Lect 8: Parallelization

Sham Kakade and Nikhil Anand

CS 2281: How to Train Your Foundation Model
Fall 2024

Today

Recap++:

Pipeline Parallelism

FSDP

Theoretical Considerations

Tensor Parallelism

Recap++

Today

Recap++:

* hardware

e communication primitives

* Distributed Data Parallelism (DDP)
Pipeline Parallelism

FSDP

Theoretical Considerations

Tensor Parallelism

Scales of Some Foundation Models
note: 1b, 8b, 70B, 405B, “big”

 A100/H100: let’s say 80gb memory on each chip.
e LLMSs (?7?):

« GPT4.0:
« GPT4o0:
 Gemini: 2T param model (also MoE?), 10T tokens (trained on TPUs)
 Llama 3.1:
e Code: Copilot

* Images/Video: MidJourney/Sora
* Bio: AlphaFold

GPU-to-GPU Communication

Node 1 Node 2

saan H100 Node

75 GB/s 75 GB/s

600 Gbps

GPU 1 500 Gons . GPU2

GPU 3 GPU 4

Inside Node (NVLINK): Each GPU talks to other three GPUs at 75 GB/s (single direction). This sums up to 900 GB/s all
GPU-GPU bidirectional speed. 75 GB/s * 6 * 2 = 900 GB/s

Outside Node (InfiniBand Network NDR): Each GPU communicates to other GPUs in another node at 400 Gbps (50 GB/s).

Modern nodes: usually 8 gpus per node.

Intra node communication (FAST): nvlink, basically 1tb/sec (total)
Inter node communication (SLOW): infiniband, 50GB/sec

Nodes connected Iin a “tree” structure.

[Figure credit: Yasin Mazloumi]

HPC Cluster

Metwork switch
Metwark switch
Metwark switch
Metwork switch
MNetawark switch
Metwork swilch
Metwork switch
Metwork switch
Metwark switch
Metwark switch
Metwork switch
Metwark switch

Network Core

Metwork switch

Metwaork switch

Server 26

Server 35

Server 24

Server 33

Senver 10

Server 9

Servar B

Server ¥

Server 6

Server 5

Server 4

Server 3

Server 2

Server 1

A100 Server rack (1)

Metwork switch
Metwork switch
MNetaark switch
MNetwork switch

Server 24

Server 23

Server 22

Server 21

Server 10

Server 9

Server B

Server 7

Server 6

Server 5

Server 4

Server 3

Server 2

Server 1

H100 Server racks (1)

Network switch
Network switch
Network switch
Network switch

Server 24

Server 23

Server 22

Server 21

Server 10

Server 8

Sarver 8

Server 7

Server &

Server 5

Server 4

Server 3

Server 2

Server 1

H100 Server racks (2)

MNetwork switch
Metwork switch
Metwork switch
MNetwork switch

Server 24

Server 23

Server 22

Server 21

Server 10

Server 9

Server 8

Server 7

Server G

Server 5

Server 4

Sarver 3

Server 2

Server 1

H100 Server racks (3)

Metwork switch
Metwork switch
Metwork switch
Metwork switch

Server 24

Semver 23

Server 22

Semver 21

Server 10

Server 9

Server §

Sarver 7

Server 6

Server 5

Server 4

Server 3

Semver 2

Semver 1

H100 Server racks (4)

Nodes sit in racks.
Intra node communication (FAST): nvlink, basically 1tb/sec (total)

Inter node communication (SLOW): infiniband, 50GB/sec

In Production (144 x A100 40 GB, 384 x H100 80 GB)

Nodes connected in a “tree” structure.

[Figure credit: Yasin Mazloumi]

N

—

an

Sy - Kempner Racks

Y » =
\ R
QM
\ | I
. \\\ D = i 5 I
aATwv)| e =
\ |
\ g .
- ‘ ~ | || .
N oy oor ";‘ h < k - =}
- P AR 7 7
\ F
35,4 { —
J ‘\ ==
N a8 > : a8 i —
1Y v
vee 3 L1 - \ [1' 11
\ \ m \ ‘,",'?
- \ P \ ° L—‘ « i | ‘,
p= £ £ |l —_——— Hj —+H
__—-—-_;-—'———'—___-
___———__——_ !
2| i | ———
!. "
- £ Lo o i)
== \
-y
ove \
= N - 1 9652 [

&
U
L0908
Lo
w s
v e b 3
2 -
a’:f"," ¥ 3 & ~ “
v’ : T
/ % ~
’ .

-

ACTIVATION MEMORY

TPUs

ACTIVATION

INPUT
PE PE PE -
. <, -
g -
= PE PE PE
€3
: -
. v U SRR
S PE [PE PE .
3 l l‘_\ ¥ .
PE PE _>| PE PARTIAL
SUM
I l«—
WEIGHT
INPUT

-

-

-

-

-

-

16-bit

PARTIAL SUM

8-bit

ACTIVATION =

8-bit

WEIGHT M

PARTIAL
SUM
RESULT

These are very very nice, because all the “Processing Elements” (basically GPUS)
are connected point-to-point (with very fast communication).

Today: Single GPU -> Distributed Training

GPU 0 A

Network Core A100 Server rack (1) H100 Server racks (1) H100 Server racks (2) H100 Server racks (3) H100 Server racks (4)
=
.
2
Network suitch Network switch Network switch 3 Netviork switch Network switch
Network switch Network switch Nework switch S Network surich Network swieh
Netwark switch Network s Network Network switch 2 Network switch Network switch
Netwark switch Network switch Network switch | | (8] 18 Network switch Network switch
ok otk N N o0
Netwark swicr o Server 24 Server 24 —_—! Server 24 Server 24
Netwark switch » — |,
work switc S - o =15
Network switch Server 35 Server 23 Server 23 —_ Server 23 Sorver 23
—_——
o 1o
S g
Server 34 Server 22 Server22 —— Server 22 Server 22
etufonc sivacy s == lo
2 witct o (2] 2]
Network switch Server 33 Server 21 Server 21 = Server 21 Server 21
Netwark suitch 5
o
lof lo]
o o
Server 10 Server 10 Server 10 Server 10
lo| Lol
o g
Server 8 Server 9 = Server 9 Server 9 Server 9
ol == == ||,
o et lol
Server 8 Server 8 S Server 8 Server 8 Server 8
o = o o] lo
Sl —/ ——0 e o
— p—— —_— o ey
[e— Server 7 Server 7 Server 7
ol == o lo| o
oe——=10 - @
onert Sover’s I — —— = —
IS == o Lo} Lol "=l == lJ
. . O o olee———10
Server Server s Servers Servers —————————— Server s
== ||, . o=
5 25 L © o Q
Server 4 Server 4 — e — —_— Serverd
lo|=——— o ol == s
erver 3 erver 3 - — ol e0—T—r —|0
ser E Server3 Server 3 _— Server3
B = =l
° o o o
Server 2 Server 2 Server2 —_— Server2
tol lo] lole——S[== J|o|
© o > o
Server 1 Server 1 — Server 1 Server 1
lo] o
g o
Lo} lof
o o
Hol o}

k) In Production (144 x A100 40 GB, 384 x H100 80 GB)

103 160 |
7)) Kempner | @ HARVARD 14

Mtrain — Ptransformer + Moptimizer + Mactivations

Today

Recap++:

* hardware

* communication primitives

* Distributed Data Parallelism (DDP)
Pipeline Parallelism

FSDP

Theoretical Considerations

Tensor Parallelism

11

NCCL communication primitives

AllReduce

GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

all reduce

There are many possible implementations! E.g., compute in a ring

NCCL communication primitives

Reduce

GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

reduce
C)

NCCL communication primitives

AllGather

GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

e]

A A

all-gather

NCCL communication primitives

ReduceScatter

GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

AO+BO+ § A1+B1+ § A2+B2+ § A3+B3
Co+D0 § C1+D1 C2+D2 § C3+D3

reduce-
scatter

)

Today

Recap++:

* hardware

e communication primitives

* Distributed Data Parallelism (DDP)
Pipeline Parallelism

FSDP

Tensor Parallelism

16

Multi GPU Training: DDP

~

! GPU 0

Micro

$ AlReduce
GPU 1)

Global batch

Micro

When is DDP useful?

 When a model fits on a single GPU, and we want to increase data
throughput i.e. train faster

 When it makes sense to keep inter-GPU communication as simple as
possible (e.g., smaller scale experiments)

 Models that are large enough that cannot be fit on a single GPU are
trained with other distributed frameworks (FSDP, etc.)

Today

Recap++:

Pipeline Parallelism

FSDP

Theoretical Considerations

Tensor Parallelism

19

Before this, let’s consider linear nets as
our model (i.e. matrix multiplies)

Our Computational Model

(batch) Linear Network: ¥ = W-= ' W'X
. Wf = Rd)(d X & Rd)(m

layers have input/output dimension d, batch size is m
Written with activations:

A'=X
AL”+1 — WL”Af
Scalings:

depth/number of layers: L, width/hidden dim: d, batch size: m
Compute/Memory for reverse Mode AD

+ Parameters: [.d”
« Flops for forward pass: Ld m
 Activation memory: Ldm

Important: note that param memory >> activation memory, when d > m
Other considerations:

» Total flops: # gpus * time gpus run for * flops/gpu

* Serial runtime: we want our job to finish soon (in a few months?)

21

Now lets look at LLama 3.1

8B 70B 405B
Layers 32 80 126
Model Dimension 4,096 8192 16,384
FEFN Dimension 14,336 28,672 53,248
Attention Heads 32 64 128
Key /Value Heads 8 8 8
Peak Learning Rate 3x107% 15x107*% 8x107°
Activation Function SwiGLU
Vocabulary Size 128,000
Positional Embeddings RoPE (6 = 500, 000)

Table 3 Overview of the key hyperparameters of Llama 3. We display settings for 8B, 70B, and 405B language models.

- Concepts: what fits on a gpu? on a node? between nodes?
- Params/transformer block: 10d?

. Bytes/block: 2 - 10d?
» Activation Memory for batch size 1.

2 - seq_length - d - num_layers bytes

23

GPUs TP CP PP DP Seq.Len. Batchsize/DP Tokens/Batch | TFLOPs/GPU BF16 MFU
8,192 3 1 16 o4 8,192 32 16M 430 43%
16,384 8 1 16 128 8,192 16 16M 400 41%
16,384 8 16 16 4 131,072 16 16M 380 38%

Table 4 Scaling configurations and MFU for each stage of Llama 3 405B pre-training. See text and Figure 5 for descriptions
of each type of parallelism.

24

GPU 2 GPU 3 GPU 10 GPU 11

TPO CP1 PPO DPO TP1 CP1 PPO DPO TPO CP1 PPO DP1 TP1 CP1 PPO DP1
N
GPUO GPU 1 GPU 8 GPUS
TPO CPO PPO DPO TP1 CPO PPO DPO TPO CPO PPO DP1 TP1 CPO PPO DP1
PP
/N
GPU 6 GPU 7 GPU 14 GPU 15
TPO CP1 PP1 DPO TP1 CP1 PP1 DPO TPO CP1 PP1 DP1 TP1 CP1 PP1 DP1
J cp
GPU 4 GPUS5 GPU 12 GPU 13
TPO CPO PP1 DPO TP1 CPO PP1 DPO TPO CPO PP1 DP1 TP1 CPO PP1 DP1
A4
Z AN
N\ 7
TP
Z AN
N\ 7
DP

Figure 5 lllustration of 4D parallelism. GPUs are divided into parallelism groups in the order of [TP, CP, PP, DP|, where
DP stands for FSDP. In this example, 16 GPUs are configured with a group size of |TP|=2, |CP|=2, |PP|=2, and
|IDP|=2. A GPU’s position in 4D parallelism is represented as a vector, |D1, D2, D3, D4|, where D; is the index on
the i-th parallelism dimension. In this example, GPUO|TP0, CP0, PP0, DP0] and GPU1|TP1, CP0, PP0, DPO]| are in
the same TP group, GPUO and GPU2 are in the same CP group, GPUO and GPU4 are in the same PP group, and

GPUO and GPUS are in the same DP group.

25

Plpeline Parallelism

Naive Model Parallelization

LossS

T Sync globall

Device 3 F - B yne giobaty

R i \
Device 2 F2 Bt 82 FO BO Update

J; ‘ FO BO Update
Device 1 F. > B, ' |

¢ F0 \ BO Update
i Tlme ‘ BO Update

Device 0 F, E | F,
o

Gradients

e Shard model into k partitions, e.g.) 4, WO:LM, WL/4+1:L/2, WL/2:3L/4, W3L/4:L—1

. Assume: each device can hold a model partition, which is of size Ld*/4
 What is the problem?

27

Loss

S N . .
F. - B, .
e The pipeline approach:
. B
- 1
3 - B,
i
Fso| F31 | Fs2| Fss| Bags B2 B3.1 Ba.o Update
Foo | F21 | F22 | F23 B2 B> B2.1 B2.o Update
Fio| F11 | Fi2 | F13 4) B1,3 Bi2 B1.1 B1.o Update
Foo | Fo1 | Foz2 | Foz BUbble) Bos Bo.2 Bo.1 Boo | Update
\

» Shard model into p partitions and place these on p devices,
i.e. p = 4 example, where device 0 contains WY L% device 1 contains WHAH1L2

» Split mini-batch T, of size m, into k “micro-batches”, {1, ..., T;_, }, each of size m/k
* The pipeline approach tries to avoid the idle time, by sending the next micro-batch when it can.

. Assume devices can hold: a model shard of size Ld?/4 and the activation checkpoints, of total size Ldm/4

28

Device 3

Loss

Wi o

@

Notation: /; ; denotes the forward pass computed by device i on micro-batch

\ 4 \ \ 4 \4
\90{90«90«90/

radients

Fao | Far | Faz | Fas| Bas | Bz | Bar | Bag Update

Fao | Far | Foz | Fas Bos | Baz | Bar | Bao Update

Fio | F11 | F12 | F13 ~ ~N | Bis | Biz2 | Bi1 | Bio Update

Foo | Fox | Foz | Fos K Bubble) Bos | Boz | Bos | Boo | Update

recall that device 1 contains a model shard, containing some of the layers.
Forward:

« Device 1 computes the forward pass on data

T,

after receiving the input activations from device i — 1.

» All activations are checkpointed on their corresponding device.
After all the forward passes are done, we can begin the backward pass. One approach is to start with B3’3

Backward:
« Device 1 computes the backward pass on data

e Each gradient can be all-reduced.

T

J

29

J

T (analogous def forBl-, j)

after receiving the activation grads from device i + 1.

Device 3

Device 2

Device

Device O

What fraction of time is IDLE?

1%

ldle Time & MFU

p+k

Fszo| Fs1 | Fa2 | Fss| Bags B2 B 1 Bso Update

Foo | F21 | F22 | F2s B2 B2 B2.1 B2.o Update

Fio| F11 | F12 | F13 4) Bi3 Bi2 B 1 B1.o Update

Foo | Fo1 | Foz2 | Fos BUbee Bos Bo2 Bo.1 Boo | Update

N J
Gl G —e
K micro-batches p devices
Time —

Soif k =~ 3p, then ...

30

Scaling Considerations: how does it scale”?

 Suppose we want a big model. How can grow the model?

. Suppose V layers can fit on a device and their activations, so we have Vd* + Vdm free
memory.

 With p devices, we can get a model with L = pV and width d.
 We need to ensure communication and compute overlap between the nodes/devices

» Activations get passed between devices: need to communicate dm (per step in the pipe)
 Need to all-reduce model params: need to communicate Vd? (per backard step in the pipe)
« Take aways: (assume Chinchilla where tokens ~ 20 - model size)

* Depth scaling: serial processing time of pipeline grows linearly with model size, fixing m.
* This means that serial run time grows quadratically (serial runtime is O(tokens*time_per._iter))

» We pay a serial factor of 3 (the amortization factor) over to pure DDP (i.e. using batch size one).

 Even if we make the per-device-batchsize-m smaller (+DDP over the pipelines), we still have a
communication bottleneck due to the model params on the backward pass.

31

Today

Recap++:

Pipeline Parallelism

FSDP

Theoretical Considerations

Tensor Parallelism

32

Fully Sharded Data Parallel (FSDP)

 Motivation: we want to do data distributed training without a pipeline

e Fully sharded = shard model, optimizer, and data across GPUs (can be seen
as a kind of successor to DDP)

o |Inspired by “ZeRO” algorithm (particularly ZeRO-3), but some specifics are
different

DP

GPUO
Model, optim copy
GPU1
Model, optim copy

N\

data

/

How Is the model stored? Terminology: shards and units

» |et’s forget about optimizer states for a second, how is the model even
stored?

e An FSDP unit is an abstraction that determines how the model will be
split. We have flexibility in how to define it!

 For example, an FSDP unit could be a single layer (or a series of layers).
Practically, it is a torch.nn.Module or collection of layers

e Units are broken down further into shards, which is how the units will be
stored across the GPUSs, i.e. each FSDP unit is sharded across GPUSs.

How Is the model stored? Terminology: shards and units

* Note: “unit” is some piece of the model that we want to load. (e.g. loading unit
0 onto gpu 3, means layers 0/1 are on gpu 3)

* A fundamental operation will be to load a unit onto multiple GPUs

* Conceptually, we will only load units so we can ignore the shards.

FSDP unit O

UnitOshard 0 UnitOshard 1 Unit O shard 2 Unit O shard 3
Unit1shard 0 Unit1shard1 Unit 1 shard 2 Unit 1 shard 3

FSDP unit 1 total shards = num FSDP units x num GPUs

How does the computation work?

 FSDP tries to simulate DDP, but since each GPU only has access to a shard of the units,
we have to all-gather a unit that we need for current part of the forward/backward pass

 Let’s look at an example:

Layer 1

Layer 2

Layer 3

Layer 4

FSDP unit 1

FSDP unit 2

FSDP unit 3

FSDP unit 4

GPU1

GPU2

Layer 1

Layer 1

GPU3

Layer 1

GPU4

Layer 2

Layer 2

Layer 1

Layer 2

Layer 3

Layer 3

Layer 2

Layer 3

Layer 4

Layer 4

Layer 3

Layer 4

Layer 4

GPU1

Layer 1

Layer 2

Layer 3

Layer 4

GPU2

Layer 2

Layer 3

Layer 4

Layer 4

4¢—P = All-Gather

All-Gather later 2 while doing forward for Layer 1 (communication/compute overlap)

Clear layer 1 when done

And then do backwards pass!

FSDP Implementation

FSDP forward pass: FSDP unit O
for unit 1 1n units:
all-gather full weights for unit_1
forward pass for unit_1
save activations for unit_i FSDP unit 1
discard full weights for unit_1

FSDP backward pass:

for unit_1 1n units: FSDP unit 2
all-gather full weights for unit_1 S

FSDP unit 3

Computation vs communication overlaps

Cartoon is idealized setup. How much can we actually overlap?

Let’s assume FSDP units are layers and we’re looking at the forward pass for now

ACO ACT AC2 AC3

rwdo | Fwat | Fwa

In theory, we are bottlenecked only when it takes longer to AG the next layer than
computing the forward pass on the layer before it. When does this happen??

Today

Recap++:

Pipeline Parallelism

FSDP

Theoretical Considerations

Tensor Parallelism

48

Computation vs communication overlaps

In theory, we are bottlenecked only when it takes longer to all-gather the next layer than
computing the forward pass on the layer before it

ACO ACH AC2 AC3

Tfl >Tf

all-gather — forward

All-gather Time

I (70

T = alogp + —pN
all-gather L ﬁp Mmessage o

a is startup latency to send a message, f is bandwidth,
p is number GPUs/nodes (11 in picture),
Nmessage is the size of the message/tensor to send (stored on nodes)

(in our setting, there are two different /’s (for intra/inter, i.e. gpu/nodes)

Note: Nvidia uses “fat tree”

” N\
\. ./

Computation vs communication overlaps

In theory, we are bottlenecked only when it takes longer to AG the next layer than
computing the forward pass on the layer before it

ACO ACH AC2 AC3

aII gather forward oo O
|
Tf-l-l — l 4 — N
all-gather ¥ " 3" message) @ ©)

a is startup latency to send a message, f is bandwidth, p is number GPUs/
nodes, Nmessage i the size of the message/tensor to send

Computation vs communication overlaps

T¢+1 > T¢
Comm bound when a”_gather — “forward

|
C+1 _ T
Tall—gather = alogp + ﬂPNmessage
1 We set thin that:
741 - L gs up so that:
Tall—gather = alogp + ’gn PNmessage ="

a is startup latency to send a message, f is bandwidth, p is number GPUs,
Nmessage is the size of the message/tensor to send, and

71 is num params per layer

Computation vs communication overlaps

£+1 4
>
Comm bound when Ta”_gather — Terward
TL” — B_Sn
-) forward
Lall-gather = #1087+ B

Batch size B, seq length S,
FLOPs/GPU C

a is startup latency to send a message, f# is bandwidth, p is number GPUs,
1 IS num params per layer

Computation vs communication overlaps

BS 1
alogp < |——-——|n

C p

Batch size B, seq length §,
FLOPs/GPU C

a is startup latency to send a message, f is bandwidth, p is number GPUs, n
IS num params per layer

Effectively balancing compute per parameter with how quickly those parameters can be
communicated!

Note: if the model needs to fit across nodes, [is internode bandwidth which is >>
bandwidth within a node

Numbers for inter and intranode

1 <(BS 1)
a 10 — —— | N
gP = C B

Inter (between nodes) Intra (within a node)
(1=10_6S C¥=10_6S
5 =50 GB/s p=11B/s

C = 1500 TFLOP/s
S=8x%10

C = 1500 TFLOP/s
S=8x%10

Scaling FSDP: where does it break?

Batch size B, seq length S,

BS 1 FLOPs/GPU C
a lOg P < C —— | N a is startup latency to send a message, /3 is
IB bandwidth, p is number GPUs, 7 is num
P

params per layer

Also: if the right hand side is “non-trivially” positive, then we can make p very large!
(so where does FSDP break?)

For internode: batch size O(10) is needed but note that we have to have enough
memory to keep the activations around (which also grows with batch size)!

What about TPUs?

BS 1 The following table shows the key chip specifications and their values for v5e.
a lOg p < — — n Key chip specifications vSe values
‘ : ﬁ Peak compute per chip (bf16) 197 TFLOPs
HBM?2 capacity and bandwidth 16 GB, 819 GBps
Interchip Interconnect BW 1600 Gbps

The following table shows Pod specifications and their values for v5e.

Key Pod specifications v5e values

For TPUs, f is absurdly large TPUPodsize 206 chips
Interconnect topology 2D Torus
Peak compute per Pod 100 PetaOps(Int8)
All-reduce bandwidth per Pod 51.2 TB/s
Bisection bandwidth per Pod 1.6 TB/s

Data center network bandwidth per Pod 6.4 Tbps

More generally,

Batch size B, seq length S,

BS 1 FLOPs/GPU C
a lOg P < C —— | N a is startup latency to send a message, /3 is
ﬁ bandwidth, p is number GPUs, 7 is num
P

params per layer

B - compute_per_param 1
alogp<|———M8 ——|n

C p

What is the “unit”: here, we basically want the unit to be “small”, which gives us more
flexibility (in TP, we will subdivide the layer)

More generally,

B - compute_per_param 1 a is startup latency to send a message, f is
alogp < f — — | " bandwidth, p is number GPUs, n is num
ﬂ params per layer

We really need the res to have a “non-trivial” positive gap. So the constants matter.

Pipeline approach:
* \We are communicating both the activations and the params (in the backward pass).
» EXxactly the same issue as in FSDP. Bottlenecks inter-node communication.

FSDP:

» Here, we can effectively make d bigger due to sharding the layer within a node (larger f)

* But, we can’t keep increasing the depth (or width) due to both model and activation memory in the
node

FSDP+pipeline:

 Use FSDP to make the intra-node model larger

* Pipeline handles between node.

Many mix-match approaches

Today

Recap++:

Pipeline Parallelism

FSDP

Theoretical Considerations

Tensor Parallelism

60

Tensor Parallelism, simplified

* Now let us consider width scaling.
(similar idea helps with context scaling, attention, ring attention).
 Here it let’s consider a simpler matrix multiplication problem of:

Linear Network: ¥ = ABX
« Where A, Barebothd Xdand Xisd X m.

» We will consider d to be large so that we want to break up A, B matrices.

61

The Basic ldea

split columns split rows

* Split A by columns and B into rows. (in general, we can shard them into more splits)
* [tis easy to verify that:

AB =A B, + A,B,

(e.g. consider multiply by vector x)
 The “tensor” parallelism approach on two devices:

« Shard A, B so that:

gpu 1: holds A, By, X, gpu 2: holds A,, B,, X
 Each device computes:
yi =ABX Yy = AyBrX

* All-reduce the y’s:
Y=y +y

62

DIsScussIion

More general considerations and scalings:

B - compute_per_param 1 a is startup latency to send a message, f is
04 logp <\———|n bandwidth, p is number GPUs, 7 is num

C ﬂ params per layer

 The approach is very flexible.
* \We can handle larger width by many row/column splits with TP.
 But we have to all-reduce the answers

« As we grow d, then we can make the serial runtime smaller.
* Again, we can do this provided our RHS gap holds. m m

* Mixture of Experts: Different compute_par_param scaling

Router

64

GPUs TP CP PP DP Seq.Len. Batchsize/DP Tokens/Batch | TFLOPs/GPU BF16 MFU
8,192 3 1 16 o4 8,192 32 16M 430 43%
16,384 8 1 16 128 8,192 16 16M 400 41%
16,384 8 16 16 4 131,072 16 16M 380 38%

Table 4 Scaling configurations and MFU for each stage of Llama 3 405B pre-training. See text and Figure 5 for descriptions
of each type of parallelism.

65

GPU 2 GPU 3 GPU 10 GPU 11

TPO CP1 PPO DPO TP1 CP1 PPO DPO TPO CP1 PPO DP1 TP1 CP1 PPO DP1
N
GPUO GPU 1 GPU 8 GPUS
TPO CPO PPO DPO TP1 CPO PPO DPO TPO CPO PPO DP1 TP1 CPO PPO DP1
PP
/N
GPU 6 GPU 7 GPU 14 GPU 15
TPO CP1 PP1 DPO TP1 CP1 PP1 DPO TPO CP1 PP1 DP1 TP1 CP1 PP1 DP1
J cp
GPU 4 GPUS5 GPU 12 GPU 13
TPO CPO PP1 DPO TP1 CPO PP1 DPO TPO CPO PP1 DP1 TP1 CPO PP1 DP1
A4
Z AN
N\ 7
TP
Z AN
N\ 7
DP

Figure 5 lllustration of 4D parallelism. GPUs are divided into parallelism groups in the order of [TP, CP, PP, DP|, where
DP stands for FSDP. In this example, 16 GPUs are configured with a group size of |TP|=2, |CP|=2, |PP|=2, and
|IDP|=2. A GPU’s position in 4D parallelism is represented as a vector, |D1, D2, D3, D4|, where D; is the index on
the i-th parallelism dimension. In this example, GPUO|TP0, CP0, PP0, DP0] and GPU1|TP1, CP0, PP0, DPO]| are in
the same TP group, GPUO and GPU2 are in the same CP group, GPUO and GPU4 are in the same PP group, and

GPUO and GPUS are in the same DP group.

66

Thanks!

1. Lots of parallelization approaches.
2. communication to compute ratio is important!

67

