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Today

• HW4 will be posted today. (Please start early!)  

• Recap++

• an example + Proximal Policy Optimization (PPO) 

• Today:

1. Overview of PG, problems+successes

2. Behavior Cloning
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Some Helpful Notation: Visitation Measures
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• Visitation probability at time :  
(recall that we absorb ,  into the state, i.e.  )


• Average Visitation Measure:   

	 


• With this def, we have: 

	

h ℙh(sh, ah |μ, π)
h s ← (s, h)

dπ
μ(s, a) = 1

H

H−1

∑
h=0

ℙh(s, a |μ, π)

J(θ) := Es0∼μ0 [Vπθ(s0)]
= E[

H−1

∑
h=0

r(sh, ah) μ0, πθ]
= H ⋅ &s∼dπθμ

Ea∼πθ(s)[r(s, a)]

so N M
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TRPO

max
θ

H ⋅ &s∼dπθtμ [&a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with  at hand, we compute  as follows: πθt
θt+1

We want to maximize local advantage against , but we want 
the new policy to be close to  (in the KL sense)

πθt

πθt

How we can actually do the optimization here? 

After all, we don’t even know the analytical form of trajectory likelihood…
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NPG derived from TRPO:

1
H

KL (ρπθt
|ρπθ) ≈ 1

2 (θ − θt)⊤Fθt
(θ − θt)

We did second-order Taylor expansion on the KL constraint, and we get:

Fθt
:= &s,a∼dπθtμ [∇θln πθt

(a |s)(∇θln πθt
(a |s))

⊤] ∈ ℝdimθ×dimθ

This leads to the following simplified constrained optimization:

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ
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Algorithm: Natural Policy Gradient

Using a tuned  or using η η = δ
∇θJ(πθt

)⊤F−1
θt

∇θJ(πθt
)

Initialize θ0

For t = 0, … 

Estimate PG ∇θJ(πθt
)

Estimate Fisher info-matrix Fθt
:= &s,a∼dπθtμ

∇θln πθt
(a |s)(∇θln πθt

(a |s))⊤

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)Natural Gradient Ascent:

(We will implement it in HW4 on Cartpole)
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Example of Natural Gradient on 1-d problem: 2 actions, 1 state

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]
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∞−∞

θ⋆

8



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
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∞−∞

θ⋆

Every possible policy is a 
point on the line segment, 
parameterized by .θ
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Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

Every possible policy is a 
point on the line segment, 
parameterized by .θ
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Proximal Policy Optimization (PPO): 
A computationally fast extension of NPG: 

Given an current policy , we perform policy update to πt πt+1

Proximal Policy Optimization (PPO)

max
θ

&s∼dπθtμ [&a∼πθ(⋅|s)Aπθt(s, a)]
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Proximal Policy Optimization (PPO): 
A computationally fast extension of NPG: 

Given an current policy , we perform policy update to πt πt+1

Proximal Policy Optimization (PPO)

max
θ

&s∼dπθtμ [&a∼πθ(⋅|s)Aπθt(s, a)] −λ&s∼dπt
μ [KL (πθt

(a |s) |πθ(a |s))]
regularization

Use importance weighting & expand KL divergence: 

ℓ(θ) := &s∼dπθtμ [&a∼πθt(⋅|s)
πθ(a |s)
πθt

(a |s) Aπθt(s, a)] − λ&s∼dπθtμ
&a∼πθt(⋅|s) [−ln πθ(a |s)]
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Proximal Policy Optimization (PPO): 
A computationally fast extension of NPG: 

Given an current policy , we perform policy update to πt πt+1

Proximal Policy Optimization (PPO)

max
θ

&s∼dπθtμ [&a∼πθ(⋅|s)Aπθt(s, a)] −λ&s∼dπt
μ [KL (πθt

(a |s) |πθ(a |s))]
regularization

Use importance weighting & expand KL divergence: 

ℓ(θ) := &s∼dπθtμ [&a∼πθt(⋅|s)
πθ(a |s)
πθt

(a |s) Aπθt(s, a)] − λ&s∼dπθtμ
&a∼πθt(⋅|s) [−ln πθ(a |s)]

PPO: Perform a few steps of mini-batch SGA on  to approximate ℓ(θ) arg max
θ

ℓ(θ)
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Today:

Optimality in Markov Decision Processes
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Outline:

11

1. Exploration and the starting measure 

2. Theory: (natural) policy gradients vs fitted Dynamic programming

3. Behavioral Cloning
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“Lack of Exploration” leads to Optimization and Statistical Challenges

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
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in a single trajectory. 
O(1/3|S|)

• Implications:
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(for large problems,  being uniform may not help at all. Why?)

• Ideally,  having support on where a good policy tends to visit is helpful  

(sometimes we can’t design )

μ
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μ

• Course:

• A little theory with regards to  and PG. (today)  

PG has better guarantees than approx DP methods (in terms of ).

• Imitation learning (starting today).  

An expert gives us samples from a “good” .

• Explicit Exploration: for the “tabular case” (we will mix UCB with VI!)

μ
μ

μ
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Let’s compare fitted DP and PG for “Linear” Parameterizations 
 of Q-functions and Policies

1. Linear Functions

fθ(s, a) = θ⊤ϕ(s, a)

15

1. Softmax linear Policy

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′ 

exp(θ⊤ϕ(s, a′ ))



Fitted Policy Improvement Guarantees (optional)
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(the theory is better suited to this. See AJKS).
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min
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θ
∥Qπ − θ⊤ϕ∥∞ ≤ δ∞

•   : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞

[Theorem:] (informal, see AJKS Ch 4+13)
•  Suppose that we use a # samples that is poly in  for both fittedPI and NPG.d & 1/ϵstat
•  FittedPI will return a policy  with the performance guarantee:  
	 	

πFPI

J(πFPI) ≥ J(π⋆) − ϵstat − 2H2δ∞

16
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•Approximation error: For all policies, suppose that for all ,  
, and   

π
min

θ
Es,a∼μ[(Qπ(s, a) − θ⊤ϕ(s, a))2] ≤ δ min

θ
∥Qπ − θ⊤ϕ∥∞ ≤ δ∞

•   : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞

[Theorem:] (informal, see AJKS Ch 4+13)
•  Suppose that we use a # samples that is poly in  for both fittedPI and NPG.d & 1/ϵstat
•  FittedPI will return a policy  with the performance guarantee:  
	 	

πFPI

J(πFPI) ≥ J(π⋆) − ϵstat − 2H2δ∞
•NPG has the same guarantee.
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Fitted Policy Improvement Guarantees (optional)
•Let  now be the starting “state-action” distribution.  
(the theory is better suited to this. See AJKS).

s0, a0 ∼ μ J(π) = Es0,a0∼μ[Qπ(s, a)]

•Approximation error: For all policies, suppose that for all ,  
, and   

π
min

θ
Es,a∼μ[(Qπ(s, a) − θ⊤ϕ(s, a))2] ≤ δ min

θ
∥Qπ − θ⊤ϕ∥∞ ≤ δ∞

•   : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞

[Theorem:] (informal, see AJKS Ch 4+13)
•  Suppose that we use a # samples that is poly in  for both fittedPI and NPG.d & 1/ϵstat
•  FittedPI will return a policy  with the performance guarantee:  
	 	

πFPI

J(πFPI) ≥ J(π⋆) − ϵstat − 2H2δ∞
•NPG has the same guarantee.
•NPG also has a stronger guarantee: Suppose  has “reasonable support” on where  tends to visit, i.e. suppose:  

	 	  

then NPG will return a policy with sub-optimality determined by  and the average case error : 
	 	

μ π⋆

max
s,a

dπ⋆
μ (s, a)
μ(s, a) ≤ C

C δ
J(πNPG) ≥ J(π⋆) − ϵstat − 2H2Cδ
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Outline:
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1. Exploration and the starting measure 

2. Theory: (natural) policy gradients vs fitted Dynamic programming

3. Behavioral Cloning

μ



3a. Introduction of Imitation Learning
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Imitation Learning
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Algorithm
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Imitation Learning
Machine 
Learning 
Algorithm

• SVM

• Gaussian Process

• Kernel Estimator

• Deep Networks

• Random Forests

• LWR

• …

    Policy

Maps states 
to actions

Expert 
Demonstrations
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Learning to Drive by Imitation

Policy

Steering Angle 
in [-1, 1]

Input: Output:

Camera Image
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[Pomerleau89, Saxena05, Ross11a]



Supervised Learning Approach: Behavior Cloning
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Supervised Learning Approach: Behavior Cloning

22

[Widrow64,Pomerleau89]

Learned 
Policy π

Mapping from state (image) to 
control (steering direction)



3b. Offline Imitation Learning: Behavior Cloning
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Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}
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Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward  is unknown; 

For simplicity, let’s assume expert is a (nearly) optimal policy 

r(s, a) ∈ [0,1]
π⋆

We have a dataset 6 = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

Goal: learn a policy from   that is as good as the expert 6 π⋆

24



Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:
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Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)

Many choices of loss functions: 

1. Negative log-likelihood (NLL):  ℓ(π, s, a⋆) = − ln π(a⋆ |s⋆)
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Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)

Many choices of loss functions: 

1. Negative log-likelihood (NLL):  ℓ(π, s, a⋆) = − ln π(a⋆ |s⋆)

2. square loss (i.e., regression for continuous action):  ℓ(π, s, a⋆) = ∥π(s) − a⋆∥2
2
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Analysis

Assumption: we are going to assume Supervised Learning succeeded

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)
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&s∼dπ⋆
μ
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Analysis

Assumption: we are going to assume Supervised Learning succeeded

&s∼dπ⋆
μ

1 [ ̂π (s) ≠ π⋆(s)] ≤ ϵ ∈ ℝ+

Note that here training and testing mismatch at this stage!

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)
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Analysis

Theorem [BC Performance] With probability at least , BC returns a policy :
1 − δ ̂π
Vπ⋆ − V ̂π ≤ 2

(1 − γ)2 ϵ

27
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Analysis

Theorem [BC Performance] With probability at least , BC returns a policy :
1 − δ ̂π
Vπ⋆ − V ̂π ≤ 2

(1 − γ)2 ϵ

The quadratic amplification is annoying
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Summary:

1. TRPO/NPG/PPO

2. Exploration/ /Guarantees

3. Behavioral Cloning

μ

1-minute feedback form: https://bit.ly/3RHtlxy 
28

https://bit.ly/3RHtlxy

