
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. Suppose y = w* - x + €, where € ~ N(0,6°), and x is Gaussian with covariance E[xx'] = UDU'

e |tis subtle, even for this case!
2

o
. The optimal achievable rate over all algorithms is: E[L(w,) — L(w™)] > —
[
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SGD: quadratic case

Suppose L(w) = E(x,y)ND[(y — w - x)?] and we can sample (x, y) ~ D.

Wi =W+ 1,0, — W, - X)X,

. Suppose y = w* - x + €, where € ~ N(0,6°), and x is Gaussian with covariance E[xx'] = UDU'

e |tis subtle, even for this case!
2
]

The optimal achievable rate over all algorithms is: E[L(w,) — L(w*)] > —
[

“classical” Ir decay schedule (like 7, = 1/¢%), have converge rates like which are
2

N do
E[L(w,) — L(w™)] < K‘T, for large ¢
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SGD: quadratic case

Suppose L(w) = E(x,y)ND[(y — w - x)?] and we can sample (x, y) ~ D.

Wi =W+ 1,0, — W, - X)X,

. Suppose y = w* - x + €, where € ~ N(0,6°), and x is Gaussian with covariance E[xx'] = UDU'

e |tis subtle, even for this case!
2
]

The optimal achievable rate over all algorithms is: E[L(w,) — L(w*)] > —
[

“classical” Ir decay schedule (like 7, = 1/¢%), have converge rates like which are
2

N do
E[L(w,) — L(w™)] < K‘T, for large ¢

“geometric+piecewise” decay is near opt, though worse:
2

do
E[L(w,) — L(w™")] < log(K)T, for large ¢
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SGD: quadratic case

Suppose L(w) = E(x,y)ND[(y — w - x)?] and we can sample (x, y) ~ D.

Wi =W+ 1,0, — W, - X)X,

 Supposey = w* - x + ¢, where € ~ N(0,6?), and x is Gaussian with covariance E[xx'] = UDU"

e |tis subtle, even for this case!

02

The optimal achievable rate over all algorithms is: E[L(w,) — L(w*)] > —
[

“classical” Ir decay schedule (like 7, = 1/¢%), have converge rates like which are

N do?
E[L(w,)—Lw™)] < KT, for lar

“geometric+piecewise” decay is near opt, though

N o do”
E[L(w) — L(w™)] S log(k)—, for large
[

» optimal (eigencurve) decay looks like cosine!

(and no log(x) under certain spectrum conditions)

26
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Figure 1: Eigencurve : piecewise in-
verse time decay scheduling.



SGD: quadratic case

Suppose L(w) = E(x,y)ND[(y — w - x)?] and we can sample (x, y) ~ D.

Wi =W+ 1,0, — W, - X)X,

 Supposey = w* - x + ¢, where € ~ N(0,6?), and x is Gaussian with covariance E[xx'] = UDU"

e |tis subtle, even for this case!

02

The optimal achievable rate over all algorithms is: E[L(w,) — L(w*)] > —
[

“classical” Ir decay schedule (like 7, = 1/¢%), have converge rates like which are

N do?
E[L(w,) — L(w™)] < K‘T, for large ¢

“*geometric+piecewise” decay is near opt, though
2

do
E[L(w,) — L(w™")] < log(K)T, for large ¢

» optimal (eigencurve) decay looks like cosine!

(and no log(x) under certain spectrum conditions)

WOorse.

* note: need to know the end time 7 for setting the the decay

26
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Figure 1: Eigencurve : piecewise in-
verse time decay scheduling.




SGD: iterative averaging

. Suppose y = w* - x + €, where € ~ N(0,6°), and x is Gaussian with covariance \
Elxx"l = UDU'

Figure 1: Eigencurve : piecewise in-
verse time decay scheduling.
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SGD: iterative averaging

. Suppose y = w* - x + €, where € ~ N(0,6°), and x is Gaussian with covariance \
Elxx"l = UDU'

2
o . | o
. The optimal achievable rate over all algorithms is: E[L(w,) — L(w*)] > — Figure 1: Eigencurve : piecewise in-

verse time decay scheduling.
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SGD: iterative averaging

. Suppose y = w* - x + €, where € ~ N(0,6°), and x is Gaussian with covariance \
Elxx"l = UDU'

62
Figure 1: Eigencurve : piecewise in-

. The optimal achievable rate over all algorithms is: E[L(w,) — Liw™)] > _t vezso tirme dovay schoduling,

» [terate (tail) averaging, with constant LR, obtains the optimal rate:
Algo:
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SGD: iterative averaging

. Suppose y = w* - x + €, where € ~ N(0,6°), and x is Gaussian with covariance \\
Elxx"l = UDU'

2
0] . , . .
Figure 1: Eigencurve : piecewise in-

. The optimal achievable rate over all algorithms is: E[L(w,) — Liw™)] > _t vezso tirme dovay schoduling,

» [terate (tail) averaging, with constant LR, obtains the optimal rate:
Algo:
 Run SGD with constant LR.
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SGD: iterative averaging

. Suppose y = w* - x + €, where € ~ N(0,6°), and x is Gaussian with covariance \\
Elxx"l = UDU'

62
Figure 1: Eigencurve : piecewise in-

. The optimal achievable rate over all algorithms is: E[L(w,) — Liw™)] > _t vezso tirme dovay schoduling,

» [terate (tail) averaging, with constant LR, obtains the optimal rate:
Algo:
 Run SGD with constant LR.

Return the average over the last half: W w
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Adam Algo

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; ® g;. Good default settings for the tested machine learning problems are ¢ = 0.001,
B1 = 0.9, B2 = 0.999 and € = 10~%. All operations on vectors are element-wise. With 3¢ and 5%
we denote 31 and (35 to the power ¢.

Require: «: Stepsize
Require: (31,82 € |0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters 6
Require: 0j: Initial parameter vector
mo < 0 (Initialize 15* moment vector)
vo + 0 (Initialize 2™ moment vector)
t <— 0 (Initialize timestep)
while 0; not converged do
t+—t+1
g: < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < B1-my_1 + (1 — B1) - g« (Update biased first moment estimate)
v; < B - vi_1 + (1 — B2) - g7 (Update biased second raw moment estimate)
my < my/(1 — %) (Compute bias-corrected first moment estimate)
vy < v /(1 — B%) (Compute bias-corrected second raw moment estimate)
0, < 0:_1 — a-my/(v/V; + €) (Update parameters)
end while
return 6; (Resulting parameters)

Kingma and Ba 2014
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Kingma and Ba 2014 - Adafactor, 8bit Adam.
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(Sometimes) Loss Spikes
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Figure 1: Training perplexity curve of 546b model with prominent spikes

.1 Training Instabilit
5 g y Fig credit: A Theory on Adam Instability in Large-Scale Machine Learning

For the largest model, we observed spikes in the loss roughly 20 times during training, despite the fact that
gradient clipping was enabled. These spikes occurred at highly irregular intervals, sometimes happening late
into training, and were not observed when training the smaller models. Due to the cost of training the largest

model, we were not able to determine a principled strategy to mitigate these spikes.

Instead, we found that a simple strategy to effectively mitigate the issue: We re-started training from a
checkpoint roughly 100 steps before the spike started, and skipped roughly 200-500 data batches, which cover
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Small-scale proxies for large-scale Transformer training instabilities
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Learning Rate Schedules

Cosine decay with warmup

0.00010 +

0.00008 -

0.00006 A

—

0.00004 -

0.00002 -

0.00000 +

Step

38



Learning Rate Schedules

Cosine decay with warmup

0.00010 +

0.00008 -

0.00006 A

—

0.00004 -

0.00002 -

0.00000 +

Step

38



Learning Rate Schedules

- We saw that learning rate decay is needed

| _ to reduce variance/noise.
Cosine decay with warmup

0.00010 -

0.00008 -

0.00006 -

—

0.00004 -

0.00002 -

Step

38



Learning Rate Schedules

- We saw that learning rate decay is needed

| _ to reduce variance/noise.
Cosine decay with warmup - Why do we need warmup?

0.00010 -

0.00008 -

0.00006 -

—

0.00004 -

0.00002 -

Step

38



Learning Rate Schedules

- We saw that learning rate decay is needed

| _ to reduce variance/noise.
Cosine decay with walmup - Why do we need Warmup?

0.00010 - - Starting and ending at .1x max Ir seems like

a good default.
0.00008 -+

0.00006 -
—

0.00004 -

0.00002 +

Step

38



Ir

0.00010 -

0.00008 -

0.00006 -

0.00004 -

0.00002 +

0.00000

Learning Rate Schedules

Cosine decay with warmup

- We saw that learning rate decay is needed
to reduce variance/noise.
- Why do we need warmup?

Step

- Starting and ending at .1x max Ir seems like
a good default.

- People have recently been trying some
modified schedules with marginal gains.

—= 10%

e (osine

Learning rate
o o o
(\) <o) ~
O -] Ot

| | |

e [ inear Cooldown

_____________ .

| | | | |
200 400 600 800 1000

&
-
S

O

38



Ir

Learning Rate Schedules

Cosine decay with warmup

0.00010 -

0.00008 -

0.00006 A

0.00004 -

0.00002 +

0.00000 +

Step

38

We saw that learning rate decay is needed
to reduce variance/noise.
Why do we need warmup?

Starting and ending at .1x max Ir seems like
a good default.

People have recently been trying some
modified schedules with marginal gains.
Schedules can also be combined with weight
averaging (important for diffusion models)
Popularly known under terms “EWA/SWA”
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SGD: critical batch sizes
Mini-batch SGD, with batchsize m: (/\ K 4- / 5//17/ ﬁé@ /%
A

+ Sample m points iid, (x;, y{)...(x,,y,,) ~ D

1
e Wikl =W T nt% Z (Vi = w, - X)x;

The mini-batching benefits: p’{?J \Q{Q 1Ye Z{é 4

* You can do the gradient computation updates in parallel.

* The hope: large batch sizes can (substantially) reduce the serial time of optimization
(at the same overall flops).

(serial compute vs total compute) When we double the batch size, we hope that the loss

drops twice as fast (in terms of number of iterations). This happens for small m (for
regression).

The Is the batch size where this stops happening (i.e. where there is
demising returns for doubling the batch size).

* For regression, there is a sharp characterization of when this happens.

 The same behavior happens for neural nets.

ﬂ\(/ Je
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Critical Batch Size: (same as before)

N

N

N

log, (# Steps / # Steps at BS 64)
N N

Figure 1: Model size ablation: y-axis - the number of steps to reach the Chinchilla-optimal validation
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Zhang et al. 2024, “Critical Batch Sizes in

Language Model Training”, upcoming
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How To Scale Up?:
Scaling Laws For Everything



Hyperparameter choices for scaling

We want to optimize for
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Hyperparameter choices for scaling

We want to optimize for

- Best loss for given compute (#params*#tokens),
- Best downstream evaluations for given compute.
- Best generalization for given data.

- Architecture:
- Model choices: Attention type (Standard, Mamba), MLP type (Standard

GelLU/RelLU, Swiglu) etc
- Choices within architecture such as depth, width, vocabulary size.

- Optimization:
- Batch Size
- Warmup

- Adam hyperparameters like f, p,, €
- Learning Rate
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Model Type

- Standard Approach: Show the benefits at a nontrivial scale and hope the
benefits generalize to larger scales.

Training Steps 65,036 024,288
FFNRgeLu(baseline) | 1.997 (0.005)  1.677
FFNgELU 1.983 (0.005) 1.679
FFNgwish 1.994 (0.003) 1.683
FFNqLu 1.982 (0.006) 1.663
FFNBgilinear 1.960 (0.005) 1.648
FFNgEGLU 1.942 (0.004) 1.633
FFNswicLU 1.944 (0.010) 1.636
FFNReGgLU 1.953 (0.003) 1.645

Shazeer et al. 2020

43



- Standard Approach: Show the benefits at a nontrivial scale and hope the

Model Type

benefits generalize to larger scales.
- Scaling Laws approach: Show benefits with scale.

Training Steps 65,536 524,288
FFNRgeLu(baseline) | 1.997 (0.005) 1.677
FFNgELU 1.983 (0.005) 1.679
FFNgwish 1.994 (0.003) 1.683
FFNaLu 1.982 (0.006) 1.663
FFNgBilinear 1.960 (0.005) 1.648
FFNgEGLU 1.942 (0.004) 1.633
FFNswigLU 1.944 (0.010) 1.636
FFNRegLU 1.953 (0.003) 1.645

Shazeer et al. 2020
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Figure 4: Linear few-shot evaluation on Ima-
geNet versus pre-training size. ResNets per-
form better with smaller pre-training datasets
but plateau sooner than ViT, which performs
better with larger pre-training. ViT-b 1s ViT-B
with all hidden dimensions halved.
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Within Model Family Choices

Choices such as #tokens, depth, width, number of attention heads etc:
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Within Model Family Choices

Choices such as #tokens, depth, width, number of attention heads etc:
- Fit scaling laws.

10T

W
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3.0
1008 ;15
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Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.
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Optimizer

- P, P>: Find values at medium scale and use them at large scale.

45



Optimizer

- P, P>: Find values at medium scale and use them at large scale.
- Batch Size:

45



Optimizer

- P, P>: Find values at medium scale and use them at large scale.
- Batch Size:

- Fit scaling laws i.e. optimal batch size = A + (model size)”.
(Porian et al. 2024, Deepseek-Al 2024)
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Optimizer

- P, P>: Find values at medium scale and use them at large scale.
- Batch Size:

- Fit scaling laws i.e. optimal batch size = A + (model size)”.
(Porian et al. 2024, Deepseek-Al 2024)
- |Is sometimes changed during training (LIama3, Chinchilla)

512 -
256 1
128 1
64
32

16 1

Batch size

SM7M  15M 28M 57M 108M 220M
N

901M

Learning rate

0.048 A @ Grid points, B> =0.95
Vv  Grid points, B, =0.99
0.024 - @ Grid points, 8, =0.999
X 0 Interpolated optimal values
0.012 { V- ¥~ . —— Points used for fit
0.006 - —--- Fit:
BS = 0.00037N°%793 (R?2 =0.986)
003 e LR = 3.7N~036 (R2=0.997)
SRy e Rounded fit:
_ BS = 160(N/108e6)%3
0-001> =8 LR = 0.0047(N/108e6)~13
DeepSeek fit:
0.00075 A BS = 0.00068/N 0654
SM7M  15M 28M 57M 108M 220M 901M LR =0.17N7%%

N

45

Porian et al. 2024
“Resolving Discrepancies in Compute-Optimal Scaling of Language Models”



Optimizer

- P, P>: Find values at medium scale and use them at large scale.
- Batch Size:

- Fit scaling laws i.e. optimal batch size = A + (model size)”.

(Porian et al. 2024, Deepseek-Al 2024)
- |Is sometimes changed during training (LIama3, Chinchilla)
- Weight decay: Better to use decoupled weight decay (good defaults: 0,1e-4)

.e.w,=(1—=4)-w,_; —n-gratherthanw, = (1 —nd)-w,_; —1n-g,
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Optimizer

P, P>: Find values at medium scale and use them at large scale.
Batch Size:
- Fit scaling laws i.e. optimal batch size = A + (model size)”.
(Porian et al. 2024, Deepseek-Al 2024)
- |Is sometimes changed during training (LIama3, Chinchilla)
Weight decay: Better to use decoupled weight decay (good defaults: 0,1e-4)
.eew,={U—-4)-w_;—n-gratherthanw, =1 —nd)-w,_,—n-g
Warmup: No standard recommendations for LLMs, 20% might be a safe bet for medium
sized models.
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- Fit scaling laws i.e. optimal batch size = A + (model size)”.
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.eew,={U—-4)-w_;—n-gratherthanw, =1 —nd)-w,_,—n-g
Warmup: No standard recommendations for LLMs, 20% might be a safe bet for medium
sized models.

Batch size Learning rate
1 0.048

Grid points, B>, =0.95
Grid points, B, = 0.99
Grid points, B, =0.999

Interpolated optimal values

o

512 - @ v

o

¢
—0— Points used for fit

0.024 -
256 1

0.012 1 V" ¥~_
128 1 St

0.006 1 -~ Fit:
BS = 0.00037N°793 (R? = 0.986)

LR = 3.7N~93% (R2 =0.997)

\'-\-.\,_\“\“\. ....... Rounded flt:
BS = 160(N/108e6)?>

64

32_ 0.003-

0.0015 - v
1o ® LR = 0.0047(N/108e6)~ /3
DeepSeek fit:
8 1 0.00075 A BS = 0.00068/N 0654
5M7M  15M 28M 57M 108M 220M 901M 5M7M  15M 28M 57M 108M 220M 901M LR =0.17N7%%
N N

Porian et al. 2024
45 “Resolving Discrepancies in Compute-Optimal Scaling of Language Models”



Optimizer

P, P>: Find values at medium scale and use them at large scale.
Batch Size:
- Fit scaling laws i.e. optimal batch size = A + (model size)”.
(Porian et al. 2024, Deepseek-Al 2024)
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Weight decay: Better to use decoupled weight decay (good defaults: 0,1e-4)
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Learning Rate / P

Learning rate (LR):
- Again fit scaling laws.
- Use learning rate transfer (Yang et al. 2022: Tensor Programs V/ uP):
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Learning Rate / P

Learning rate (LR):
- Again fit scaling laws.
- Use learning rate transfer (Yang et al. 2022: Tensor Programs V/ uP):

- To find optimal LR for a model of width w|5¢qe, We search tor optimal LR of a model

with smaller width wgm gy (€verything else like depth and batch size is held constant)
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Edge of Stability / Why Warmup?



‘Optimal’ Step size

» Reminder: In the quadratic model we need 17 < 2/A0y <= Amax < 2/1 for stability.
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‘Optimal’ Step size

» Reminder: In the quadratic model we need 17 < 2/A0y <= Amax < 2/1 for stability.

» In deep learning, Amax can change with time: theory motivates using for
steepest descent.
e Let’s and compare to a constant #!

» We define the sharpness as A5x(0)).

train loss
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dynamic n = 1.0/A;
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“Edge of Stability”
Cohen et al. 2021
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‘Optimal’ Step size

 Reminder: In the quadratic model we need 17 < 2/A 0y <= Amax < 2/7 for stability.
» In deep learning, Amax can change with time: theory motivates using 7 = 1/4,5.(0,) for

steepest descent.

» Let’s try using 7 = 1/45x(0,) and compare to a constant 7!
» We define the sharpness as A5x(0)).

train loss

- fixed n=1.0/Ag
— dynamic n = 1.0/A;
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“Edge of Stability”
Cohen et al. 2021



‘Optimal’ Step size

 Reminder: In the quadratic model we need 17 < 2/A 0y <= Amax < 2/7 for stability.

» In deep learning, Amax can change with time: theory motivates using 7 = 1/4,5.(0,) for
steepest descent.
» Let’s try using 7 = 1/45x(0,) and compare to a constant 7!

» We define the sharpness as A5x(0)).
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‘Optimal’ Step size

 Reminder: In the quadratic model we need 17 < 2/A 0y <= Amax < 2/7 for stability.
» In deep learning, Amax can change with time: theory motivates using 7 = 1/4,5.(0,) for

steepest descent.

» Let’s try using 7 = 1/45x(0,) and compare to a constant 7!
» We define the sharpness as A5x(0)).
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“Progressive sharpening”
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Edge of Stability

* Define /1*(;7) = 2/n, which is the maxima eigenvalue that leads to stable dynamics for Ir 7.
o If A(@) > A*(n), then the dynamics should be unstable.
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MSE loss

Edge of Stability
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Edge of Stability - Toy Model

Z(x,y) = (1 = x*y?)?

1-Step Trajectory (400 Iterations)
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Edge of Stability - A generic explanation

. Z(0) is the loss function. Let S(0) represent the sharpness, i.e, S(0) = 1. [V>Z(O)].

max
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Edge of Stability - A generic explanation

o £(0) is the loss function. Let S(6) represent the sharpness, i.e, S(0) = /Imax[szf(é’)].
» Stage 1: Suppose progressive sharpening has occurred and that we reach a point 6, where

n = 2/5(0,), i.e. we are at point where we should are unstable (and oscillating).
Let u be the largest eigenvector of V2.Z (0,).
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« Z(0) is the loss function. Let S(0) represent the sharpness, i.e, S(0) = 4, .[ V-Z(0)].
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Let u be the largest eigenvector of V2.Z (0,).
o Stage 2: Why don’t we diverge?
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n = 2/5(0,), i.e. we are at point where we should are unstable (and oscillating).

Let u be the largest eigenvector of V2.Z (0,).
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« |Let us consider a perturbation of Ht in the u direction. For a > 0,
VoL(0,+ au) ~ VL0, + aVzL(0)u + (a*/2)V,L(O) - (u @ u)
=V, L) + aS(O)u + (a*/2) VS(9)
where the last step uses VSL(@) (U@ u) = VyS(6,). (Do you see why??)
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» Therefore, for large «, a gradient step after a large perturbation makes S(6) smaller due to

the (a*/2) V.S(6,) term.
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Edge of Stability - A generic explanation

. Z(0) is the loss function. Let S(0) represent the sharpness, i.e, S(0) = 1. [V>Z(O)].
» Stage 1: Suppose progressive sharpening has occurred and that we reach a point 6, where
n = 2/5(0,), i.e. we are at point where we should are unstable (and oscillating).

max [

Let u be the largest eigenvector of V2.Z (0,).
o Stage 2: Why don’t we diverge?

« |Let us consider a perturbation of Ht in the u direction. For a > 0,

VoL(0,+ au) ~ VL0, + aVzL(0)u + (a*/2)V,L(O) - (u @ u)
=V, L) + aS(O)u + (a*/2) VS(9)

where the last step uses VSL(@) (U@ u) = VyS(6,). (Do you see why??)

» Therefore, for large «, a gradient step after a large perturbation makes S(6) smaller due to
the (a*/2) V.S(6,) term.

» This makes the dynamics more stable because 2/5(6) increases after the perturbation.

53



References

Tay et al. 2022: https://arxiv.org/abs/2207.10551

Clark et al. 2022: https://arxiv.org/abs/2202.01169

Dosovitskiy et al. 2021: https://arxiv.org/pdf/2010.11929

Other papers: “Getting ViT in Shape”, “SCALE EFFICIENTLY: INSIGHTS FROM PRE-
TRAINING AND FINE-TUNING TRANSFORMERS”.

Batch size Learning rate
1 0.048

Grid points, B>, =0.95
Grid points, B, = 0.99
Grid points, B, =0.999

512 - W)

0.024 -

256 - Interpolated optimal values

O
v
o)
L& ¢
0.012 1 V- 3¥x —§— Points used for fit

128 1

64 - 0.006 --- Fit:

BS = 0.00037N0703 (R2 = 0.986) ]
_ ~0.36 (R2 —
LR = 3TN0 (R? = 0.997) Porian et al. 2024
Sey| Rounded fit:

® BS = 160(N/10886)2/3

¥ 0.0015 -
16 =9 LR = 0.0047(N/108e6)~1/3

DeepSeek fit:
8 1 0.00075 A BS = 0.00068/N 0654
5M7M  15M 28M 57M 108M 220M 901M 5SM7M  15M 28M 57M 108M 220M 901M LR =0.17N7°2>
N N

54



