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Some Helpful Notation: Visitation Measures

« Visitation probability at time /1: P (sy,, ay, | 4, 7r)
* Average Visitation Measure:

1 H-1
di(s, @) = — ) P(s,alu,m
h=0

« (s)



“Lack of Exploration” leads to Optimization and Statistical Challenges
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« Suppose |S| ~ Hor |S|~ 1/(1 —y) & u(sy) = 1 (i.e. we start at sp).
. A randomly initialized policy has prob. O(1/3!5!) of hitting the goal state
in a single trajectory.
e Implications:
* Any sample based policy iteration approach (starting with this policy)
requires O(319) trajectories to make progress at the very first step.
« Same for any sample based PG method.

* Related: even if we had exact gradients, the “landscape” is such that
these gradients are exponentially small, at randomly initialized policy
(see ).
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ImpIications/Comments/Remaindg of Course
TV ()
So T R=1

. . . . . . S states Thrun ‘92
* Sometimes exploration is (or can be made) “easier” in practice

 Random strategies can reach “rewarding milestones”
* We can design/“shape” the reward function to help us out.
« We can try to make the distribution u to have better coverage.

* For small problems, u being uniform would make all these issues go away.
(for large problems, u being uniform may not help at all. Why?)

 ldeally, 1 having support on where a good policy tends to visit is helpful

(sometimes we can’t design p)
e Course:

« A little theory with regards to 4 and PG. (today)
PG has better guarantees than approx DP methods (in terms of u).

* Imitation learning (starting today).
An expert gives us samples from a “good” u.

» Explicit Exploration: for the “tabular case” (we will mix UCB with VI!)
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Fitted Policy Improvement Guarantees (optional)

- Let s, @y ~ p now be the starting “state-action” distribution. J(x) = Eso,aON,u[Q”(S’ a)l
(the theory is better suited to this. See AJKS).
« Approximation error: For all policies, suppose that for all x,

min £, (075.) = 075, )| < 6, anc min (10"~ 071, < 5.,

S,a~u

- 0: the average case supervised learning error (reasonable to expect this can be made small)
0., the worse case error (often unreasonable to expect to be small)

- Suppose that we use a # samples that is poly in d & 1/¢e,,, for both fittedPl and NPG.
+ FittedPI will return a policy 7FPT with the performance guarantee:
J(#Fh > J(n*) — e, — 2H?S,
*NPG has the same guarantee.
*NPG also has a stronger guarantee: Suppose p has “reasonable support” on where 7™ tends to visit, i.e. suppose:
d= (s, a)
max | ——| < C
s.a u(s,a)

then NPG will return a policy with sub-optimality determined by C and the average case error 0:
NPG 2
J(#Z™%) > J(n™) — e, — 2H 7C5



Aside: Brittle policies if we train starting from only from one configuration!

» [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single
starting configuration sy are not robust!
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Aside: Brittle policies if we train starting from only from one configuration!

» [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single
starting configuration sy are not robust!

e How to fix this?
« Training from different starting configurations sampled from s, ~ 1 fixes this.

max E [VQ(SO)]
0

So~H

« The measure p is also relevant for robustness.



OpenAl: progress on dexterous hand manipulation
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OpenAl: progress on dexterous hand manipulation
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Trained with “domain randomization”

Basically, the measure s, ~ 1 was
diverse.
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IL Setting and the Behavior Cloning algorithm

Expert Trajectories

Discounted infinite horizon MDP / = {S,A,v,r,P, p, n*}

Ground truth reward r(s, a) € [0,1] is unknown;
For simplicity, let’s assume expert is a (nearly) optimal policy *

We have a dataset & = (s*,a*)M. ~ dr

Goal: learn a policy from @ that is as good as the expert 7*
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Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S —» A(A)}

BC is a Reduction to Supervised Learning:

M

7 = arg min 2 A (ﬂ,s*,a*)
nell “ |
1=

Many choices of loss functions:
1. Negative log-likelihood (NLL): Z(x, s,a™) = — Inz(a™ | s*)
2. square loss (i.e., regression for continuous action): Z(z, s, a™) = ||a(s) — a*ll%
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Performance Guarantee

Assumption: we are going to assume Supervised Learning succeeded

Eywgrl |7(s) # 7%(s)| < e € R*




What could go wrong?

Predictions affect future inputs/

observations
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Distribution Shift: Example (finite horizon case)

Initial state



Distribution Shift: Example (finite horizon case)

Initial state



Distribution Shift: Example (finite horizon case)

Initial state

d»
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Distribution Shift: Example (finite horizon case)

Initial state

d»
ﬂ* 1 ﬂ* H - 1 ﬂ*
47 (s0) = di (5)) = ——— df (5,) = 0

Vi =H-1



Distribution Shift: Example (finite horizon case)

Assume SL returned such policy 7

A(s0) = a, W/ prob 1 - He A(s)) = A(s) =
TN 4, wprobHe TV T @20




Distribution Shift: Example (finite horizon case)

Initial state

d»

- 1 H-1 -
dso (89) = H’ So (S1) = T d (Sz)

Assume SL returned such policy 7

. a, w/prob1l-He .
75) = a, W/probHe 781 = ap () = 0y

This policy has good supervised learning error:

[Es~dﬂ*[Ea~?z( i1 (a #* ﬂ*(s)) =€

(\—LQB'%-V;O*DI =

&



Distribution Shift: Example (finite horizon case)

r(sp) =1 Assume SL returned such policy 7
~ a, w/prob1l-He
7(sy) =

a, w/probHe 2(sy) = ay, 7(sy) = @

This policy has good supervised learning error:
[Es~dgo*[Ea~7?(-|s)1 (a #* ﬂ*(s)) =€

O(c®)

But we have quadratic error (in H) in performance:

K\_/\.,-\
V;(T):(l—He)-Vg +H€-O=Vs’(’) —eHH - 1)

Initial state

d

X 1 H-1

47 (50) = 4 (5) = == 7' (5) = 0 (\—Hz)v “alis)o
Vi = H -1 ;f%zv =



Distribution Shift: Example (finite horizon case)

Initial state

d»
ﬂ* 1 ﬂ.* H_ 1 ﬂ*
dso (89) = E, dso (s)) = T, dso (55) =0

Vi =H-1

Assume SL returned such policy 7

. a, w/prob1l-He .
75) = a, W/probHe 781 = ap () = 0y

This policy has good supervised learning error:

[Es~d;ro*[Ea~7?(-|s)1 (a #* ﬂ*(s)) =€

But we have quadratic error (in H) in performance:

Vi =(-He) - V* +He-0=V" —eH(H - 1)

Issue: once we make a mistake at s, we
end up in s, which is not in the training datal!
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Distribution Shift: Example (discounted case) s
r(s)) = 1 Assume SL returned such policy 7
~ «_ Ja wWprobl-—e/l-y . =~
7o) = {a2 w/ probe/(1—y) Fs1) =y, 7(s) =

We will have good supervised learning error:

[Es~d;ro*[Ea~7?(-|s)1 (a #* ﬂ*(s)) =€

Initial state

ao But we have quadratic error in performance:
vie LV
a Pol-y A=y Y A-yp
d¥ (sp) = 1=y, d= (s)) =y, d¥ (sp) =0
Issue: once we make a mistake at s, we
V;f)* = end up in §, which is not in the training data!
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Today:

More Imitation Learning



Intuitive solution: Interaction

Use interaction to collect [REELT TS A
data where learned policy i
goes
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General Idea: Iterative Interactive
Approach

New Data

- Ny

Collect Data

through
Interaction

Update Policy

N

Updated Policy

All DAgger slides credit: Drew Bagnell, Stephane Ross, Arun Venktraman



Outline for today:

1. The DAgger (Data Aggregation) Algorithm



[Ross11a]

DAgger: Dataset Aggregation

Oth iteration

Expert Demonstrates Task Dataset
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Supervised Learning




DAgger: Dataset Aggregation |
1st iteration

Execute ; and Query Expert

Steering J—
from S <l \

expert Y&k - N\
( /

Ross11a]

22



DAgger: Dataset Aggregation |
1st iteration

Execute ; and Query Expert

New Data

Steering J—
from S <l \

expert Y&z - N\
( /

Ross11a]
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[Ross11a]

DAgger: Dataset Aggregation
1st iteration

Execute ; and Query Expert
New Data

“
@

Steering S
from S <l \

expertY&z S
( /

States from
the learned policy
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DAgger: Dataset Aggregation |

1st iteration

Execute ; and Query Expert

Steering

from :@- \

expert Y 7‘2 -

New Data

Ross11a]
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Ross11a]

DAgger: Dataset Aggregation |
1st iteration

Execute ; and Query Expert

Steer New Data
eering S
from £ <D \

k — \

expert Y
4 Y

= ==
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Supervised Learning

- J
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[Ross11a]

DAgger: Dataset Aggregation
2nd iteration

Execute m; and Query Expert

Steer New Data
eering J—

from 24 <D \

expert TN

/
. (
Q’&g;& . Y §

—

= ==

Aggregate
Dataset All previous data )

=AC
=

New policy
03

- J

Supervised Learning
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[Ross11a]

DAgger: Dataset Aggregation
nth iteration

Execute n,.1 and Query Expert
New Data
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from o -6-('@\
expert Y —
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New policy « % &
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Supervised Learning
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The DAgger algorithm 9¥w«7U 9 [
Tc <
Initialize 7°, and dataset @ = ¢ J

Fort=0—->T-1:

1. W/ 7', generate dataset 2 = {s,,a},s; ~ d;ft, a* = n*(s)

2. Data aggregation: @ = @ U D!

3. Update policy via Supervised-Learning: a+l =sL (SZ)



[Ross AISTATS 2011]

Success!
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Roughly, the DAgger algorithm
requires less human labeled data
than BC.

[Informal Theorem]

Assuming € SL error is achievable.
The DAgger algorlthm has error:

v — VE < e ZHe

(1=
while BC has error:
* ~ 2
Vi - VP <—¢
(1-yp)7?
2 I/ 2
l/ Z
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Summary:

1. Example of error amplification
2. The DAgger algorithm

1-minute feedback form: https://bit.ly/3RHtIxy


https://bit.ly/3RHtlxy

