
Reinforcement Learning & 
Multi-Armed Bandits 

 
Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning 

Fall 2022



Today

• Overview of reinforcement learning and this course


• Multi-armed bandits


• Problem statement


• Baseline approach 1: pure exploration


• Baseline approach 2: pure greedy



Course staff introductions

• Instructors: Lucas Janson and Sham Kakade

•TFs: Daniel Garces, Kuanhao Jiang, Yanke Song

•CAs: Alex Cai, Howie Guo, Angela Li, Richard Qiu, Eric Shen, Lara 
Zeng, Saba Zerefa

•Homework 0 goes out today



Course objectives:

• We seek the students to obtain fundamental and working knowledge of RL:  
the algorithms, aspects of their analysis, and the practice 


• Lectures will be math heavy; all HWs have programming components.

• HW0 +HW1-HW4 + Final

• HW0 goes out today


• HW0 is review of helpful background!

• We will have an “embedded ethics lecture” + assignment

• The class will be challenging, and we hope you will enjoy it!



Course logistics

•Our policies seek consistency among all the students.

•Communication: please only use Ed to contact us

•Late policy (basically): you have  96 cumulative hours of late time.


•  Please use this to plan for unforeseen circumstances.

•Regrading: ask us in writing on Ed in a week 

All policies are stated on the course website:  
https://shamulent.github.io/CS_Stat184_Fall22.html 

https://shamulent.github.io/CS_Stat184_Fall22.html


What is Reinforcement Learning?

Humans do this all the time:  
past experience (input) informs every decision (output) to achieve some end (goal)

Goal: optimize some long-term objective function

Different from other ML (supervised/unsupervised learning) b/c interactive



Flashy Successes of RL so far: games

TD GAMMON [Tesauro 95]

Backgammon

[AlphaZero, Silver et.al, 17]

Go

[OpenAI Five, 18]

Dota



Reinforcement Learning in Real World:
Mobile health

Online advertising

Robotic manipulation



Mathematical framework in which RL happens: 

Markov Decision Process

Policy: determine action based on state

Multiple Steps

Send reward and next state from a 
Markovian transition dynamics

r(s, a), s′￼ ∼ P( ⋅ |s, a)

Agent Environment
π(s) → a

Policy  is what is under agent’s control

Reinforcement Learning = updating  from initial  towards (hopefully) optimal 

π
π π0 π⋆



Example:  
robot hand needs to pick the ball and hold it in a goal (x,y,z) position 

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa

policy : a function mapping from robot 
state to action (i.e., torque)

π(s)

Cost : torque magnitude + dist to goalc(s, a)

Transition : physics + some noises′￼ ∼ P( ⋅ |s, a)

π⋆ = arg min
π

𝔼 [c(s0, a0) + γc(s1, a1) + γ2c(s2, a2) + γ3c(s3, a3) + … . . ah = π(sh), sh+1 ∼ P( ⋅ |sh, ah)]





Fundamental challenges of RL
1. Learning the environment: learn online without sacrificing too much reward 


• Exploration-Exploitation tradeoff


• Aspects of experimental design: what data to collect to learn fastest [no reward]


• Aspects of supervised learning: predict outcome of an action [i.i.d. data]


2. Optimizing policy: in known complex environment, hard to find best policy


• Aspects of control theory: how to act optimally in complex environment [known]

Today + next 6 lectures isolate challenge 1 (learning the environment) 
(Multi-armed) Bandits: very simple but unknown environment

This course: addressing these challenges in increasingly complex environments



Today

• Overview of reinforcement learning and this course


• Multi-armed bandits


• Problem statement


• Baseline approach 1: pure exploration


• Baseline approach 2: pure greedy



Intro to Multi-armed bandits (MAB)
Setting:

We have K many arms; label them 1,…, K

Each arm has a unknown reward distribution, i.e., , 

w/ mean 

νk ∈ Δ([0,1])
μk = 𝔼r∼νk

[r]

Example:  is a Bernoulli distribution w/ mean νk μk = ℙr∼νk
(r = 1)

Every time we pull arm , we observe an i.i.d reward k r = {1  w/ prob μk

0 w/ prob 1 − μk



Application: online advertising

Arms correspond to Ads

Reward is 1 if user clicks on ad

A learning system aims to 
maximize clicks in the long run:

1. Try an Ad (pull an arm)

2. Observe if it is clicked 
(see a zero-one reward)

3. Update: Decide what ad 
to recommend for next 
round



Application: mobile health

Arms correspond to messages sent to users

Reward is, e.g., 1 if user exercised 
after seeing message

A learning system aims to 
maximize fitness in the long run:

1. Send an message (pull an arm)

2. Observe if user exercises 
(see a zero-one reward)

3. Update: Decide what 
message to send next round



MAB sequential process

More formally, we have the following interactive learning process:

For t = 0 → T − 1

1. Learner pulls arm at ∈ {1,…, K}

2. Learner observes an i.i.d reward  of arm rt ∼ νat
at

(# based on historical information)

Note: each iteration, we do not observe rewards of arms that we did not try
Note: there is no state ; rewards from a given arm are i.i.d. (data NOT i.i.d.!)s



MAB learning objective

RegretT = Tμ⋆ −
T−1

∑
t=0

μat

Total expected reward if we 
pulled best arm over T rounds

Total expected reward of the 
arms we pulled over T rounds

Goal: want  as small as possibleRegretT

Optimal policy when reward distributions known is trivial: μ⋆ := max
k∈[K]

μk



Why is MAB hard?

Exploration-Exploitation Tradeoff:

Every round, we need to ask ourselves: 


Should we pull the arm that currently appears best now (exploit; immediate payoff)?

Or pull another arm, in order to potentially learn it is better (explore; payoff later)?



Today

• Overview of reinforcement learning and this course


• Multi-armed bandits


• Problem statement


• Baseline approach 1: pure exploration


• Baseline approach 2: pure greedy



Naive baseline: pure exploration

Algorithm: at each round choose an arm uniformly at random 
from among {1,…, K}

Clearly no learning taking place!

𝔼[RegretT] = 𝔼 [Tμ⋆ −
T−1

∑
t=0

μat] = T (μ⋆ − μ̄) > 0

μ̄ =
1
K

K

∑
k=1

μk



Today

• Overview of reinforcement learning and this course


• Multi-armed bandits


• Problem statement


• Baseline approach 1: pure exploration


• Baseline approach 2: pure greedy



Baseline: pure greedy

Algorithm: try each arm once, and then commit to the one that 
has the highest observed reward

Q: what could go wrong?

A bad arm (i.e., low ) may generate a high reward by chance (or vice versa)!μk



Example: pure greedy

More concretely, let’s say we have two arms:

Reward distribution for arm 1:  = Bernoulliν1 (μ1 = 0.6)

Clearly the first arm is better! 

First , :

with probability 16%, we observe reward pair 

a0 = 1 a1 = 2
(r0,r1) = (0,1)

Reward distribution for arm 2:  = Bernoulliν2 (μ2 = 0.4)

(1 − μ1)μ2 = (1 − 0.6) × 0.4

    (regret of arm 2)𝔼[RegretT] ≥ (T − 2) × ℙ(select arm 2 for all t > 1) ×
= (T − 2) × .16 × 0.2 = Ω(T)

Same rate as pure exploration!



Today

• Overview of reinforcement learning and this course


• Multi-armed bandits


• Problem statement


• Baseline approach 1: pure exploration


• Baseline approach 2: pure greedy



Today’s summary:
•Reinforcement learning is an interactive form of machine learning


•Applicable whenever you want to learn to do something better

•One component is learning while acting: exploration vs exploitation

•Other component is optimization


•Multi-armed bandits (or MAB or just bandits)

•Exemplify first component (exploration vs exploitation)

•Pure greedy not much better than pure exploration (linear regret)


•Next time: trade off greediness with exploration

•Explore-then-commit

• -greedyε


