Imitation Learning

\&

Dagger

Lucas Janson and Sham Kakade
CS/Stat 184: Introduction to Reinforcement Learning
Fall 2022

Today

The Buffer Lesson

- Recap++

$$
(-18)
$$

Examples + Videos

- Today:

1. Imitation Learning
2. DAgger

Recap++

Some Helpful Notation: Visitation Measures

- Visitation probability at time $h: \mathbb{P}_{h}\left(s_{h}, a_{h} \mid \mu, \pi\right)$
- Average Visitation Measure:

$$
\begin{aligned}
& d_{\mu}^{\pi}(s, a)=\frac{1}{H} \sum_{h=0}^{H-1} \mathbb{P}_{h}(s, a \mid \mu, \pi) \\
& d^{\top}(s)
\end{aligned}
$$

"Lack of Exploration" leads to Optimization and Statistical Challenges

S states
Thrun '92

- Suppose $|S| \approx H$ or $|S| \approx 1 /(1-\gamma) \& \mu\left(s_{0}\right)=1$ (i.e. we start at $\left.s_{0}\right)$.
- A randomly initialized policy has prob. $O\left(1 / 3^{|S|}\right)$ of hitting the goal state in a single trajectory.
- Implications:
- Any sample based policy iteration approach (starting with this policy) requires $O\left(3^{|S|}\right)$ trajectories to make progress at the very first step.
- Same for any sample based PG method.
- Related: even if we had exact gradients, the "landscape" is such that these gradients are exponentially small, at randomly initialized policy (see AJKS Ch 11).

Implications/Comments/Remainder of Course

S states

- Sometimes exploration is (or can be made) "easier" in practice
- Random strategies can reach "rewarding milestones"
- We can design/"shape" the reward function to help us out.
- We can try to make the distribution μ to have better coverage.
- For small problems, μ being uniform would make all these issues go away. (for large problems, μ being uniform may not help at all. Why?)
- Ideally, μ having support on where a good policy tends to visit is helpful (sometimes we can't design μ)
- Course:
- A little theory with regards to μ and PG. (today) PG has better guarantees than approx DP methods (in terms of μ).
- Imitation learning (starting today).

An expert gives us samples from a "good" μ.

- Explicit Exploration: for the "tabular case" (we will mix UCB with VI!)

Fitted Policy Improvement Guarantees (optional)

- Let $s_{0}, a_{0} \sim \mu$ now be the starting "state-action" distribution. $J(\pi)=E_{s_{0}, a_{0} \sim \mu}\left[Q^{\pi}(s, a)\right]$ (the theory is better suited to this. See AJKS).
- Approximation error: For all policies, suppose that for all π,
$\min _{\theta} E_{s, a \sim \mu}\left[\left(Q^{\pi}(s, a)-\theta^{\top} \phi(s, a)\right)^{2}\right] \leq \delta$, and $\min _{\theta}\left\|Q^{\pi}-\theta^{\top} \phi\right\|_{\infty} \leq \delta_{\infty}$
- δ : the average case supervised learning error (reasonable to expect this can be made small) δ_{∞} : the worse case error (often unreasonable to expect to be small)

[Theorem:] (informal, see AJKS Ch 4+13)

- Suppose that we use a \# samples that is poly in $d \& 1 / \epsilon_{\text {stat }}$ for both fittedPI and NPG.
- FittedPI will return a policy $\pi^{F P I}$ with the performance guarantee:

$$
J\left(\pi^{F P I}\right) \geq J\left(\pi^{\star}\right)-\epsilon_{\text {stat }}-2 H^{2} \delta_{\infty}
$$

- NPG has the same guarantee.
- NPG also has a stronger guarantee: Suppose μ has "reasonable support" on where π^{\star} tends to visit, i.e. suppose:

$$
\max _{s, a}\left(\frac{d_{\mu}^{\pi^{\star}}(s, a)}{\mu(s, a)}\right) \leq C
$$

then NPG will return a policy with sub-optimality determined by C and the average case error δ :

$$
J\left(\pi^{N P G}\right) \geq J\left(\pi^{\star}\right)-\epsilon_{\text {stat }}-2 H_{7}^{2} C \delta
$$

Aside: Brittle policies if we train starting from only from one configuration!

- [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single starting configuration s_{0} are not robust!

Aside: Brittle policies if we train starting from only from one configuration!

- [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single starting configuration s_{0} are not robust!

Aside: Brittle policies if we train starting from only from one configuration!

- [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single starting configuration s_{0} are not robust!

Aside: Brittle policies if we train starting from only from one configuration!

- [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single starting configuration s_{0} are not robust!
- How to fix this?
- Training from different starting configurations sampled from $s_{0} \sim \mu$ fixes this.

$$
\max _{\theta} E_{S_{0} \sim \mu}\left[V^{\theta}\left(s_{0}\right)\right]
$$

- The measure μ is also relevant for robustness.

OpenAI: progress on dexterous hand manipulation

OpenAl: progress on dexterous hand manipulation

OpenAl: progress on dexterous hand manipulation

Trained with "domain randomization"

Basically, the measure $s_{0} \sim \mu$ was diverse.

IL Setting and the Behavior Cloning algorithm

Expert Trajectories

Discounted infinite horizon MDP $\mathscr{M}=\left\{S, A, \gamma, r, P, \rho, \pi^{\star}\right\}$
Ground truth reward $r(s, a) \in[0,1]$ is unknown; For simplicity, let's assume expert is a (nearly) optimal policy π^{\star}

$$
\text { We have a dataset } \mathscr{D}=\left(s_{i}^{\star}, a_{i}^{\star}\right)_{i=1}^{M} \sim d^{\pi^{\star}}
$$

Goal: learn a policy from \mathscr{D} that is as good as the expert π^{\star}

Let's formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class $\Pi=\{\pi: S \mapsto \Delta(A)\}$
$B C$ is a Reduction to Supervised Learning:

$$
\widehat{\pi}=\arg \min _{\pi \in \Pi} \sum_{i=1}^{M} \ell\left(\pi, s^{\star}, a^{\star}\right)
$$

Many choices of loss functions:

1. Negative log-likelihood (NLL): $\ell\left(\pi, s, a^{\star}\right)=-\ln \pi\left(a^{\star} \mid s^{\star}\right)$
2. square loss (i.e., regression for continuous action): $\ell\left(\pi, s, a^{\star}\right)=\left\|\pi(s)-a^{\star}\right\|_{2}^{2}$

Performance Guarantee

Assumption: we are going to assume Supervised Learning succeeded

$$
\mathbb{E}_{S \sim d_{\mu}^{\pi}} \mathbb{1}\left[\widehat{\pi}(S) \neq \pi^{\star}(S)\right] \leq \epsilon \in \mathbb{R}^{+}
$$

What could go wrong?

- Predictions affect future inputs/ observations

Distribution Shift: Example (finite horizon case)

Distribution Shift: Example (finite horizon case)

Distribution Shift: Example (finite horizon case)

$$
d_{s_{0}}^{\pi^{\star}}\left(s_{0}\right)=\frac{1}{H}, d_{s_{0}}^{\pi^{\star}}\left(s_{1}\right)=\frac{H-1}{H}, d_{s_{0}}^{\pi^{\star}}\left(s_{2}\right)=0
$$

Distribution Shift: Example (finite horizon case)

Distribution Shift: Example (finite horizon case)

Distribution Shift: Example (finite horizon case)

Assume SL returned such policy $\hat{\pi}$

$$
\hat{\pi}\left(s_{0}\right)=\left\{\begin{array}{l}
a_{1} \text { w/ prob } 1-H \epsilon \\
a_{2} \text { w/ prob } H \epsilon
\end{array}, \quad \hat{\pi}\left(s_{1}\right)=a_{2}, \hat{\pi}\left(s_{2}\right)=a_{2}\right.
$$

This policy has good supervised learning error:

$$
\begin{aligned}
& \mathbb{E}_{s \sim d_{s_{0}} \star} \mathbb{E}_{a \sim \hat{\pi}(\cdot \mid s)} \mathbf{1}\left(a \neq \pi^{\star}(s)\right)=\epsilon \\
& \frac{1}{H}(H \varepsilon)+\frac{H-1}{H} \cdot 0+0 \cdot 1 \approx \varepsilon
\end{aligned}
$$

$$
d_{s_{0}}^{\pi^{\star}}\left(s_{0}\right)=\frac{1}{H}, d_{s_{0}}^{\pi^{\star}}\left(s_{1}\right)=\frac{H-1}{H}, d_{s_{0}}^{\pi^{\star}}\left(s_{2}\right)=0
$$

$$
V_{s_{0}}^{\pi^{\star}}=H-1
$$

Distribution Shift: Example (finite horizon case)

Assume SL returned such policy $\widehat{\pi}$

$$
\hat{\pi}\left(s_{0}\right)=\left\{\begin{array}{ll}
a_{1} & \text { w/ prob } 1-H \epsilon \\
a_{2} & \text { w/ prob } H \epsilon
\end{array}, \quad \hat{\pi}\left(s_{1}\right)=a_{2}, \hat{\pi}\left(s_{2}\right)=a_{2}\right.
$$

This policy has good supervised learning error:

$$
\mathbb{E}_{s \sim d_{s_{0}} \times \mathbb{E}_{a \sim \hat{\pi}(\cdot \mid s)} \mathbf{1}}\left(a \neq \pi^{\star}(s)\right)=\epsilon
$$

But we have quadratic error (in H) in performance:

$$
V_{s_{0}}^{\hat{\pi}}=(1-H \epsilon) \cdot V_{s_{0}}^{\pi^{\star}}+H \epsilon \cdot 0=V_{s_{0}}^{\pi^{\star}}-\epsilon H(H-1)
$$

$$
\begin{aligned}
d_{s_{0}}^{\pi^{\star}}\left(s_{0}\right)=\frac{1}{H}, d_{s_{0}}^{\pi^{\star}}\left(s_{1}\right)=\frac{H-1}{H}, d_{s_{0}}^{\pi^{\star}}\left(s_{2}\right)=0 & =(1-H \varepsilon) V_{s_{0}}^{\pi^{\star}}+(H \Sigma) \cdot 0 \\
V_{s_{0}}^{\pi^{\star}}=H-1 & =V_{s_{0}}^{*}-H \varepsilon \nu_{s_{0}}^{*}=
\end{aligned}
$$

Distribution Shift: Example (finite horizon case)

Assume SL returned such policy $\widehat{\pi}$

$$
\hat{\pi}\left(s_{0}\right)=\left\{\begin{array}{l}
a_{1} \mathrm{w} / \text { prob } 1-H \epsilon \\
a_{2} \mathrm{w} / \text { prob } H \epsilon
\end{array}, \quad \hat{\pi}\left(s_{1}\right)=a_{2}, \hat{\pi}\left(s_{2}\right)=a_{2}\right.
$$

This policy has good supervised learning error:

$$
\mathbb{E}_{s \sim d_{s_{0}} \pi^{\star}} \mathbb{E}_{a \sim \hat{\pi}(\cdot \mid s)} \mathbf{1}\left(a \neq \pi^{\star}(s)\right)=\epsilon
$$

But we have quadratic error (in H) in performance:

$$
V_{s_{0}}^{\hat{\pi}}=(1-H \epsilon) \cdot V_{s_{0}}^{\pi^{\star}}+H \epsilon \cdot 0=V_{s_{0}}^{\pi^{\star}}-\epsilon H(H-1)
$$

$d_{s_{0}}^{\pi^{\star}}\left(s_{0}\right)=\frac{1}{H}, d_{s_{0}}^{\pi^{\star}}\left(s_{1}\right)=\frac{H-1}{H}, d_{s_{0}}^{\pi^{\star}}\left(s_{2}\right)=0$
$V_{s_{0}}^{\pi^{\star}}=H-1$
Issue: once we make a mistake at s_{0}, we end up in s_{2} which is not in the training data!

Distribution Shift: Example (discounted case)

$$
\begin{aligned}
& d_{s_{0}}^{\pi^{\star}}\left(s_{0}\right)=1-\gamma, d_{s_{0}}^{\pi^{\star}}\left(s_{1}\right)=\gamma, d_{s_{0}}^{\pi^{\star}}\left(s_{2}\right)=0 \\
& V_{s_{0}}^{\pi^{\star}}=\frac{\gamma}{1-\gamma}
\end{aligned}
$$

Assume SL returned such policy $\widehat{\pi}$

$$
\hat{\pi}\left(s_{0}\right)=\left\{\begin{array}{ll}
a_{1} & \mathrm{w} / \operatorname{prob} 1-\epsilon /(1-\gamma) \\
a_{2} & \mathrm{w} / \mathrm{prob} \epsilon /(1-\gamma)
\end{array}, \quad \hat{\pi}\left(s_{1}\right)=a_{2}, \hat{\pi}\left(s_{2}\right)=a_{2}\right.
$$

We will have good supervised learning error:

$$
\mathbb{E}_{s \sim d_{s_{0}} \star} \mathbb{E}_{a \sim \hat{\pi}(\cdot \mid s)} \mathbf{1}\left(a \neq \pi^{\star}(s)\right)=\epsilon
$$

But we have quadratic error in performance:

$$
V_{s_{0}}^{\hat{\pi}}=\frac{\gamma}{1-\gamma}-\frac{\epsilon \gamma}{(1-\gamma)^{2}}=V_{s_{0}}^{\pi^{\star}}-\frac{\epsilon \gamma}{(1-\gamma)^{2}}
$$

Issue: once we make a mistake at s_{0}, we end up in s_{2} which is not in the training data!

Today:

More Imitation Learning

Intuitive solution: Interaction

General Idea: Iterative Interactive Approach

Outline for today:

1. The DAgger (Data Aggregation) Algorithm

DAgger: Dataset Aggregation 0th iteration

DAgger: Dataset Aggregation

Execute π_{1} and Query Expert

DAgger: Dataset Aggregation
 1st iteration

Execute π_{1} and Query Expert

New Data

DAgger: Dataset Aggregation
 1st iteration

Execute π_{1} and Query Expert

DAgger: Dataset Aggregation
 1st iteration

Execute π_{1} and Query Expert

All previous data

DAgger: Dataset Aggregation
 1st iteration

Execute π_{1} and Query Expert

New Data
 Dataset

DAgger: Dataset Aggregation 2nd iteration

New Data

DAgger: Dataset Aggregation
 [Ross11a]
 $n^{\text {th }}$ iteration

Execute π_{n-1} and Query Expert

New Data

Aggregate Dataset

All previous data

The DAgger algorithm

stronger

nodel

 than in BCInitialize π^{0}, and dataset $\mathscr{D}=\varnothing$
For $t=0 \rightarrow T-1$:

1. W/ π^{t}, generate dataset $\mathscr{D}^{t}=\left\{s_{i}, a_{i}^{\star}\right\}, s_{i} \sim d_{\mu}^{\pi^{t}}, a_{i}^{\star}=\pi^{\star}\left(s_{i}\right)$
2. Data aggregation: $\mathscr{D}=\mathscr{D} \cup \mathscr{D}^{t}$
3. Update policy via Supervised-Learning: $\pi^{t+1}=\operatorname{SL}(\mathscr{D})$

Success!
[Ross AISTATS 2011]

Success!
[Ross AISTATS 2011]

Success!
[Ross AISTATS 2011]

Average Falls/Lap

Roughly, the DAgger algorithm requires less human labeled data than $B C$.
[Informal Theorem]
Assuming ϵ SL error is achievable. The DAgger algorithm has error:

$$
V^{\pi^{\star}}-V^{\hat{\pi}} \leq \frac{2}{(1-\gamma)} \epsilon \quad 2 H \Sigma
$$

while $B C$ has error:

$$
V^{\pi^{\star}}-V^{\hat{\pi}} \leq \frac{2}{(1-\gamma)^{2}} \epsilon
$$

$2 H^{2}$

Immitation Learning from observation Alone
 the world.
$+{ }^{(2)}$ suppose we don't see any rewards. Goal: learn π sit. $d_{s_{0}}^{\pi} \approx d_{s_{0}}^{\pi i}$
have features $\overrightarrow{O(s)}$ consider loss

$$
L(\pi)=\left|E_{s \sim d_{\alpha_{0}^{*}}}[\vec{\phi}(s)]-\underset{s \sim d_{s_{0}}^{\pi}}{ }[\vec{\phi}(s)]\right|
$$

Go we want to "natch" expected teature with that seen in the data. [where $|\vec{x}|=\sum_{i}\left|x_{i}\right|$ for $\underset{s \sim d d_{s_{0}}^{*}}{ }[\vec{\phi}(s)\}$ from obstinate expert state trajectory optimization: use $\left\{\pi_{\theta} \mid \theta \in \mathbb{R}^{a}\right\}$ and REINFORCE
$\theta \in \theta-n \nabla L(\theta)$
CREINFORCE can be used to compute this gradient).
example features for "small" problems. "one hat "

$$
\begin{aligned}
& \text { do you }
\end{aligned}
$$

so if $L(\pi)=0$
U

$$
d_{s_{0}}^{\pi}(s)=d_{s_{0}}^{\pi}(s) \quad \forall s
$$

how do we learn $\bar{\phi}$?

- GAN approach to ILO

Q earner \leftrightarrows generator
make $L(\pi)$
be small

- feature update by adversary, violate \& to make

$$
\mid E_{s \sim d \delta_{s_{0}}}
$$

Summary:

1. Example of error amplification
2. The DAgger algorithm

1-minute feedback form: https://bit.|ly/3RHtlxy

