
Imitation Learning  
& 

Behavioral Cloning  
Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning  

Fall 2022

1

Today

• HW4 will be posted today. (Please start early!)  

• Recap++

• an example + Proximal Policy Optimization (PPO) 

• Today:

1. Overview of PG, problems+successes

2. Behavior Cloning

2

Pony

Recap++

3

Some Helpful Notation: Visitation Measures

4

• Visitation probability at time :  
(recall that we absorb , into the state, i.e.)

• Average Visitation Measure:  

	

• With this def, we have: 

	

h ℙh(sh, ah |μ, π)
h s ← (s, h)

dπ
μ(s, a) = 1

H

H−1

∑
h=0

ℙh(s, a |μ, π)

J(θ) := Es0∼μ0 [Vπθ(s0)]
= E[

H−1

∑
h=0

r(sh, ah) μ0, πθ]
= H ⋅ &s∼dπθμ

Ea∼πθ(s)[r(s, a)]

so N M

Esand rcs.az

TRPO

max
θ

H ⋅ &s∼dπθtμ [&a∼πθ(s)Aπθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with at hand, we compute as follows: πθt
θt+1

We want to maximize local advantage against , but we want
the new policy to be close to (in the KL sense)

πθt

πθt

How we can actually do the optimization here?

After all, we don’t even know the analytical form of trajectory likelihood…

5

NPG derived from TRPO:

1
H

KL (ρπθt
|ρπθ) ≈ 1

2 (θ − θt)⊤Fθt
(θ − θt)

We did second-order Taylor expansion on the KL constraint, and we get:

Fθt
:= &s,a∼dπθtμ [∇θln πθt

(a |s)(∇θln πθt
(a |s))

⊤] ∈ ℝdimθ×dimθ

This leads to the following simplified constrained optimization:

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

6

Algorithm: Natural Policy Gradient

Using a tuned or using η η = δ
∇θJ(πθt

)⊤F−1
θt

∇θJ(πθt
)

Initialize θ0

For t = 0, …

Estimate PG ∇θJ(πθt
)

Estimate Fisher info-matrix Fθt
:= &s,a∼dπθtμ

∇θln πθt
(a |s)(∇θln πθt

(a |s))⊤

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)Natural Gradient Ascent:

(We will implement it in HW4 on Cartpole)
7

r

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

8

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

8

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Every possible policy is a
point on the line segment,
parameterized by .θ

8

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Every possible policy is a
point on the line segment,
parameterized by .θ

8

O

4117,7121 712 s

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

Every possible policy is a
point on the line segment,
parameterized by .θ

8

TCI To4 I Teen N ra Cl i E

R

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Exact PG: θt+1 = θt + η
99 exp(θt)

(1 + exp(θt))2

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

Every possible policy is a
point on the line segment,
parameterized by .θ

8

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Exact PG: θt+1 = θt + η
99 exp(θt)

(1 + exp(θt))2

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
J′ (θ) → 0 θ → ∞

Every possible policy is a
point on the line segment,
parameterized by .θ

8

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: fθ = exp(θ)
(1 + exp(θ))2

Exact PG: θt+1 = θt + η
99 exp(θt)

(1 + exp(θt))2

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
J′ (θ) → 0 θ → ∞

Every possible policy is a
point on the line segment,
parameterized by .θ

8

to Ear I Elan

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: fθ = exp(θ)
(1 + exp(θ))2

NPG: θt+1 = θt + η
J′ (θt)

fθt

Exact PG: θt+1 = θt + η
99 exp(θt)

(1 + exp(θt))2

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
J′ (θ) → 0 θ → ∞

Every possible policy is a
point on the line segment,
parameterized by .θ

8

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: fθ = exp(θ)
(1 + exp(θ))2

NPG: θt+1 = θt + η
J′ (θt)

fθt

Exact PG: θt+1 = θt + η
99 exp(θt)

(1 + exp(θt))2

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
J′ (θ) → 0 θ → ∞

Every possible policy is a
point on the line segment,
parameterized by .θ

= θt + η ⋅ 99

8

r vz

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

NPG moves to much more quickly  
(for a fixed)

θ = ∞
η

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: fθ = exp(θ)
(1 + exp(θ))2

NPG: θt+1 = θt + η
J′ (θt)

fθt

Exact PG: θt+1 = θt + η
99 exp(θt)

(1 + exp(θt))2

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
J′ (θ) → 0 θ → ∞

Every possible policy is a
point on the line segment,
parameterized by .θ

= θt + η ⋅ 99

8

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

NPG moves to much more quickly  
(for a fixed)

θ = ∞
η

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: fθ = exp(θ)
(1 + exp(θ))2

NPG: θt+1 = θt + η
J′ (θt)

fθt

Exact PG: θt+1 = θt + η
99 exp(θt)

(1 + exp(θt))2

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
J′ (θ) → 0 θ → ∞

Every possible policy is a
point on the line segment,
parameterized by .θ

= θt + η ⋅ 99

8

Proximal Policy Optimization (PPO): 
A computationally fast extension of NPG:

Given an current policy , we perform policy update to πt πt+1

Proximal Policy Optimization (PPO)

max
θ

&s∼dπθtμ [&a∼πθ(⋅|s)Aπθt(s, a)]

9

Proximal Policy Optimization (PPO): 
A computationally fast extension of NPG:

Given an current policy , we perform policy update to πt πt+1

Proximal Policy Optimization (PPO)

max
θ

&s∼dπθtμ [&a∼πθ(⋅|s)Aπθt(s, a)] −λ&s∼dπt
μ [KL (πθt

(a |s) |πθ(a |s))]
regularization

9

Proximal Policy Optimization (PPO): 
A computationally fast extension of NPG:

Given an current policy , we perform policy update to πt πt+1

Proximal Policy Optimization (PPO)

max
θ

&s∼dπθtμ [&a∼πθ(⋅|s)Aπθt(s, a)] −λ&s∼dπt
μ [KL (πθt

(a |s) |πθ(a |s))]
regularization

Use importance weighting & expand KL divergence:

9

Proximal Policy Optimization (PPO): 
A computationally fast extension of NPG:

Given an current policy , we perform policy update to πt πt+1

Proximal Policy Optimization (PPO)

max
θ

&s∼dπθtμ [&a∼πθ(⋅|s)Aπθt(s, a)] −λ&s∼dπt
μ [KL (πθt

(a |s) |πθ(a |s))]
regularization

Use importance weighting & expand KL divergence:

ℓ(θ) := &s∼dπθtμ [&a∼πθt(⋅|s)
πθ(a |s)
πθt

(a |s) Aπθt(s, a)] − λ&s∼dπθtμ
&a∼πθt(⋅|s) [−ln πθ(a |s)]

9

Proximal Policy Optimization (PPO): 
A computationally fast extension of NPG:

Given an current policy , we perform policy update to πt πt+1

Proximal Policy Optimization (PPO)

max
θ

&s∼dπθtμ [&a∼πθ(⋅|s)Aπθt(s, a)] −λ&s∼dπt
μ [KL (πθt

(a |s) |πθ(a |s))]
regularization

Use importance weighting & expand KL divergence:

ℓ(θ) := &s∼dπθtμ [&a∼πθt(⋅|s)
πθ(a |s)
πθt

(a |s) Aπθt(s, a)] − λ&s∼dπθtμ
&a∼πθt(⋅|s) [−ln πθ(a |s)]

PPO: Perform a few steps of mini-batch SGA on to approximate ℓ(θ) arg max
θ

ℓ(θ)
9

Today:

Optimality in Markov Decision Processes

10

Outline:

11

1. Exploration and the starting measure

2. Theory: (natural) policy gradients vs fitted Dynamic programming

3. Behavioral Cloning

μ

“Lack of Exploration” leads to Optimization and Statistical Challenges

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

12

“Lack of Exploration” leads to Optimization and Statistical Challenges

• Suppose or & (i.e. we start at).|S | ≈ H |S | ≈ 1/(1 − γ) μ(s0) = 1 s0

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

12

“Lack of Exploration” leads to Optimization and Statistical Challenges

• Suppose or & (i.e. we start at).|S | ≈ H |S | ≈ 1/(1 − γ) μ(s0) = 1 s0
• A randomly initialized policy has prob. of hitting the goal state

in a single trajectory.
O(1/3|S|)

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

12

“Lack of Exploration” leads to Optimization and Statistical Challenges

• Suppose or & (i.e. we start at).|S | ≈ H |S | ≈ 1/(1 − γ) μ(s0) = 1 s0
• A randomly initialized policy has prob. of hitting the goal state

in a single trajectory.
O(1/3|S|)

• Implications:

• Any sample based policy iteration approach (starting with this policy)

requires trajectories to make progress at the very first step.

• Same for any sample based PG method.

• Related: even if we had exact gradients, the “landscape” is such that

these gradients are exponentially small, at randomly initialized policy
(see AJKS Ch 11).

O(3|S|)

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

12

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Implications/Comments/Remainder of Course

13

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Implications/Comments/Remainder of Course

• Sometimes exploration is (or can be made) “easier” in practice

• Random strategies can reach “rewarding milestones”

• We can design/“shape” the reward function to help us out.

13

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Implications/Comments/Remainder of Course

• Sometimes exploration is (or can be made) “easier” in practice

• Random strategies can reach “rewarding milestones”

• We can design/“shape” the reward function to help us out.

• We can try to make the distribution to have better coverage.

• For small problems, being uniform would make all these issues go away.  

(for large problems, being uniform may not help at all. Why?)

• Ideally, having support on where a good policy tends to visit is helpful  

(sometimes we can’t design)

μ
μ
μ

μ
μ

13

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Implications/Comments/Remainder of Course

• Sometimes exploration is (or can be made) “easier” in practice

• Random strategies can reach “rewarding milestones”

• We can design/“shape” the reward function to help us out.

• We can try to make the distribution to have better coverage.

• For small problems, being uniform would make all these issues go away.  

(for large problems, being uniform may not help at all. Why?)

• Ideally, having support on where a good policy tends to visit is helpful  

(sometimes we can’t design)

μ
μ
μ

μ
μ

• Course:

• A little theory with regards to and PG. (today)  

PG has better guarantees than approx DP methods (in terms of).

• Imitation learning (starting today).  

An expert gives us samples from a “good” .

• Explicit Exploration: for the “tabular case” (we will mix UCB with VI!)

μ
μ

μ

13

Outline:

14

1. Exploration and the starting measure

2. Theory: (natural) policy gradients vs fitted Dynamic programming

3. Behavioral Cloning

μ

Let’s compare fitted DP and PG for “Linear” Parameterizations 
 of Q-functions and Policies

1. Linear Functions

fθ(s, a) = θ⊤ϕ(s, a)

15

1. Softmax linear Policy

Feature vector , and
parameter

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

Fitted Policy Improvement Guarantees (optional)

16

Fitted Policy Improvement Guarantees (optional)
•Let now be the starting “state-action” distribution.  
(the theory is better suited to this. See AJKS).

s0, a0 ∼ μ J(π) = Es0,a0∼μ[Qπ(s, a)]

16

Fitted Policy Improvement Guarantees (optional)
•Let now be the starting “state-action” distribution.  
(the theory is better suited to this. See AJKS).

s0, a0 ∼ μ J(π) = Es0,a0∼μ[Qπ(s, a)]

•Approximation error: For all policies, suppose that for all ,  
, and

π
min

θ
Es,a∼μ[(Qπ(s, a) − θ⊤ϕ(s, a))2] ≤ δ min

θ
∥Qπ − θ⊤ϕ∥∞ ≤ δ∞

16

Fitted Policy Improvement Guarantees (optional)
•Let now be the starting “state-action” distribution.  
(the theory is better suited to this. See AJKS).

s0, a0 ∼ μ J(π) = Es0,a0∼μ[Qπ(s, a)]

•Approximation error: For all policies, suppose that for all ,  
, and

π
min

θ
Es,a∼μ[(Qπ(s, a) − θ⊤ϕ(s, a))2] ≤ δ min

θ
∥Qπ − θ⊤ϕ∥∞ ≤ δ∞

• : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞

16

Fitted Policy Improvement Guarantees (optional)
•Let now be the starting “state-action” distribution.  
(the theory is better suited to this. See AJKS).

s0, a0 ∼ μ J(π) = Es0,a0∼μ[Qπ(s, a)]

•Approximation error: For all policies, suppose that for all ,  
, and

π
min

θ
Es,a∼μ[(Qπ(s, a) − θ⊤ϕ(s, a))2] ≤ δ min

θ
∥Qπ − θ⊤ϕ∥∞ ≤ δ∞

• : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞

[Theorem:] (informal, see AJKS Ch 4+13)

16

14

Fitted Policy Improvement Guarantees (optional)
•Let now be the starting “state-action” distribution.  
(the theory is better suited to this. See AJKS).

s0, a0 ∼ μ J(π) = Es0,a0∼μ[Qπ(s, a)]

•Approximation error: For all policies, suppose that for all ,  
, and

π
min

θ
Es,a∼μ[(Qπ(s, a) − θ⊤ϕ(s, a))2] ≤ δ min

θ
∥Qπ − θ⊤ϕ∥∞ ≤ δ∞

• : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞

[Theorem:] (informal, see AJKS Ch 4+13)
• Suppose that we use a # samples that is poly in for both fittedPI and NPG.d & 1/ϵstat

16

Fitted Policy Improvement Guarantees (optional)
•Let now be the starting “state-action” distribution.  
(the theory is better suited to this. See AJKS).

s0, a0 ∼ μ J(π) = Es0,a0∼μ[Qπ(s, a)]

•Approximation error: For all policies, suppose that for all ,  
, and

π
min

θ
Es,a∼μ[(Qπ(s, a) − θ⊤ϕ(s, a))2] ≤ δ min

θ
∥Qπ − θ⊤ϕ∥∞ ≤ δ∞

• : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞

[Theorem:] (informal, see AJKS Ch 4+13)
• Suppose that we use a # samples that is poly in for both fittedPI and NPG.d & 1/ϵstat
• FittedPI will return a policy with the performance guarantee:  
	 	

πFPI

J(πFPI) ≥ J(π⋆) − ϵstat − 2H2δ∞

16

1 little my flea

Fitted Policy Improvement Guarantees (optional)
•Let now be the starting “state-action” distribution.  
(the theory is better suited to this. See AJKS).

s0, a0 ∼ μ J(π) = Es0,a0∼μ[Qπ(s, a)]

•Approximation error: For all policies, suppose that for all ,  
, and

π
min

θ
Es,a∼μ[(Qπ(s, a) − θ⊤ϕ(s, a))2] ≤ δ min

θ
∥Qπ − θ⊤ϕ∥∞ ≤ δ∞

• : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞

[Theorem:] (informal, see AJKS Ch 4+13)
• Suppose that we use a # samples that is poly in for both fittedPI and NPG.d & 1/ϵstat
• FittedPI will return a policy with the performance guarantee:  
	 	

πFPI

J(πFPI) ≥ J(π⋆) − ϵstat − 2H2δ∞
•NPG has the same guarantee.

16

Fitted Policy Improvement Guarantees (optional)
•Let now be the starting “state-action” distribution.  
(the theory is better suited to this. See AJKS).

s0, a0 ∼ μ J(π) = Es0,a0∼μ[Qπ(s, a)]

•Approximation error: For all policies, suppose that for all ,  
, and

π
min

θ
Es,a∼μ[(Qπ(s, a) − θ⊤ϕ(s, a))2] ≤ δ min

θ
∥Qπ − θ⊤ϕ∥∞ ≤ δ∞

• : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞

[Theorem:] (informal, see AJKS Ch 4+13)
• Suppose that we use a # samples that is poly in for both fittedPI and NPG.d & 1/ϵstat
• FittedPI will return a policy with the performance guarantee:  
	 	

πFPI

J(πFPI) ≥ J(π⋆) − ϵstat − 2H2δ∞
•NPG has the same guarantee.
•NPG also has a stronger guarantee: Suppose has “reasonable support” on where tends to visit, i.e. suppose:  

	 	  

then NPG will return a policy with sub-optimality determined by and the average case error : 
	 	

μ π⋆

max
s,a

dπ⋆
μ (s, a)
μ(s, a) ≤ C

C δ
J(πNPG) ≥ J(π⋆) − ϵstat − 2H2Cδ

16

Outline:

17

1. Exploration and the starting measure

2. Theory: (natural) policy gradients vs fitted Dynamic programming

3. Behavioral Cloning

μ

3a. Introduction of Imitation Learning

18

Imitation Learning

19

Imitation Learning

20

Imitation Learning

20

Imitation Learning
Expert

Demonstrations

20

Imitation Learning
Machine
Learning
Algorithm

• SVM

• Gaussian Process

• Kernel Estimator

• Deep Networks

• Random Forests

• LWR

• …

Expert
Demonstrations

20

Imitation Learning
Machine
Learning
Algorithm

• SVM

• Gaussian Process

• Kernel Estimator

• Deep Networks

• Random Forests

• LWR

• …

 Policy

Maps states
to actions

Expert
Demonstrations

20

Learning to Drive by Imitation

Policy

Steering Angle
in [-1, 1]

Input: Output:

Camera Image

21

[Pomerleau89, Saxena05, Ross11a]

Supervised Learning Approach: Behavior Cloning

22

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

22

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

22

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

22

[Widrow64,Pomerleau89]

Learned
Policy π

Mapping from state (image) to
control (steering direction)

3b. Offline Imitation Learning: Behavior Cloning

23

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

24

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward is unknown;

For simplicity, let’s assume expert is a (nearly) optimal policy

r(s, a) ∈ [0,1]
π⋆

24

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward is unknown;

For simplicity, let’s assume expert is a (nearly) optimal policy

r(s, a) ∈ [0,1]
π⋆

We have a dataset 6 = (s⋆
i , a⋆

i)M
i=1 ∼ dπ⋆

24

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward is unknown;

For simplicity, let’s assume expert is a (nearly) optimal policy

r(s, a) ∈ [0,1]
π⋆

We have a dataset 6 = (s⋆
i , a⋆

i)M
i=1 ∼ dπ⋆

Goal: learn a policy from that is as good as the expert 6 π⋆

24

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

25

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)

25

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)

Many choices of loss functions:

25

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)

Many choices of loss functions:

1. Negative log-likelihood (NLL): ℓ(π, s, a⋆) = − ln π(a⋆ |s⋆)

25

i
T SF hat

i

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)

Many choices of loss functions:

1. Negative log-likelihood (NLL): ℓ(π, s, a⋆) = − ln π(a⋆ |s⋆)

2. square loss (i.e., regression for continuous action): ℓ(π, s, a⋆) = ∥π(s) − a⋆∥2
2

25

Analysis

Assumption: we are going to assume Supervised Learning succeeded

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)

26

Analysis

Assumption: we are going to assume Supervised Learning succeeded

&s∼dπ⋆
μ

1 [̂π (s) ≠ π⋆(s)] ≤ ϵ ∈ ℝ+

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)

26

Analysis

Assumption: we are going to assume Supervised Learning succeeded

&s∼dπ⋆
μ

1 [̂π (s) ≠ π⋆(s)] ≤ ϵ ∈ ℝ+

Note that here training and testing mismatch at this stage!

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)

26

Analysis

Theorem [BC Performance] With probability at least , BC returns a policy :
1 − δ ̂π
Vπ⋆ − V ̂π ≤ 2

(1 − γ)2 ϵ

27

I 2A E

Analysis

Theorem [BC Performance] With probability at least , BC returns a policy :
1 − δ ̂π
Vπ⋆ − V ̂π ≤ 2

(1 − γ)2 ϵ

The quadratic amplification is annoying

27

Summary:

1. TRPO/NPG/PPO

2. Exploration/ /Guarantees

3. Behavioral Cloning

μ

1-minute feedback form: https://bit.ly/3RHtlxy
28

https://bit.ly/3RHtlxy

