Imitation Learning & Behavioral Cloning Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2022

Today

- HW4 will be posted today. (Please start early!)
- Recap++
 - an example + Proximal Policy Optimization (PPO)
- Today: Theony
 - 1. Overview of PG, problems+successes
 - 2. Behavior Cloning

Recap++

Some Helpful Notation: Visitation Measures

- Visitation probability at time h: $\mathbb{P}_h(s_h, a_h | \mu, \pi)$ (recall that we absorb h, into the state, i.e. $s \leftarrow (s, h)$)
- Average Visitation Measure:

$$d_{\mu}^{\pi}(s, a) = \frac{1}{H} \sum_{h=0}^{H-1} \mathbb{P}_{h}(s, a \mid \mu, \pi)$$

• With this def, we have:

$$J(\theta) := E_{s_0 \sim \mu_0} \left[V^{\pi_{\theta}}(s_0) \right]$$

$$= E \left[\sum_{h=0}^{H-1} r(s_h, a_h) \middle| \mu_0, \pi_{\theta} \right] = \int_{s_0 \neq \infty} \int_{\mathcal{A}} \left[r(s_0, a_0) \middle| \mu_0, \pi_{\theta} \right]$$

$$= H \cdot \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}} E_{a \sim \pi_{\theta}(s)} \left[r(s, a) \right]$$

TRPO

At iteration t, with π_{θ_t} at hand, we compute θ_{t+1} as follows:

$$\max_{\theta} H \cdot \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a) \right]$$

s.t.,
$$\mathit{KL}\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \leq \delta$$

We want to maximize local advantage against π_{θ_i} , but we want the new policy to be close to π_{θ_i} (in the KL sense)

How we can actually do the optimization here?

After all, we don't even know the analytical form of trajectory likelihood...

NPG derived from TRPO:

We did second-order Taylor expansion on the KL constraint, and we get:

$$\frac{1}{H} KL \left(\rho_{\pi_{\theta_t}} | \rho_{\pi_{\theta}} \right) \approx \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} F_{\theta_t} (\theta - \theta_t)$$

$$F_{\theta_t} := \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \left[\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \left(\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \right)^{\top} \right] \in \mathbb{R}^{dim_{\theta} \times dim_{\theta}}$$

This leads to the following simplified constrained optimization:

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\top} (\theta - \theta_t)$$
s.t. $(\theta - \theta_t)^{\top} F_{\theta_t} (\theta - \theta_t) \leq \delta$

Algorithm: Natural Policy Gradient

Initialize θ_0

For
$$t = 0, \dots$$

Estimate PG
$$\stackrel{\textstyle \frown}{
abla} J(\pi_{ heta_{ heta}})$$

Natural Gradient Ascent:
$$\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \overset{\wedge}{\nabla}_{\theta} J(\pi_{\theta_t})$$

Using a tuned
$$\eta$$
 or using $\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\pi_{\theta_t})^{\top} F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})}}$

(We will implement it in HW4 on Cartpole)

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$

$$\begin{aligned} & \text{Gradient: } J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2} \\ & \text{Exact PG: } \theta_{t+1} = \theta_t + \eta \frac{99 \exp(\theta_t)}{(1 + \exp(\theta_t))^2} \end{aligned}$$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$

Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta_{t+1} = \theta_t + \eta \frac{99 \exp(\theta_t)}{(1 + \exp(\theta_t))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$

 $\pi[1]$

Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG:
$$\theta_{t+1} = \theta_t + \eta \frac{99 \exp(\theta_t)}{(1 + \exp(\theta_t))^2}$$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar:
$$f_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$$

$$f_{e} = \lim_{\alpha \to \pi} \left[\left(\left(\log \pi_{e}(\alpha) \right) \right) \right]$$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$

Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta_{t+1} = \theta_t + \eta \frac{99 \exp(\theta_t)}{(1 + \exp(\theta_t))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar:
$$f_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$$

NPG:
$$\theta_{t+1} = \theta_t + \eta \frac{J'(\theta_t)}{f_{\theta_t}}$$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$

Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta_{t+1} = \theta_t + \eta \frac{99 \exp(\theta_t)}{(1 + \exp(\theta_t))^2}$

i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $J'(\theta)\to 0$ as $\theta\to\infty$

Fisher information scalar:
$$f_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$$

NPG:
$$\theta_{t+1} = \theta_t + \eta \frac{J'(\theta_t)}{f_{\theta_t}} = \theta_t + \eta \cdot 99$$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$

Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG:
$$\theta_{t+1} = \theta_t + \eta \frac{99 \exp(\theta_t)}{(1 + \exp(\theta_t))^2}$$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar:
$$f_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$$

NPG:
$$\theta_{t+1} = \theta_t + \eta \frac{J'(\theta_t)}{f_{\theta_t}} = \theta_t + \eta \cdot 99$$

NPG moves to $\theta = \infty$ much more quickly (for a fixed η)

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$

Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG:
$$\theta_{t+1} = \theta_t + \eta \frac{99 \exp(\theta_t)}{(1 + \exp(\theta_t))^2}$$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar:
$$f_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$$

NPG:
$$\theta_{t+1} = \theta_t + \eta \frac{J'(\theta_t)}{f_{\theta_t}} = \theta_t + \eta \cdot 99$$

NPG moves to $\theta = \infty$ much more quickly (for a fixed η)

Given an current policy π^t , we perform policy update to π^{t+1}

Proximal Policy Optimization (PPO)

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot | s)} A^{\pi_{\theta_t}}(s, a) \right]$$

Given an current policy π^t , we perform policy update to π^{t+1}

Proximal Policy Optimization (PPO)

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\pi_{\theta_{t}}}(s, a) \right] - \lambda \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\mathsf{KL} \left(\pi_{\theta_{t}}(a \mid s) \mid \pi_{\theta}(a \mid s) \right) \right]$$
 regularization

Given an current policy π^t , we perform policy update to π^{t+1}

Proximal Policy Optimization (PPO)

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\pi_{\theta_{t}}}(s, a) \right] - \lambda \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\mathsf{KL} \left(\pi_{\theta_{t}}(a \mid s) \mid \pi_{\theta}(a \mid s) \right) \right]$$
 regularization

Use importance weighting & expand KL divergence:

Given an current policy π^t , we perform policy update to π^{t+1}

Proximal Policy Optimization (PPO)

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\pi_{\theta_{t}}}(s, a) \right] - \lambda \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\mathsf{KL} \left(\pi_{\theta_{t}}(a \mid s) \mid \pi_{\theta}(a \mid s) \right) \right]$$
regularization

Use importance weighting & expand KL divergence:

$$\mathscr{E}(\theta) := \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[\mathbb{E}_{a \sim \pi_{\theta_t}(\cdot \mid s)} \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_t}(a \mid s)} A^{\pi_{\theta_t}}(s, a) \right] - \lambda \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \mathbb{E}_{a \sim \pi_{\theta_t}(\cdot \mid s)} \left[-\ln \pi_{\theta}(a \mid s) \right]$$

Given an current policy π^t , we perform policy update to π^{t+1}

Proximal Policy Optimization (PPO)

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\pi_{\theta_{t}}}(s, a) \right] - \lambda \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\mathsf{KL} \left(\pi_{\theta_{t}}(a \mid s) \mid \pi_{\theta}(a \mid s) \right) \right]$$
 regularization

Use importance weighting & expand KL divergence:

$$\mathscr{E}(\theta) := \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[\mathbb{E}_{a \sim \pi_{\theta_t}(\cdot \mid s)} \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_t}(a \mid s)} A^{\pi_{\theta_t}}(s, a) \right] - \lambda \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \mathbb{E}_{a \sim \pi_{\theta_t}(\cdot \mid s)} \left[-\ln \pi_{\theta}(a \mid s) \right]$$

PPO: Perform a few steps of mini-batch SGA on $\ell(\theta)$ to approximate $\arg\max_{\theta} \ell(\theta)$

a

Today:

Optimality in Markov Decision Processes

Outline:

- 1. Exploration and the starting measure μ
- 2. Theory: (natural) policy gradients vs fitted Dynamic programming
- 3. Behavioral Cloning

• Suppose $|S| \approx H$ or $|S| \approx 1/(1-\gamma) \& \mu(s_0) = 1$ (i.e. we start at s_0).

- Suppose $|S| \approx H$ or $|S| \approx 1/(1-\gamma) \& \mu(s_0) = 1$ (i.e. we start at s_0).
- A randomly initialized policy has prob. $O(1/3^{|S|})$ of hitting the goal state in a single trajectory.

- Suppose $|S| \approx H$ or $|S| \approx 1/(1-\gamma) \& \mu(s_0) = 1$ (i.e. we start at s_0).
- A randomly initialized policy has prob. $O(1/3^{|S|})$ of hitting the goal state in a single trajectory.
- Implications:
 - Any sample based policy iteration approach (starting with this policy) requires $O(3^{|S|})$ trajectories to make progress at the very first step.
 - Same for any sample based PG method.
 - Related: even if we had exact gradients, the "landscape" is such that these gradients are exponentially small, at randomly initialized policy (see AJKS Ch 11).

Thrun '92

- Sometimes exploration is (or can be made) "easier" in practice
 - Random strategies can reach "rewarding milestones"
 - We can design/"shape" the reward function to help us out.

S states

Thrun '92

Sometimes exploration is (or can be made) "easier" in practice

- Random strategies can reach "rewarding milestones"
- We can design/"shape" the reward function to help us out.
- We can try to make the distribution μ to have better coverage.
 - For small problems, μ being uniform would make all these issues go away. (for large problems, μ being uniform may not help at all. Why?)
 - Ideally, μ having support on where a good policy tends to visit is helpful (sometimes we can't design μ)

S states Thrun '92

- Sometimes exploration is (or can be made) "easier" in practice
 - Random strategies can reach "rewarding milestones"
 - We can design/"shape" the reward function to help us out.
- We can try to make the distribution μ to have better coverage.
 - For small problems, μ being uniform would make all these issues go away. (for large problems, μ being uniform may not help at all. Why?)
 - Ideally, μ having support on where a good policy tends to visit is helpful (sometimes we can't design μ)
- Course:
 - A little theory with regards to μ and PG. (today) PG has better guarantees than approx DP methods (in terms of μ).
 - Imitation learning (starting today).
 An expert gives us samples from a "good" μ.
 - Explicit Exploration: for the "tabular case" (we will mix UCB with VI!)

Outline:

- 1. Exploration and the starting measure μ
- 2. Theory: (natural) policy gradients vs fitted Dynamic programming
- 3. Behavioral Cloning

Let's compare fitted DP and PG for "Linear" Parameterizations of Q-functions and Policies

Feature vector
$$\phi(s, a) \in \mathbb{R}^d$$
, and parameter $\theta \in \mathbb{R}^d$

1. Linear Functions

$$f_{\theta}(s, a) = \theta^{\mathsf{T}} \phi(s, a)$$

1. Softmax linear Policy

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$$

• Let $s_0, a_0 \sim \mu$ now be the starting "state-action" distribution. $J(\pi) = E_{s_0, a_0 \sim \mu}[Q^{\pi}(s, a)]$ (the theory is better suited to this. See AJKS).

- Let $s_0, a_0 \sim \mu$ now be the starting "state-action" distribution. $J(\pi) = E_{s_0, a_0 \sim \mu}[Q^{\pi}(s, a)]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π ,

$$\min_{\theta} E_{s,a \sim \mu} \left[\left(Q^{\pi}(s,a) - \theta^{\top} \phi(s,a) \right)^{2} \right] \leq \delta, \text{ and } \min_{\theta} \| Q^{\pi} - \theta^{\top} \phi \|_{\infty} \leq \delta_{\infty}$$

- Let $s_0, a_0 \sim \mu$ now be the starting "state-action" distribution. $J(\pi) = E_{s_0, a_0 \sim \mu}[Q^{\pi}(s, a)]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π ,

$$\min_{\theta} E_{s,a \sim \mu} \left[\left(Q^{\pi}(s,a) - \theta^{\top} \phi(s,a) \right)^2 \right] \leq \delta, \text{ and } \min_{\theta} \| Q^{\pi} - \theta^{\top} \phi \|_{\infty} \leq \delta_{\infty}$$

• δ : the average case supervised learning error (reasonable to expect this can be made small) δ_{∞} : the worse case error (often unreasonable to expect to be small)

- Let $s_0, a_0 \sim \mu$ now be the starting "state-action" distribution. $J(\pi) = E_{s_0, a_0 \sim \mu}[Q^{\pi}(s, a)]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π ,

$$\min_{\theta} E_{s,a \sim \mu} \left[\left(Q^{\pi}(s,a) - \theta^{\top} \phi(s,a) \right)^2 \right] \leq \delta, \text{ and } \min_{\theta} \| Q^{\pi} - \theta^{\top} \phi \|_{\infty} \leq \delta_{\infty}$$

• δ : the average case supervised learning error (reasonable to expect this can be made small) δ_{∞} : the worse case error (often unreasonable to expect to be small)

12

[Theorem:] (informal, see AJKS Ch 4+13)

- Let $s_0, a_0 \sim \mu$ now be the starting "state-action" distribution. $J(\pi) = E_{s_0, a_0 \sim \mu}[Q^{\pi}(s, a)]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π ,

$$\min_{\theta} E_{s,a \sim \mu} \left[\left(Q^{\pi}(s,a) - \theta^{\top} \phi(s,a) \right)^{2} \right] \leq \delta, \text{ and } \min_{\theta} \| Q^{\pi} - \theta^{\top} \phi \|_{\infty} \leq \delta_{\infty}$$

• δ : the average case supervised learning error (reasonable to expect this can be made small) δ : the worse case error (often unreasonable to expect to be small)

[Theorem:] (informal, see AJKS Ch 4+13)

• Suppose that we use a # samples that is poly in $d \& 1/\epsilon_{stat}$ for both fittedPI and NPG.

- Let $s_0, a_0 \sim \mu$ now be the starting "state-action" distribution. $J(\pi) = E_{s_0, a_0 \sim \mu}[Q^{\pi}(s, a)]$ (the theory is better suited to this. See AJKS).

 • Approximation error: For all policies, suppose that for all π ,

$$\min_{\theta} E_{s,a \sim \mu} \left[\left(Q^{\pi}(s,a) - \theta^{\top} \phi(s,a) \right)^{2} \right] \leq \delta, \text{ and } \min_{\theta} \| Q^{\pi} - \theta^{\top} \phi \|_{\infty} \leq \delta_{\infty}$$

• δ : the average case supervised learning error (reasonable to expect this can be made small) δ_{∞} : the worse case error (often unreasonable to expect to be small)

[Theorem:] (informal, see AJKS Ch 4+13)

- Suppose that we use a # samples that is poly in $d \& 1/\epsilon_{stat}$ for both fittedPI and NPG.
- FittedPI will return a policy π^{FPI} with the performance guarantee:

$$J(\pi^{FPI}) \ge J(\pi^*) - \epsilon_{stat} - 2H^2 \delta_{\infty}$$

- Let $s_0, a_0 \sim \mu$ now be the starting "state-action" distribution. $J(\pi) = E_{s_0, a_0 \sim \mu}[Q^{\pi}(s, a)]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π ,

$$\min_{\theta} E_{s,a \sim \mu} \Big[\left(Q^{\pi}(s,a) - \theta^{\top} \phi(s,a) \right)^2 \Big] \leq \delta, \text{ and } \min_{\theta} \| Q^{\pi} - \theta^{\top} \phi \|_{\infty} \leq \delta_{\infty}$$

• δ : the average case supervised learning error (reasonable to expect this can be made small) δ_{∞} : the worse case error (often unreasonable to expect to be small)

[Theorem:] (informal, see AJKS Ch 4+13)

- Suppose that we use a # samples that is poly in $d \& 1/\epsilon_{stat}$ for both fittedPI and NPG.
- FittedPI will return a policy π^{FPI} with the performance guarantee:

$$J(\pi^{FPI}) \ge J(\pi^*) - \epsilon_{stat} - 2H^2 \delta_{\infty}$$

NPG has the same guarantee.

- Let $s_0, a_0 \sim \mu$ now be the starting "state-action" distribution. $J(\pi) = E_{s_0, a_0 \sim \mu}[Q^{\pi}(s, a)]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π ,

$$\min_{\theta} E_{s,a \sim \mu} \left[\left(Q^{\pi}(s,a) - \theta^{\top} \phi(s,a) \right)^{2} \right] \leq \delta, \text{ and } \min_{\theta} \| Q^{\pi} - \theta^{\top} \phi \|_{\infty} \leq \delta_{\infty}$$

• δ : the average case supervised learning error (reasonable to expect this can be made small) δ_{∞} : the worse case error (often unreasonable to expect to be small)

[Theorem:] (informal, see AJKS Ch 4+13)

- Suppose that we use a # samples that is poly in $d \& 1/\epsilon_{stat}$ for both fittedPI and NPG.
- FittedPI will return a policy π^{FPI} with the performance guarantee:

$$J(\pi^{FPI}) \ge J(\pi^*) - \epsilon_{stat} - 2H^2 \delta_{\infty}$$

- NPG has the same guarantee.
- NPG also has a stronger guarantee: Suppose μ has "reasonable support" on where π^* tends to visit, i.e. suppose:

$$\max_{s,a} \left(\frac{d_{\mu}^{\pi^{\star}}(s,a)}{\mu(s,a)} \right) \le C$$

then NPG will return a policy with sub-optimality determined by C and the average case error δ :

$$J(\pi^{NPG}) \ge J(\pi^*) - \epsilon_{stat} - 2H^2C\delta$$

Outline:

- 1. Exploration and the starting measure μ
- 2. Theory: (natural) policy gradients vs fitted Dynamic programming
- 3. Behavioral Cloning

3a. Introduction of Imitation Learning

Expert Demonstrations

Expert Demonstrations

Machine Learning Algorithm

- SVM
- Gaussian Process
- Kernel Estimator
- Deep Networks
- Random Forests
- LWR
- ...

Expert Demonstrations

Machine Learning Algorithm

Policy π

- SVM
- Gaussian Process
- Kernel Estimator
- Deep Networks
- Random Forests
- LWR
- ...

Maps states to actions

Learning to Drive by Imitation

[Pomerleau89, Saxena05, Ross11a]

Output:

Input:

Camera Image

Steering Angle in [-1, 1]

3b. Offline Imitation Learning: Behavior Cloning

Discounted infinite horizon MDP $\mathcal{M} = \{S, A, \gamma, r, P, \rho, \pi^*\}$

Discounted infinite horizon MDP $\mathcal{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$

Ground truth reward $r(s, a) \in [0,1]$ is unknown; For simplicity, let's assume expert is a (nearly) optimal policy π^*

Discounted infinite horizon MDP $\mathcal{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$

Ground truth reward $r(s, a) \in [0,1]$ is unknown; For simplicity, let's assume expert is a (nearly) optimal policy π^*

We have a dataset $\mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^{M} \sim d^{\pi^{\star}}$

Discounted infinite horizon MDP $\mathcal{M} = \{S, A, \gamma, r, P, \rho, \pi^{\star}\}$

Ground truth reward $r(s,a) \in [0,1]$ is unknown; For simplicity, let's assume expert is a (nearly) optimal policy π^*

We have a dataset $\mathcal{D} = (s_i^{\star}, a_i^{\star})_{i=1}^{M} \sim d^{\pi^{\star}}$

Goal: learn a policy from \mathscr{D} that is as good as the expert π^*

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

BC is a Reduction to Supervised Learning:

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \ell\left(\pi, s^{\star}, a^{\star}\right)$$

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \ell\left(\pi, s^{\star}, a^{\star}\right)$$

Many choices of loss functions:

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \ell\left(\pi, s_{i}^{\star}, a_{i}^{\star}\right) \qquad \forall \left(s_{i}^{\star}\right) \approx a_{i}^{\star}$$

Many choices of loss functions:

1. Negative log-likelihood (NLL): $\ell(\pi, s, a^*) = -\ln \pi(a^* \mid s^*)$

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \ell\left(\pi, s^{\star}, a^{\star}\right)$$

Many choices of loss functions:

- 1. Negative log-likelihood (NLL): $\ell(\pi, s, a^*) = -\ln \pi(a^* \mid s^*)$
- 2. square loss (i.e., regression for continuous action): $\ell(\pi, s, a^*) = \|\vec{\pi(s)} \vec{a^*}\|_2^2$

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \mathscr{C}(\pi, s^*, a^*)$$

Assumption: we are going to assume Supervised Learning succeeded

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \ell(\pi, s^*, a^*)$$

Assumption: we are going to assume Supervised Learning succeeded

$$\mathbb{E}_{s \sim d_u^{\pi^*}} \mathbf{1} \left[\widehat{\pi}(s) \neq \pi^*(s) \right] \le \epsilon \in \mathbb{R}^+$$

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \mathscr{C}(\pi, s^{\star}, a^{\star})$$

Assumption: we are going to assume Supervised Learning succeeded

$$\mathbb{E}_{s \sim d_u^{\pi^*}} \mathbf{1} \left[\widehat{\pi}(s) \neq \pi^*(s) \right] \le \epsilon \in \mathbb{R}^+$$

Note that here training and testing mismatch at this stage!

Theorem [BC Performance] With probability at least $1 - \delta$, BC returns a policy $\hat{\pi}$:

$$V^{\pi^*} - V^{\widehat{\pi}} \le \frac{2}{(1 - \gamma)^2} \epsilon$$

Theorem [BC Performance] With probability at least $1 - \delta$, BC returns a policy $\hat{\pi}$:

$$V^{\pi^*} - V^{\widehat{\pi}} \le \left(\frac{2}{(1-\gamma)^2}\right)^{\epsilon}$$

The quadratic amplification is annoying

Summary:

- 1. TRPO/NPG/PPO
- 2. Exploration/ μ /Guarantees
- 3. Behavioral Cloning

1-minute feedback form: https://bit.ly/3RHtlxy