Imitation Learning

 \&
Behavioral Cloning

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2022

Today

- HW4 will be posted today. (Please start early!)
- Recap++
- an example + Proximal Policy Optimization (PPO)
- Today:

1. Overview of PG, problems+successes
2. Behavior Cloning

Recap++

Some Helpful Notation: Visitation Measures

- Visitation probability at time $h: \mathbb{P}_{h}\left(s_{h}, a_{h} \mid \mu, \pi\right)$

$$
50 \sim M
$$

(recall that we absorb h, into the state, i.e. $s \leftarrow(s, h)$)

- Average Visitation Measure:

$$
d_{\mu}^{\pi}(s, a)=\frac{1}{H} \sum_{h=0}^{H-1} \mathbb{P}_{h}(s, a \mid \mu, \pi)
$$

- With this def, we have:

$$
\begin{aligned}
J(\theta) & :=E_{s_{0} \sim \mu_{0}}\left[V^{\pi_{\theta}}\left(s_{0}\right)\right] \\
& =E\left[\sum_{h=0}^{H-1} r\left(s_{h}, a_{h}\right) \mid \mu_{0}, \pi_{\theta}\right] \overbrace{}^{f^{-}}{\mathbb{E} q \sim d_{\mu}^{\tau}}^{\underbrace{\tau}(r(s) a)]} \\
& =H \cdot \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}} E_{a \sim \pi_{\theta}(s)}[r(s, a)]
\end{aligned}
$$

TRPO

At iteration t , with $\pi_{\theta_{t}}$ at hand, we compute θ_{t+1} as follows:

$$
\begin{gathered}
\max _{\theta} H \cdot \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}(s, a)}\right] \\
\quad \text { s.t., } K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) \leq \delta
\end{gathered}
$$

We want to maximize local advantage against $\pi_{\theta_{l}}$, but we want the new policy to be close to $\pi_{\theta_{t}}$ (in the KL sense)

How we can actually do the optimization here? After all, we don't even know the analytical form of trajectory likelihood...

NPG derived from TRPO:

We did second-order Taylor expansion on the KL constraint, and we get:

$$
\begin{gathered}
\frac{1}{H} K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) \approx \frac{1}{2}\left(\theta-\theta_{t}\right)^{\top} F_{\theta_{t}}\left(\theta-\theta_{t}\right) \\
F_{\theta_{t}}:=\mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}}\left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\left(\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\right)^{\top}\right] \in \mathbb{R}^{\operatorname{dim}_{\theta} \times \operatorname{dim}_{\theta}}
\end{gathered}
$$

This leads to the following simplified constrained optimization:

$$
\begin{aligned}
& \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top}\left(\theta-\theta_{t}\right) \\
& \text { s.t. }\left(\theta-\theta_{t}\right)^{\top} F_{\theta_{t}}\left(\theta-\theta_{t}\right) \leq \delta
\end{aligned}
$$

Algorithm: Natural Policy Gradient

Initialize θ_{0}
For $t=0, \ldots$

$$
\text { Estimate PG } \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)
$$

Estimate Fisher info-matrix $F_{\theta_{t}}:=\mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\left(\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\right)^{\top}$
Natural Gradient Ascent: $\theta_{t+1}=\theta_{t}+\eta \hat{F}_{\theta_{t}}^{-1} \hat{\nabla}_{\theta} J\left(\pi_{\theta_{\theta}}\right)$

$$
\text { Using a tuned } \eta \text { or using } \eta=\sqrt{\frac{\delta}{\nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top} F_{\theta_{t}}^{-1} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)}}
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$\left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right)$
$J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$\left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right)$
$J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$\pi_{\theta}^{\prime}(1)=\pi_{\theta}(1)\left(1-\pi_{\theta}(1)\right)$
$\left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right)$
Gradient: $J^{\prime}(\theta)=\frac{r_{1}-r_{2} \exp (\theta)}{(1+\exp (\theta))^{2}}$
$J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Gradient: $J^{\prime}(\theta)=\frac{99 \exp (\theta)}{(1+\exp (\theta))^{2}}$

$$
\text { Exact PG: } \theta_{t+1}=\theta_{t}+\eta \frac{99 \exp \left(\theta_{t}\right)}{\left(1+\exp \left(\theta_{t}\right)\right)^{2}}
$$

i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $J^{\prime}(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Gradient: $J^{\prime}(\theta)=\frac{99 \exp (\theta)}{(1+\exp (\theta))^{2}}$

$$
\text { Exact PG: } \theta_{t+1}=\theta_{t}+\eta \frac{99 \exp \left(\theta_{t}\right)}{\left(1+\exp \left(\theta_{t}\right)\right)^{2}}
$$

i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $J^{\prime}(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

Fisher information scalar: $f_{\theta}=\frac{\exp (\theta)}{(1+\exp (\theta))^{2}}$

$$
\mathrm{NPG}: \theta_{t+1}=\theta_{t}+\eta \frac{J^{\prime}\left(\theta_{t}\right)}{f_{\theta_{t}}}
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Gradient: $J^{\prime}(\theta)=\frac{99 \exp (\theta)}{(1+\exp (\theta))^{2}}$

$$
\text { Exact PG: } \theta_{t+1}=\theta_{t}+\eta \frac{99 \exp \left(\theta_{t}\right)}{\left(1+\exp \left(\theta_{t}\right)\right)^{2}}
$$

i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $J^{\prime}(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

Fisher information scalar: $f_{\theta}=\frac{\exp (\theta)}{(1+\exp (\theta))^{2}}$

$$
\mathrm{NPG}: \theta_{t+1}=\theta_{t}+\eta \frac{J^{\prime}\left(\theta_{t}\right)}{f_{\theta_{t}}}=\theta_{t}+\eta \cdot 99\left(r_{1}-v_{2}\right)
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Gradient: $J^{\prime}(\theta)=\frac{99 \exp (\theta)}{(1+\exp (\theta))^{2}}$
Exact PG: $\theta_{t+1}=\theta_{t}+\eta \frac{99 \exp \left(\theta_{t}\right)}{\left(1+\exp \left(\theta_{t}\right)\right)^{2}}$
i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $J^{\prime}(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

Fisher information scalar: $f_{\theta}=\frac{\exp (\theta)}{(1+\exp (\theta))^{2}}$
NPG: $\theta_{t+1}=\theta_{t}+\eta \frac{J^{\prime}\left(\theta_{t}\right)}{f_{\theta_{t}}}=\theta_{t}+\eta \cdot 99$
NPG moves to $\theta=\infty$ much more quickly (for a fixed η)

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Gradient: $J^{\prime}(\theta)=\frac{99 \exp (\theta)}{(1+\exp (\theta))^{2}}$
Exact PG: $\theta_{t+1}=\theta_{t}+\eta \frac{99 \exp \left(\theta_{t}\right)}{\left(1+\exp \left(\theta_{t}\right)\right)^{2}}$
i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $J^{\prime}(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

Fisher information scalar: $f_{\theta}=\frac{\exp (\theta)}{(1+\exp (\theta))^{2}}$
NPG: $\theta_{t+1}=\theta_{t}+\eta \frac{J^{\prime}\left(\theta_{t}\right)}{f_{\theta_{t}}}=\theta_{t}+\eta \cdot 99$
NPG moves to $\theta=\infty$ much more quickly (for a fixed η)

Proximal Policy Optimization (PPO): A computationally fast extension of NPG:

Given an current policy π^{t}, we perform policy update to π^{t+1}
Proximal Policy Optimization (PPO)

$$
\max _{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\pi_{\theta_{t}}(s, a)}\right]
$$

Proximal Policy Optimization (PPO):

A computationally fast extension of NPG:

Given an current policy π^{t}, we perform policy update to π^{t+1}
Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO):

A computationally fast extension of NPG:

Given an current policy π^{t}, we perform policy update to π^{t+1}
Proximal Policy Optimization (PPO)

Use importance weighting \& expand KL divergence:

Proximal Policy Optimization (PPO):

A computationally fast extension of NPG:

Given an current policy π^{t}, we perform policy update to π^{t+1}
Proximal Policy Optimization (PPO)

$$
\max _{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\left.\pi_{\theta_{t}}(s, a)\right]-\lambda \mathbb{E}_{s \sim d_{\mu}^{t}}\left[\operatorname{KL}\left(\pi_{\theta_{t}}(a \mid s) \mid \pi_{\theta}(a \mid s)\right)\right], ~}\right.
$$

regularization
Use importance weighting \& expand KL divergence:

$$
\ell(\theta):=\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\mathbb{E}_{\left.a \sim \pi_{\theta_{t}} \cdot \mid s\right)} \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} A^{\pi_{\theta_{t}}(s, a)}\right]-\lambda \mathbb{E}_{s \sim d_{\mu}^{\pi_{t}} \mathbb{E}_{a \sim \pi_{\theta_{t}}(\cdot \mid s)}\left[-\ln \pi_{\theta}(a \mid s)\right]}
$$

Proximal Policy Optimization (PPO):

A computationally fast extension of NPG:

Given an current policy π^{t}, we perform policy update to π^{t+1}
Proximal Policy Optimization (PPO)

$$
\max _{\theta} \mathbb{E}_{s \sim d_{\mu}}\left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\pi_{\theta_{t}}(s, a)}\right]-\lambda \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}}\left[\mathrm{KL}\left(\pi_{\theta_{t}}(a \mid s) \mid \pi_{\theta}(a \mid s)\right)\right]
$$

regularization
Use importance weighting \& expand KL divergence:

$$
\ell(\theta):=\mathbb{E}_{s \sim \sim_{\mu}^{\pi_{t}}}\left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(\cdot \mid s)} \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} A^{\pi_{\theta_{t}}(s, a)}\right]-\lambda \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}} \mathbb{E}_{a \sim \pi_{\theta_{t}}(\cdot \mid s)}\left[-\ln \pi_{\theta}(a \mid s)\right]
$$

Today:

Optimality in Markov Decision Processes

Outline:

1. Exploration and the starting measure μ
2. Theory: (natural) policy gradients vs fitted Dynamic programming
3. Behavioral Cloning
"Lack of Exploration" leads to Optimization and Statistical Challenges

S states
Thrun '92
"Lack of Exploration" leads to Optimization and Statistical Challenges

- Suppose $|S| \approx H$ or $|S| \approx 1 /(1-\gamma) \& \mu\left(s_{0}\right)=1$ (i.e. we start at $\left.s_{0}\right)$.
"Lack of Exploration" leads to Optimization and Statistical Challenges

S states
Thrun '92

- Suppose $|S| \approx H$ or $|S| \approx 1 /(1-\gamma) \& \mu\left(s_{0}\right)=1$ (i.e. we start at $\left.s_{0}\right)$.
- A randomly initialized policy has prob. $O\left(1 / 3^{|S|}\right)$ of hitting the goal state in a single trajectory.
"Lack of Exploration" leads to Optimization and Statistical Challenges

S states
Thrun '92

- Suppose $|S| \approx H$ or $|S| \approx 1 /(1-\gamma) \& \mu\left(s_{0}\right)=1$ (i.e. we start at $\left.s_{0}\right)$.
- A randomly initialized policy has prob. $O\left(1 / 3^{|S|}\right)$ of hitting the goal state in a single trajectory.
- Implications:
- Any sample based policy iteration approach (starting with this policy) requires $O\left(3^{|S|}\right)$ trajectories to make progress at the very first step.
- Same for any sample based PG method.
- Related: even if we had exact gradients, the "landscape" is such that these gradients are exponentially small, at randomly initialized policy (see AJKS Ch 11).

Implications/Comments/Remainder of Course

Implications/Comments/Remainder of Course

S states

- Sometimes exploration is (or can be made) "easier" in practice
- Random strategies can reach "rewarding milestones"
- We can design/"shape" the reward function to help us out.

Implications/Comments/Remainder of Course

- Sometimes exploration is (or can be made) "easier" in practice
- Random strategies can reach "rewarding milestones"
- We can design/"shape" the reward function to help us out.
- We can try to make the distribution μ to have better coverage.
- For small problems, μ being uniform would make all these issues go away. (for large problems, μ being uniform may not help at all. Why?)
- Ideally, μ having support on where a good policy tends to visit is helpful (sometimes we can't design μ)

Implications/Comments/Remainder of Course

S states

- Sometimes exploration is (or can be made) "easier" in practice
- Random strategies can reach "rewarding milestones"
- We can design/"shape" the reward function to help us out.
- We can try to make the distribution μ to have better coverage.
- For small problems, μ being uniform would make all these issues go away. (for large problems, μ being uniform may not help at all. Why?)
- Ideally, μ having support on where a good policy tends to visit is helpful (sometimes we can't design μ)
- Course:
- A little theory with regards to μ and PG. (today) PG has better guarantees than approx DP methods (in terms of μ).
- Imitation learning (starting today).

An expert gives us samples from a "good" μ.

- Explicit Exploration: for the "tabular case" (we will mix UCB with VI!)

Outline:

1. Exploration and the starting measure μ
2. Theory: (natural) policy gradients vs fitted Dynamic programming
3. Behavioral Cloning

Let's compare fitted DP and PG for "Linear" Parameterizations

 of Q-functions and PoliciesFeature vector $\phi(s, a) \in \mathbb{R}^{d}$, and parameter $\theta \in \mathbb{R}^{d}$

1. Linear Functions

$$
f_{\theta}(s, a)=\theta^{\top} \phi(s, a)
$$

1. Softmax linear Policy

$$
\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta^{\top} \phi(s, a)\right)}{\sum_{a^{\prime}} \exp \left(\theta^{\top} \phi\left(s, a^{\prime}\right)\right)}
$$

Fitted Policy Improvement Guarantees (optional)

Fitted Policy Improvement Guarantees (optional)

- Let $s_{0}, a_{0} \sim \mu$ now be the starting "state-action" distribution. $J(\pi)=E_{s_{0}, a_{0} \sim \mu}\left[Q^{\pi}(s, a)\right]$ (the theory is better suited to this. See AJKS).

Fitted Policy Improvement Guarantees (optional)

- Let $s_{0}, a_{0} \sim \mu$ now be the starting "state-action" distribution. $J(\pi)=E_{s_{0}, a_{0} \sim \mu}\left[Q^{\pi}(s, a)\right]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π, $\min _{\theta} E_{s, a \sim \mu}\left[\left(Q^{\pi}(s, a)-\theta^{\top} \phi(s, a)\right)^{2}\right] \leq \delta$, and $\min _{\theta}\left\|Q^{\pi}-\theta^{\top} \phi\right\|_{\infty} \leq \delta_{\infty}$

Fitted Policy Improvement Guarantees (optional)

- Let $s_{0}, a_{0} \sim \mu$ now be the starting "state-action" distribution. $J(\pi)=E_{s_{0}, a_{0} \sim \mu}\left[Q^{\pi}(s, a)\right]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π,

- δ : the average case supervised learning error (reasonable to expect this can be made small) δ_{∞} : the worse case error (often unreasonable to expect to be small)

Fitted Policy Improvement Guarantees (optional)

- Let $s_{0}, a_{0} \sim \mu$ now be the starting "state-action" distribution. $J(\pi)=E_{s_{0}, a_{0} \sim \mu}\left[Q^{\pi}(s, a)\right]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π,

- δ : the average case supervised learning error (reasonable to expect this can be made small) δ_{∞} : the worse case error (often unreasonable to expect to be small)
[Theorem:] (informal, see AJKS Ch 4+13)

Fitted Policy Improvement Guarantees (optional)

- Let $s_{0}, a_{0} \sim \mu$ now be the starting "state-action" distribution. $J(\pi)=E_{s_{0}, a_{0} \sim \mu}\left[Q^{\pi}(s, a)\right]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π,
$\min _{\theta} E_{s, a \sim \mu}\left[\left(Q^{\pi}(s, a)-\theta^{\top} \phi(s, a)\right)^{2}\right] \leq \delta$, and $\min _{\theta}\left\|Q^{\pi}-\theta^{\top} \phi\right\|_{\infty} \leq \delta_{\infty}$
- δ : the average case supervised learning error (reasonable to expect this can be made small) δ_{∞} : the worse case error (often unreasonable to expect to be small)
[Theorem:] (informal, see AJKS Ch 4+13)
- Suppose that we use a \# samples that is poly in $d \& 1 / \epsilon_{\text {stat }}$ for both fittedPI and NPG.

Fitted Policy Improvement Guarantees (optional)

- Let $s_{0}, a_{0} \sim \mu$ now be the starting "state-action" distribution. $J(\pi)=E_{s_{0}, a_{0} \sim \mu}\left[Q^{\pi}(s, a)\right]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π,
 $\min _{\theta} E_{s, a \sim \mu}\left[\left(Q^{\pi}(s, a)-\theta^{\top} \phi(s, a)\right)^{2}\right] \leq \delta$, and $\min _{\theta}\left\|Q^{\pi}-\theta^{\top} \phi\right\|_{\infty} \leq \delta_{\infty}$
- δ : the average case supervised learning error (reasonable to expect this can be made small) δ_{∞} : the worse case error (often unreasonable to expect to be small)
[Theorem:] (informal, see AJKS Ch 4+13)
- Suppose that we use a \# samples that is poly in $d \& 1 / \epsilon_{\text {stat }}$ for both fittedPI and NPG.
- FittedPI will return a policy $\pi^{F P I}$ with the performance guarantee:

$$
J\left(\pi^{F P I}\right) \geq J\left(\pi^{\star}\right)-\epsilon_{\text {stat }}-2 H^{2} \delta_{\infty}
$$

Fitted Policy Improvement Guarantees (optional)

- Let $s_{0}, a_{0} \sim \mu$ now be the starting "state-action" distribution. $J(\pi)=E_{s_{0}, a_{0} \sim \mu}\left[Q^{\pi}(s, a)\right]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π,
$\min _{\theta} E_{s, a \sim \mu}\left[\left(Q^{\pi}(s, a)-\theta^{\top} \phi(s, a)\right)^{2}\right] \leq \delta$, and $\min _{\theta}\left\|Q^{\pi}-\theta^{\top} \phi\right\|_{\infty} \leq \delta_{\infty}$
- δ : the average case supervised learning error (reasonable to expect this can be made small) δ_{∞} : the worse case error (often unreasonable to expect to be small)
[Theorem:] (informal, see AJKS Ch 4+13)
- Suppose that we use a \# samples that is poly in $d \& 1 / \epsilon_{\text {stat }}$ for both fittedPI and NPG.
- FittedPI will return a policy $\pi^{F P I}$ with the performance guarantee:

$$
J\left(\pi^{F P I}\right) \geq J\left(\pi^{\star}\right)-\epsilon_{\text {stat }}-2 H^{2} \delta_{\infty}
$$

- NPG has the same guarantee.

Fitted Policy Improvement Guarantees (optional)

- Let $s_{0}, a_{0} \sim \mu$ now be the starting "state-action" distribution. $J(\pi)=E_{s_{0}, a_{0} \sim \mu}\left[Q^{\pi}(s, a)\right]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π,
$\min _{\theta} E_{s, a \sim \mu}\left[\left(Q^{\pi}(s, a)-\theta^{\top} \phi(s, a)\right)^{2}\right] \leq \delta$, and $\min _{\theta}\left\|Q^{\pi}-\theta^{\top} \phi\right\|_{\infty} \leq \delta_{\infty}$
- δ : the average case supervised learning error (reasonable to expect this can be made small) δ_{∞} : the worse case error (often unreasonable to expect to be small)

[Theorem:] (informal, see AJKS Ch 4+13)

- Suppose that we use a \# samples that is poly in $d \& 1 / \epsilon_{\text {stat }}$ for both fittedPI and NPG.
- FittedPI will return a policy $\pi^{F P I}$ with the performance guarantee:

$$
J\left(\pi^{F P I}\right) \geq J\left(\pi^{\star}\right)-\epsilon_{\text {stat }}-2 H^{2} \delta_{\infty}
$$

- NPG has the same guarantee.
- NPG also has a stronger guarantee: Suppose μ has "reasonable support" on where π^{\star} tends to visit, i.e. suppose:

$$
\max _{s, a}\left(\frac{d_{\mu}^{\pi^{\star}}(s, a)}{\mu(s, a)}\right) \leq C
$$

then NPG will return a policy with sub-optimality determined by C and the average case error δ :

$$
J\left(\pi^{N P G}\right) \geq J\left(\pi^{\star}\right)-\epsilon_{\text {stat }}-2 H^{2} C \delta
$$

Outline:

1. Exploration and the starting measure μ
2. Theory: (natural) policy gradients vs fitted Dynamic programming
3. Behavioral Cloning

3a. Introduction of Imitation Learning

Imitation Learning

Imitation Learning

Imitation Learning

Imitation Learning

Imitation Learning

- SVM
- Gaussian Process
- Kernel Estimator
- Deep Networks
- Random Forests
- LWR
- ...

Imitation Learning

- SVM
- Gaussian Process
- Kernel Estimator
- Deep Networks
- Random Forests
- LWR
- ...

Learning to Drive by Imitation

[Pomerleau89, Saxena05, Ross11a]

Input:

Camera Image

Output:

Steering Angle in $[-1,1]$

Supervised Learning Approach: Behavior Cloning

Expert Trajectories
Dataset

Supervised Learning Approach: Behavior Cloning

Expert Trajectories
Dataset

Supervised Learning Approach: Behavior Cloning

Expert Trajectories
Dataset

Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

Learned Policy π

Mapping from state (image) to control (steering direction)

3b. Offline Imitation Learning: Behavior Cloning

Let's formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP $\mathscr{M}=\left\{S, A, \gamma, r, P, \rho, \pi^{\star}\right\}$

Let's formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP $\mathscr{M}=\left\{S, A, \gamma, r, P, \rho, \pi^{\star}\right\}$
Ground truth reward $r(s, a) \in[0,1]$ is unknown;
For simplicity, let's assume expert is a (nearly) optimal policy π^{\star}

Let's formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP $\mathscr{M}=\left\{S, A, \gamma, r, P, \rho, \pi^{\star}\right\}$

Ground truth reward $r(s, a) \in[0,1]$ is unknown;
For simplicity, let's assume expert is a (nearly) optimal policy π^{\star}

$$
\text { We have a dataset } \mathscr{D}=\left(s_{i}^{\star}, a_{i}^{\star}\right)_{i=1}^{M} \sim d^{\pi^{\star}}
$$

Let's formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP $\mathscr{M}=\left\{S, A, \gamma, r, P, \rho, \pi^{\star}\right\}$

Ground truth reward $r(s, a) \in[0,1]$ is unknown;
For simplicity, let's assume expert is a (nearly) optimal policy π^{\star}

$$
\text { We have a dataset } \mathscr{D}=\left(s_{i}^{\star}, a_{i}^{\star}\right)_{i=1}^{M} \sim d^{\pi^{\star}}
$$

Goal: learn a policy from \mathscr{D} that is as good as the expert π^{\star}

Let's formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class $\Pi=\{\pi: S \mapsto \Delta(A)\}$
$B C$ is a Reduction to Supervised Learning:

Let's formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class $\Pi=\{\pi: S \mapsto \Delta(A)\}$
$B C$ is a Reduction to Supervised Learning:

$$
\widehat{\pi}=\arg \min _{\pi \in \Pi} \sum_{i=1}^{M} \ell\left(\pi, s^{\star}, a^{\star}\right)
$$

Let's formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class $\Pi=\{\pi: S \mapsto \Delta(A)\}$
$B C$ is a Reduction to Supervised Learning:

$$
\widehat{\pi}=\arg \min _{\pi \in \Pi} \sum_{i=1}^{M} \ell\left(\pi, s^{\star}, a^{\star}\right)
$$

Many choices of loss functions:

Let's formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class $\Pi=\{\pi: S \mapsto \Delta(A)\}$
$B C$ is a Reduction to Supervised Learning:

$$
\widehat{\pi}=\arg \min _{\pi \in \Pi} \sum_{i=1}^{M} \ell\left(\pi, s_{i}^{\star}, a_{c^{\star}}^{\star}\right)
$$

Many choices of loss functions:

1. Negative log-likelihood (NLL): $\ell\left(\pi, s, a^{\star}\right)=-\ln \pi\left(a^{\star} \mid s^{\star}\right)$

Let's formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class $\Pi=\{\pi: S \mapsto \Delta(A)\}$
$B C$ is a Reduction to Supervised Learning:

$$
\widehat{\pi}=\arg \min _{\pi \in \Pi} \sum_{i=1}^{M} \ell\left(\pi, s^{\star}, a^{\star}\right)
$$

Many choices of loss functions:

1. Negative log-likelihood (NLL): $\ell\left(\pi, s, a^{\star}\right)=-\ln \pi\left(a^{\star} \mid s^{\star}\right)$
2. square loss (i.e., regression for continuous action): $\ell\left(\pi, s, a^{\star}\right)=\left\|\overrightarrow{\pi(s)}-\overrightarrow{a^{\star}}\right\|_{2}^{2}$

$$
\hat{\pi}=\arg \min _{\pi \in \Pi} \sum_{i=1}^{M} \ell\left(\pi, s^{\star}, a^{\star}\right)
$$

Analysis

Assumption: we are going to assume Supervised Learning succeeded

$$
\hat{\pi}=\arg \min _{\pi \in \Pi} \sum_{i=1}^{M} \ell\left(\pi, s^{\star}, a^{\star}\right)
$$

Analysis

Assumption: we are going to assume Supervised Learning succeeded

$$
\mathbb{E}_{s \sim d_{i}^{d_{i}} \boldsymbol{*}}\left[\hat{\pi}(s) \neq \pi^{\star}(s)\right] \leq \epsilon \in \mathbb{R}^{+}
$$

$$
\widehat{\pi}=\arg \min _{\pi \in \Pi} \sum_{i=1}^{M} \ell\left(\pi, s^{\star}, a^{\star}\right)
$$

Analysis

Assumption: we are going to assume Supervised Learning succeeded

$$
\mathbb{E}_{s \sim d_{\mu}^{\pi}} \mathbb{1}\left[\widehat{\pi}(s) \neq \pi^{\star}(s)\right] \leq \epsilon \in \mathbb{R}^{+}
$$

Note that here training and testing mismatch at this stage!

Analysis

Theorem [BC Performance] With probability at least $1-\delta$, BC returns a policy $\widehat{\pi}$:

$$
\begin{aligned}
V^{\pi^{\star}}-V^{\hat{\pi}} & \leq \frac{2}{(1-\gamma)^{2}} \epsilon \\
& \leq 2 H^{2} \varepsilon
\end{aligned}
$$

Analysis

Theorem [BC Performance] With probability at least $1-\delta$, BC returns a policy $\widehat{\pi}$:

The quadratic amplification is annoying

Summary:

1. TRPO/NPG/PPO

2. Exploration/ $\mu /$ Guarantees
3. Behavioral Cloning

1-minute feedback form: https://bit.|ly/3RHtlxy

