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Some Helpful Notation: Visitation Measures
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• Visitation probability at time : 

• Average Visitation Measure:   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“Lack of Exploration” leads to Optimization and Statistical Challenges

• Suppose  or  &  (i.e. we start at ).

• A randomly initialized policy has prob.   of hitting the goal state 

in a single trajectory. 

• Implications:

• Any sample based policy iteration approach (starting with this policy) 

requires  trajectories to make progress at the very first step.

• Same for any sample based PG method.

• Related: even if we had exact gradients, the “landscape” is such that 

these gradients are exponentially small, at randomly initialized policy 
(see AJKS Ch 11).

|S | ≈ H |S | ≈ 1/(1 − γ) μ(s0) = 1 s0
O(1/3|S|)

O(3|S|)

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
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Implications/Comments/Remainder of Course

• Sometimes exploration is (or can be made) “easier” in practice

• Random strategies can reach “rewarding milestones”

• We can design/“shape” the reward function to help us out.


• We can try to make the distribution  to have better coverage.

• For small problems,  being uniform would make all these issues go away.  

(for large problems,  being uniform may not help at all. Why?)

• Ideally,  having support on where a good policy tends to visit is helpful  

(sometimes we can’t design )

• Course:

• A little theory with regards to  and PG. (today)  

PG has better guarantees than approx DP methods (in terms of ).

• Imitation learning (starting today).  

An expert gives us samples from a “good” .

• Explicit Exploration: for the “tabular case” (we will mix UCB with VI!)

μ
μ
μ

μ
μ

μ
μ

μ
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Fitted Policy Improvement Guarantees (optional)
•Let  now be the starting “state-action” distribution.  
(the theory is better suited to this. See AJKS).


•Approximation error: For all policies, suppose that for all ,  
, and   


•   : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  

[Theorem:] (informal, see AJKS Ch 4+13)

•  Suppose that we use a # samples that is poly in  for both fittedPI and NPG.

•  FittedPI will return a policy  with the performance guarantee:  
	 	 


•NPG has the same guarantee.

•NPG also has a stronger guarantee: Suppose  has “reasonable support” on where  tends to visit, i.e. suppose:  

	 	  

then NPG will return a policy with sub-optimality determined by  and the average case error : 
	 	

s0, a0 ∼ μ J(π) = Es0,a0∼μ[Qπ(s, a)]

π
min

θ
Es,a∼μ[(Qπ(s, a) − θ⊤ϕ(s, a))2] ≤ δ min

θ
∥Qπ − θ⊤ϕ∥∞ ≤ δ∞

δ
δ∞

d & 1/ϵstat
πFPI

J(πFPI) ≥ J(π⋆) − ϵstat − 2H2δ∞

μ π⋆

max
s,a

dπ⋆
μ (s, a)
μ(s, a) ≤ C

C δ
J(πNPG) ≥ J(π⋆) − ϵstat − 2H2Cδ
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Aside: Brittle policies if we train starting from only from one configuration!

• [Rajeswaran, Lowrey, Todorov,  K. 2017]: showed policies optimized for a single 
starting configuration  are not robust!(0
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Aside: Brittle policies if we train starting from only from one configuration!

• [Rajeswaran, Lowrey, Todorov,  K. 2017]: showed policies optimized for a single 
starting configuration  are not robust!(0

• How to fix this? 
• Training from different starting configurations sampled from  fixes this. 

     

• The measure  is also relevant for robustness.

s0 ∼ μ
max

θ
Es0∼μ[Vθ(s0)]

μ

e



OpenAI: progress on dexterous hand manipulation



OpenAI: progress on dexterous hand manipulation



OpenAI: progress on dexterous hand manipulation

Trained with “domain randomization” 

Basically, the measure  was 
diverse. 

s0 ∼ μ



IL Setting and the Behavior Cloning algorithm

Discounted infinite horizon MDP ℳ = {S, A, γ, r, P, ρ, π⋆}

Ground truth reward  is unknown; 

For simplicity, let’s assume expert is a (nearly) optimal policy 

r(s, a) ∈ [0,1]
π⋆

We have a dataset - = (s⋆
i , a⋆

i )M
i=1 ∼ dπ⋆

Goal: learn a policy from   that is as good as the expert - π⋆
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Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Π = {π : S ↦ Δ(A)}

BC is a Reduction to Supervised Learning:

̂π = arg min
π∈Π

M

∑
i=1

ℓ (π, s⋆, a⋆)

Many choices of loss functions: 

1. Negative log-likelihood (NLL):  ℓ(π, s, a⋆) = − ln π(a⋆ |s⋆)

2. square loss (i.e., regression for continuous action):  ℓ(π, s, a⋆) = ∥π(s) − a⋆∥2
2
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Performance Guarantee

Theorem [BC Performance] With probability at least , BC returns a policy :
1 − δ ̂π
Vπ⋆ − V ̂π ≤ 2

(1 − γ)2 ϵ

The quadratic amplification is annoying
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Assumption: we are going to assume Supervised Learning succeeded

1s∼dπ⋆
μ

1 [ ̂π (s) ≠ π⋆(s)] ≤ ϵ ∈ ℝ+

2 E
V z v
u n Ep a



What could go wrong?
• Predictions affect future inputs/

observations
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Expert’s trajectoryLearned Policy



Distribution Shift: Example (finite horizon case)

Initial state

r(s1) = 1

IT
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Distribution Shift: Example (discounted case)

Initial state

r(s1) = 1

Vπ⋆
s0

= γ
1 − γ

dπ⋆
s0

(s0) = 1 − γ, dπ⋆
s0

(s1) = γ, dπ⋆
s0

(s2) = 0

Assume SL returned such policy ̂π

̂π (s0) = {a1 w/ prob 1 − ϵ/(1 − γ)
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We will have good supervised learning error:

1s∼dπ⋆
s0

1a∼ ̂π (⋅|s)1 (a ≠ π⋆(s)) = ϵ

But we have quadratic error in performance:

V ̂π
s0

= γ
1 − γ

− ϵγ
(1 − γ)2 = Vπ⋆

s0
− ϵγ

(1 − γ)2

Issue: once we make a mistake at , we 
end up in  which is not in the training data!

s0
s2

look at
offline



But Poor Performance...

16



But Poor Performance...

16



But Poor Performance...
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Today:

More Imitation Learning
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Intuitive solution: Interaction
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Use interaction to collect 
data where learned policy 
goes



General Idea: Iterative Interactive 
Approach

Update Policy
Collect Data 

through 
Interaction

New Data

Updated Policy

All DAgger slides credit: Drew Bagnell, Stephane Ross, Arun Venktraman



Outline for today:

1. The DAgger (Data Aggregation) Algorithm



DAgger: Dataset Aggregation 
0th iteration
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Expert Demonstrates Task Dataset

Supervised Learning

1st policy π1

[Ross11a]
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Execute π1 and Query Expert

Steering 
from 
expert
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Steering 
from 
expert

States from  
the learned policy



DAgger: Dataset Aggregation 
 1st iteration

24

Execute π1 and Query Expert
New Data

All previous data

[Ross11a]

Steering 
from 
expert



DAgger: Dataset Aggregation 
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Execute π1 and Query Expert
New Data

Supervised Learning

New policy 
π2

All previous data

Aggregate 
Dataset

[Ross11a]

Steering 
from 
expert



DAgger: Dataset Aggregation 
 2nd iteration
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Execute π2 and Query Expert
New Data

Supervised Learning

New policy 
π3

All previous data

Aggregate 
Dataset

Steering 
from 
expert

[Ross11a]



DAgger: Dataset Aggregation 
 nth iteration
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[Ross11a]

Execute πn-1 and Query Expert
New Data

Supervised Learning

New policy 
πn

All previous data

Steering 
from 
expert

Aggregate 
Dataset



The DAgger algorithm

Initialize , and dataset π0 - = ∅
For :t = 0 → T − 1

1. W/ , generate dataset πt -t = {si, a⋆
i }, si ∼ dπt

μ , a⋆
i = π⋆(si)

2. Data aggregation: - = - ∪ -t

3. Update policy via Supervised-Learning: πt+1 = SL (-)

stronger oracle
model than in BC



Success!
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[Ross AISTATS 2011]
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Success!
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[Ross AISTATS 2011]
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Better

[Ross AISTATS 

Average Falls/Lap
Roughly, the DAgger algorithm 
requires less human labeled data 
than BC. 
 
[Informal Theorem] 
Assuming  SL error is achievable.  
The DAgger algorithm has error: 




while BC has error: 

ϵ

Vπ⋆ − V ̂π ≤ 2
(1 − γ) ϵ

Vπ⋆ − V ̂π ≤ 2
(1 − γ)2 ϵ

ZHE
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Immitation Learning
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Summary:

1. Example of error amplification

2. The DAgger algorithm

1-minute feedback form: https://bit.ly/3RHtlxy 
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