Reinforcement Learning &
Multi-Armed Bandits

CS/Stat 184: Introduction to Reinforcement Learning
Fall 2022



Today

* Overview of reinforcement learning and this course
* Multi-armed bandits

 Problem statement

 Baseline approach 1: pure exploration

 Baseline approach 2: pure greedy



Course staff introductions

 Instructors: Lucas Janson and Sham Kakade

* TFs: Daniel Garces, Kuanhao Jiang, Yanke Song

» CAs: Alex Cai, Howie Guo, Angela Li, Richard Qiu, Eric Shen, Lara
Zeng, Saba Zerefa

* Homework 0 goes out today




Course objectives:

» We seek the students to obtain fundamental and working knowledge of RL:
the algorithms, aspects of their analysis, and the practice

» Lectures will be math heavy; all HWs have programming components.
* HWO +HW1-HW4 + Final

* HWO goes out today

* HWO is review of helpful background!
* We will have an “embedded ethics lecture” + assignment
* The class will be challenging, and we hope you will enjoy it!



Course logistics

All policies are stated on the course website:
https://shamulent.github.io/CS_Stat184 Fall22.html

» Our policies seek consistency among all the students.

- Communication: please only use Ed to contact us

- Late policy (basically): you have 96 cumulative hours of late time.
» Please use this to plan for unforeseen circumstances.

» Regrading: ask us in writing on Ed in a week


https://shamulent.github.io/CS_Stat184_Fall22.html
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Goal: optimize some long-term objective function

Humans do this all the time:
past experience (input) informs every decision (output) to achieve some end (goal)

Different from other ML (supervised/unsupervised learning) b/c interactive



Flashy Successes of RL so far: games
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Reinforcement Learning in Real World:
Mobile health
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Online advertising
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Robotic manipulation
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Mathematical framework in which RL happens:
Markov Decision Process

Agent Environment
n(s) = a

Policy: determine action based on state
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Send reward and next state from a
Markovian transition dynamics

r(s,a), s’ ~P(-|s,a)

Policy & Is what is under agent’s control
Reinforcement Learning = updating 7 from initial 7, towards (hopefully) optimal >



Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State s: robot configuration (e.g., joint angles)
and the ball’s position

Action a: Torgue on joints in arm & fingers

Transition s ~ P( - | s, a): physics + some noise

policy 7(s): a function mapping from robot
state to action (i.e., torque)

—_ Cost c(s, a): torque magnitude + dist to goal

7% = argminE |c(sy, ay) + ye(sy, a;) + yzc(s2, a,) + y3c(s3, az) + ..... |\a, = 7(sy), .1 ~ P(C-|s,a)
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Fundamental challenges of RL

1. Learning the environment: learn online without sacrificing too much reward
 Exploration-Exploitation tradeoft

* Aspects of experimental design: what data to collect to learn fastest [no reward]

* Aspects of supervised learning: predict outcome of an action [i.i.d. data]

2. Optimizing policy: in known complex environment, hard to find best policy

* Aspects of control theory: how to act optimally in complex environment [known]

This course: addressing these challenges in increasingly complex environments

Today + next 6 lectures isolate challenge 1 (learning the environment)
(Multi-armed) Bandits: very simple but unknown environment



Today

* Overview of reinforcement learning and this course
* Multi-armed bandits

 Problem statement

 Baseline approach 1: pure exploration

 Baseline approach 2: pure greedy
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Intro to Multi-armed bandits (MAB)

Setting:

We have K many arms; label them 1,..., K

Each arm has a unknown reward distribution, i.e., v, € A([0,1]),

w/ mean p; = _I”va[r]

Example: 1} is a Bernoulli distribution w/ mean y = P, (r = 1)

1w/ prob g,

Every time we pull arm k, we observe an i.i.d reward r =
0 w/probl —py



Application: online advertising

A learning system aims to
maximize clicks in the long run:

You
9
o

Arms correspond to Ads 3. Update: Decide what ad
to recommend for next
Reward is 1 if user clicks on ad round

1. Try an Ad (pull an arm)

‘ 2. Observe if it is clicked
(see a zero-one reward)



Application: mobile health
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Arms correspond to messages sent to users

Reward is, e.g., 1 if user exercised
after seeing message

A learning system aims to

maximize fitness in the long run;

1. Send an message (pull an arm)

2. Observe If user exercises
(see a zero-one reward)

3. Update: Decide what
message to send next round



MAB sequential process

More formally, we have the following interactive learning process:

ort=0 - (# based on historical information)

1. Learner pullsarma, € { 1,..., K}

2. Learner observes an I.1.d reward r; ~ L, of arm g,

Note: each iteration, we do not observe rewards of arms that we did not try
Note: there is no state §; rewards from a given arm are i.i.d. (data NOT i.i.d.!)



MAB learning objective

Optimal policy when reward distributions known is trivial; ,l/t* = max y,

ke|K]
T—1
_ *
Regret,. = Tu™ — Z Hy
S TN
Total expected reward if we Total expected reward of the
pulled best arm over T rounds arms we pulled over T rounds

Goal: want Regret . as small as possible



Why is MAB hard?

Exploration-Exploitation Tradeoff:

Every round, we need to ask ourselves:

Should we pull the arm that currently appears best now (exploit; immediate payoff)?
Or pull another arm, in order to potentially learn it is better (explore; payoff later)?
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 Baseline approach 1: pure exploration
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Naive baseline: pure exploration

Algorithm: at each round choose an arm uniformly at random
from among {1,..., K}

Clearly no learning taking place!

—|Regret. | =
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Baseline: pure greedy

Algorithm: try each arm once, and then commit to the one that
has the highest observed reward

Q: what could go wrong?

A bad arm (i.e., low y;) may generate a high reward by chance (or vice versa)!



Example: pure greedy

More concretely, let’s say we have two arms:

Reward distribution for arm 1: v, = Bernoulli(zz, = 0.6)
Reward distribution for arm 2: v, = Bernoulli(y, = 0.4)

Clearly the first arm is better!
(1 —puppu, =1 -0.6)x0.4

\ First CZO — 1, Cll = 2:

with probability 16%, we observe reward pair (7(,7;) = (0,1)

—[Regret,| > (1I'— 2) X P(select arm 2 for all # > 1) X (regret of arm 2)
=(T-2)%x.16x0.2 =Q(T)

Same rate as pure exploration!
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lToday’s summary:

* Reinforcement learning is an interactive form of machine learning
» Applicable whenever you want to learn to do something better
* One component is learning while acting: exploration vs exploitation
» Other component is optimization
» Multi-armed bandits (or MAB or just bandits)
» Exemplify first component (exploration vs exploitation)
 Pure greedy not much better than pure exploration (linear regret)

* Next time: trade off greediness with exploration
» Explore-then-commit

 £-greedy



