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Scales of Some Foundation Models 
note: 1b, 8b, 70B, 405B, “big”
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• A100/H100: let’s say 80gb memory on each chip.

• LLMs (??):

• GPT4.0:  1.6T (8x200B MoE model), 10T tokens, (flop equiv) 30K for several months

• GPT4o:  16(or 32)x30B MoE model, 30T text tokens,

• Gemini:  2T param model (also MoE?), 10T tokens (trained on TPUs)

• Llama 3.1: 8B, 70B, 405B (dense), 10T tokens


• Code: Copilot 10-20B (?), 

• Images/Video: MidJourney/Sora 10-20B (?), 10K gpu for 1 month (?)

• Bio: AlphaFold
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[Figure credit: Yasin Mazloumi]
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Inside Node (NVLINK):  Each GPU talks to other three GPUs at 75 GB/s (single direction). This sums up to 900 GB/s all 
GPU-GPU bidirectional speed. 75 GB/s * 6 * 2 = 900 GB/s
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Outside Node (InfiniBand Network NDR): Each GPU communicates to other GPUs in another node at 400 Gbps (50 GB/s).
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GPU-to-GPU Communication
Node 1                                                                                     Node 2

H100 Node

Modern nodes: usually 8 gpus per node. 

Intra node communication (FAST): nvlink, basically 1tb/sec (total)  
Inter node communication (SLOW): infiniband, 50GB/sec

Nodes connected in a “tree” structure.



[Figure credit: Yasin Mazloumi]
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HPC Cluster

Nodes sit in racks. 
Intra node communication (FAST): nvlink, basically 1tb/sec (total)  
Inter node communication (SLOW): infiniband, 50GB/sec

Nodes connected in a “tree” structure.



Kempner Racks



TPUs

These are very very nice, because all the “Processing Elements” (basically GPUS) 
are connected point-to-point (with very fast communication).



Today: Single GPU -> Distributed Training
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NCCL communication primitives
AllReduce

There are many possible implementations! E.g., compute in a ring



NCCL communication primitives
Reduce



NCCL communication primitives
AllGather



NCCL communication primitives
ReduceScatter



Today

16

• Recap++: 

• hardware

• communication primitives

• Distributed Data Parallelism (DDP)


• Pipeline Parallelism

• FSDP

• Tensor Parallelism



Multi GPU Training: DDP
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When is DDP useful?

• When a model fits on a single GPU, and we want to increase data 
throughput i.e. train faster


• When it makes sense to keep inter-GPU communication as simple as 
possible (e.g., smaller scale experiments)


• Models that are large enough that cannot be fit on a single GPU are 
trained with other distributed frameworks (FSDP, etc.)
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Before this, let’s consider linear nets as 
our model (i.e. matrix multiplies)
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Wℓ ∈ Rd×d X ∈ Rd×m
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• (batch) Linear Network: Y = WL−1…W0X
• , , 

layers have input/output dimension , batch size is 
Wℓ ∈ Rd×d X ∈ Rd×m

d m
• Written with activations: 

 A0 = X
Aℓ+1 = WℓAℓ

• Scalings: 
depth/number of layers: L, width/hidden dim: d, batch size: m

• Compute/Memory for reverse Mode AD
• Parameters: Ld2

• Flops for forward pass: Ld2m
• Activation memory: Ldm

• Important: note that param memory  activation memory, when ≫ d ≫ m
• Other considerations:

• Total flops: # gpus * time gpus run for * flops/gpu
• Serial runtime: we want our job to finish soon (in a few months?)



Now lets look at LLama 3.1
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•Concepts: what fits on a gpu? on a node? between nodes?
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•Concepts: what fits on a gpu? on a node? between nodes?
•Params/transformer block: 10d2

•Bytes/block: 2 ⋅ 10d2

•Activation Memory for batch size 1:  
    bytes2 ⋅ seq_length ⋅ d ⋅ num_layers

moche
size 140gb with · H100

80gb.

sog tenth · Nodes
8192 8 gpus/node

single layer
B 405B I
6-Tab

3096

TOB:
fors Inglelayer for all layers

- -

all layers 0 . 1 gb logh
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Naive Model Parallelization
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• Shard model into  partitions, e.g. , k k = 4 W0:L/4, WL/4+1:L/2, WL/2:3L/4, W3L/4:L−1

• Assume: each device can hold a model partition, which is of size Ld2/4
• What is the problem?

T



The pipeline approach:
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The pipeline approach:
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• Shard model into  partitions and place these on  devices,  
i.e.  example, where device 0 contains , device 1 contains , …

p p
p = 4 W0:L/4 WL/4+1:L/2

• Split mini-batch , of size , into  “micro-batches”, , each of size T m k {T0, …, Tk−1} m/k
• The pipeline approach tries to avoid the idle time, by sending the next micro-batch when it can.
• Assume devices can hold: a model shard of size  and the activation checkpoints, of total size Ld2/4 Ldm/4

Device 0

Device 3

Device 2

Device 1

Time →
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Device 0

Device 3

Device 2

Device 1

Time →
• Notation:  denotes the forward pass computed by device  on micro-batch  (analogous def for ) 

recall that device  contains a model shard, containing some of the layers.
Fi,j i Tj Bi,j

i
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• Forward:

• Device  computes the forward pass on data , after receiving the input activations from device .i Tj i − 1
• All activations are checkpointed on their corresponding device.

• After all the forward passes are done, we can begin the backward pass. One approach is to start with B3,3
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Device 0

Device 3

Device 2

Device 1

Time →
• Notation:  denotes the forward pass computed by device  on micro-batch  (analogous def for ) 

recall that device  contains a model shard, containing some of the layers.
Fi,j i Tj Bi,j

i
• Forward:

• Device  computes the forward pass on data , after receiving the input activations from device .i Tj i − 1
• All activations are checkpointed on their corresponding device.

• After all the forward passes are done, we can begin the backward pass. One approach is to start with B3,3
• Backward:

• Device  computes the backward pass on data , after receiving the activation grads from device .i Tj i + 1
• Each gradient can be all-reduced.



Idle Time & MFU
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Device 0

Device 3

Device 2

Device 1

Time →
k micro-batches p devices
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Device 3

Device 2

Device 1

Time →
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What fraction of time is IDLE?p
p + k

Device 0

Device 3

Device 2

Device 1

Time →
k micro-batches p devices



Idle Time & MFU
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What fraction of time is IDLE?p
p + k
 
So if , then …k ≈ 3p

Device 0

Device 3

Device 2

Device 1

Time →
k micro-batches p devices

- idle time
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• Suppose we want a big model. How can grow the model?
• Suppose  layers can fit on a device and their activations, so we have  free 

memory. 
V Vd2 + Vdm

• With  devices, we can get a model with  and width .p L = pV d
↓
ridm+ 2dm

# pVd2
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• Suppose we want a big model. How can grow the model?
• Suppose  layers can fit on a device and their activations, so we have  free 

memory. 
V Vd2 + Vdm

• With  devices, we can get a model with  and width .p L = pV d
• We need to ensure communication and compute overlap between the nodes/devices

• Activations get passed between devices: need to communicate  (per step in the pipe)dm
• Need to all-reduce model params: need to communicate  (per backard step in the pipe)Vd2

• Take aways: (assume Chinchilla where )tokens ≈ 20 ⋅ model size
• Depth scaling: serial processing time of pipeline grows linearly with model size, fixing .m
• This means that serial run time grows quadratically (serial runtime is O(tokens*time_per_iter) )
• We pay a serial factor of  (the amortization factor) over to pure DDP (i.e. using batch size one). 3

• Even if we make  the per-device-batchsize-  smaller (+DDP over the pipelines), we still have a 
communication bottleneck due to the model params on the backward pass.

m
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Fully Sharded Data Parallel (FSDP)
• Motivation: we want to do data distributed training without a pipeline 


• Fully sharded = shard model, optimizer, and data across GPUs (can be seen 
as a kind of successor to DDP.) 


• Inspired by “ZeRO” algorithm (particularly ZeRO-3), but some specifics are 
different

data

GPU0

Model, optim copy

GPU1

Model, optim copy

DP



How is the model stored? Terminology: shards and units

• Let’s forget about optimizer states for a second, how is the model even 
stored?


• An FSDP unit is an abstraction that determines how the model will be 
split.  We have flexibility in how to define it! 


• For example, an FSDP unit could be a single layer (or a series of layers).  
Practically, it is a `torch.nn.Module` or collection of layers


• Units are broken down further into shards, which is how the units will be 
stored across the GPUs, i.e. each FSDP unit is sharded across GPUs.



How is the model stored? Terminology: shards and units

Layer 0

Layer 1

Layer 2

Layer 3

FSDP unit 0

FSDP unit 1



How is the model stored? Terminology: shards and units
• Note: “unit” is some piece of the model that we want to load. (e.g. loading unit 

0 onto gpu 3, means layers 0/1 are on gpu 3)

Layer 0

Layer 1

Layer 2
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How is the model stored? Terminology: shards and units
• Note: “unit” is some piece of the model that we want to load. (e.g. loading unit 

0 onto gpu 3, means layers 0/1 are on gpu 3)

• A fundamental operation will be to load a unit onto multiple GPUs

• Conceptually, we will only load units so we can ignore the shards.

Layer 0

Layer 1

Layer 2

Layer 3

FSDP unit 0

FSDP unit 1 total shards = num FSDP units  × num GPUs

GPU 0 GPU 1 GPU 2 GPU 3

Unit 0 shard 0

Unit 1 shard 0

Unit 0 shard 1

Unit 1 shard 1

Unit 0 shard 2

Unit 1 shard 2

Unit 0 shard 3

Unit 1 shard 3



How does the computation work?
• FSDP tries to simulate DDP, but since each GPU only has access to a shard of the units, 

we have to all-gather a unit that we need for current part of the forward/backward pass


• Let’s look at an example:

Layer 1 FSDP unit 1

FSDP unit 2

FSDP unit 3

FSDP unit 4

Layer 2

Layer 3

Layer 4



How does the computation work?
• FSDP tries to simulate DDP, but since each GPU only has access to a shard of the units, 

we have to all-gather a unit that we need for current part of the forward/backward pass


• Let’s look at an example:

Layer 1 FSDP unit 1

FSDP unit 2

FSDP unit 3

FSDP unit 4

Layer 2

Layer 3

Layer 4





= All-Gather





All-Gather later 2 while doing forward for Layer 1 (communication/compute overlap)

↓ datoo datal data datas



Clear layer 1 when done









And then do backwards pass!



FSDP Implementation
FSDP forward pass: 
    for unit_i in units: 
        all-gather full weights for unit_i 
        forward pass for unit_i 
        save activations for unit_i 
        discard full weights for unit_i 

FSDP backward pass: 
    for unit_i in units: 
        all-gather full weights for unit_i 
        backward pass for unit_i using saved activations 
        discard full weights for unit_i 
        reduce-scatter gradients for unit_i 
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FSDP Implementation
Layer 0

Layer 1

Layer 2

Layer 3

FSDP unit 0

FSDP unit 1

FSDP unit 2

FSDP unit 3

FSDP forward pass: 
    for unit_i in units: 
        all-gather full weights for unit_i 
        forward pass for unit_i 
        save activations for unit_i 
        discard full weights for unit_i 

FSDP backward pass: 
    for unit_i in units: 
        all-gather full weights for unit_i 
        backward pass for unit_i using saved activations 
        discard full weights for unit_i 
        reduce-scatter gradients for unit_i 

Fwd 0

AG 0 AG 1

Fwd 1

AG 2

Fwd 2

AG 3

Fwd 3 Bkwd 3

AG 2

Bkwd 2

AG 1

Bkwd 1 Bwkd 0

RS 3 AG 0RS 2 RS 1 RS 0

AC0 AC1 AC2 AC3
AG = all-gather, AC = activation checkpoint, RS = reduce-scatter



Computation vs communication overlaps
Cartoon is idealized setup.  How much can we actually overlap?


Let’s assume FSDP units are layers and we’re looking at the forward pass for now

Fwd 0

AG 0 AG 1

Fwd 1

AG 2

Fwd 2

AG 3

Fwd 3

AC0 AC1 AC2 AC3

In theory, we are bottlenecked only when it takes longer to AG the next layer than 
computing the forward pass on the layer before it.  When does this happen?
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Computation vs communication overlaps

Tℓ+1
all-gather ≥ Tℓ

forward

Fwd 0

AG 0 AG 1

Fwd 1

AG 2

Fwd 2

AG 3

Fwd 3

AC0 AC1 AC2 AC3

In theory, we are bottlenecked only when it takes longer to all-gather the next layer than 
computing the forward pass on the layer before it



All-gather Time

Tall-gather = α log p + 1
β

pNmessage

 is startup latency to send a message,  is bandwidth,  
 is number GPUs/nodes (11 in picture),  

 is the size of the message/tensor to send (stored on nodes)  
(in our setting, there are two different ’s (for intra/inter, i.e. gpu/nodes)

α β
p
Nmessage

β

#

z #I

m
⑮

&: n= c)
=of T

=

pN Clogp



All-gather Time

Tall-gather = α log p + 1
β

pNmessage

 is startup latency to send a message,  is bandwidth,  
 is number GPUs/nodes (11 in picture),  

 is the size of the message/tensor to send (stored on nodes)  
(in our setting, there are two different ’s (for intra/inter, i.e. gpu/nodes)

α β
p
Nmessage

β

Note: Nvidia uses “fat tree”



Computation vs communication overlaps

Tℓ+1
all-gather ≥ Tℓ

forward

Fwd 0

AG 0 AG 1

Fwd 1

AG 2

Fwd 2

AG 3

Fwd 3

AC0 AC1 AC2 AC3

Tℓ+1
all-gather = α log p + 1

β
pNmessage

 is startup latency to send a message,  is bandwidth,  is number GPUs/
nodes,  is the size of the message/tensor to send
α β p

Nmessage

In theory, we are bottlenecked only when it takes longer to AG the next layer than 
computing the forward pass on the layer before it



Computation vs communication overlaps

Tℓ+1
all-gather = α log p + 1

β
pNmessage

 is startup latency to send a message,  is bandwidth,  is number GPUs, 
 is the size of the message/tensor to send, and  

 is num params per layer

α β p
Nmessage
n

Tℓ+1
all-gather = α log p + 1

β
n

Tℓ+1
all-gather ≥ Tℓ

forwardComm bound when

We set things up so that: 
pNmessage = n

-
-

= n

-

⑨
-



Computation vs communication overlaps

 is startup latency to send a message,  is bandwidth,  is number GPUs,  
 is num params per layer

α β p
n

Tℓ+1
all-gather = α log p + 1

β
n

Tℓ+1
all-gather ≥ Tℓ

forwardComm bound when

Tℓ
forward = BSn

C

Batch size , seq length , 
FLOPs/GPU 

B S
C

↓do
-

dryptu Bot



Computation vs communication overlaps

 is startup latency to send a message,  is bandwidth,  is number GPUs,  
is num params per layer
α β p n

Batch size , seq length , 
FLOPs/GPU 

B S
C

α log p ≤ ( BS
C

− 1
β ) n

Effectively balancing compute per parameter with how quickly those parameters can be 
communicated!

Note: if the model needs to fit across nodes,  is internode bandwidth which is >> 
bandwidth within a node

β

-



Numbers for inter and intranode
α log p ≤ ( BS

C
− 1

β ) n

Inter (between nodes) Intra (within a node)
α = 10−6 s
β = 50 GB/s
C = 1500 TFLOP/s

α = 10−6 s
β = 1 TB/s
C = 1500 TFLOP/s

1
β

= 2 × 10−11 s/byte 1
β

= 1 × 10−12 s/byte

S = 8 × 103 S = 8 × 103

B ≈ 10

-

- - -

T

BS1025
2

.

82 s(aD %0
" -10 ,001628



Scaling FSDP: where does it break?

 is startup latency to send a message,  is 
bandwidth,  is number GPUs,  is num 
params per layer

α β
p n

Batch size , seq length , 
FLOPs/GPU 

B S
C

α log p ≤ ( BS
C

− 1
β ) n

Also: if the right hand side is “non-trivially” positive, then we can make  very large!  
(so where does FSDP break?)

p

For internode: batch size O(10) is needed but note that we have to have enough 
memory to keep the activations around (which also grows with batch size)!

p[24(-
30

-



What about TPUs?

α log p ≤ ( BS
C

− 1
β ) n

For TPUs,  is absurdly largeβ

=

=>



More generally,

 is startup latency to send a message,  is 
bandwidth,  is number GPUs,  is num 
params per layer

α β
p n

Batch size , seq length , 
FLOPs/GPU 

B S
C

α log p ≤ ( BS
C

− 1
β ) n

What is the “unit”: here, we basically want the unit to be “small”, which gives us more 
flexibility (in TP, we will subdivide the layer)

α log p ≤ ( B ⋅ compute_per_param
C

− 1
β ) n



More generally,
 is startup latency to send a message,  is 

bandwidth,  is number GPUs,  is num 
params per layer

α β
p nα log p ≤ ( B ⋅ compute_per_param

C
− 1

β ) n



More generally,
 is startup latency to send a message,  is 

bandwidth,  is number GPUs,  is num 
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We really need the res to have a “non-trivial” positive gap. So the constants matter. 

Pipeline approach:
• We are communicating both the activations and the params (in the backward pass).
• Exactly the same issue as in FSDP. Bottlenecks inter-node communication.
FSDP:
• Here, we can effectively make  bigger due to sharding the layer within a node (larger )d β
• But, we can’t keep increasing the depth (or width) due to both model and activation memory in the 

node
FSDP+pipeline:
• Use FSDP to make the intra-node model larger
• Pipeline handles between node.
Many mix-match approaches
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• Recap++: 

• Pipeline Parallelism

• FSDP

• Theoretical Considerations 

• Tensor Parallelism
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• Now let us consider width scaling. 
(similar idea helps with context scaling, attention, ring attention).

• Here it let’s consider a simpler matrix multiplication problem of: 
Linear Network: Y = ABX
• Where  are both  and  is .  

 
A, B d × d X d × m

• We will consider  to be large so that we want to break up A, B matrices.d
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62

• Split A by columns and B into rows. (in general, we can shard them into more splits)
• It is easy to verify that: 

 
(e.g. consider multiply by vector x)
AB = A1B1 + A2B2

• The “tensor” parallelism approach on two devices:
• Shard A, B so that: 

gpu 1: holds , 	 gpu 2: holds   A1, B1, X A2, B2, X
• Each device computes: 

	 	y1 = A1B1X y2 = A2B2X
• All-reduce the y’s: 

Y = y1 + y2

B1
A B → A1 A2

B2

split columns split rows
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• The approach is very flexible.
• We can handle larger width by many row/column splits with TP. 

• But we have to all-reduce the answers
• As we grow , then we can make the serial runtime smaller.d

• Again, we can do this provided our RHS gap holds. 

• Mixture of Experts: Different compute_par_param scaling
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bandwidth,  is number GPUs,  is num 
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Thanks!
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1. Lots of parallelization approaches.

2. communication to compute ratio is important!


