
Optimal Control Theory and the
Linear Quadratic Regulator

 
Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning  

Fall 2022
1

Today

• Feedback from last lecture

• Recap

• Finite-horizon discrete MDPs

• General optimal control problem

• The linear quadratic regulator (LQR) problem

2

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.

3

Today

4

• Feedback from last lecture

• Recap

• Finite-horizon discrete MDPs

• General optimal control problem

• The linear quadratic regulator (LQR) problem

Recap

5

Recap

•For discrete MDPs, we covered some great algorithms for computing the
optimal policy (reminder, we haven’t done any learning in MDPs yet)

5

Recap

•For discrete MDPs, we covered some great algorithms for computing the
optimal policy (reminder, we haven’t done any learning in MDPs yet)
•But all algorithms polynomially in the size of the state and action spaces…
what if one or both are infinite?

5

Recap

•For discrete MDPs, we covered some great algorithms for computing the
optimal policy (reminder, we haven’t done any learning in MDPs yet)
•But all algorithms polynomially in the size of the state and action spaces…
what if one or both are infinite?
• In this unit (next 3 lectures), we will discuss computation of good/optimal
policies in continuous state and action spaces (still no learning yet!)

5

Today

6

• Feedback from last lecture

• Recap

• Finite-horizon discrete MDPs

• General optimal control problem

• The linear quadratic regulator (LQR) problem

Recap  
+ 

Finite Horizon MDPs

7

Value Iteration Algorithm:

1. Initialization: V0 : ∥V0∥∞ ∈ [0, 1
1 − γ]

2. Iterate until convergence: Vt+1 ← &Vt

8

• Define: where , and , where

•So we want to find , s.t.

R ∈ ℝ|S|, Rπ
s = r(s, π(s)) Pπ ∈ ℝ|S|×|S| Pπ

s′ ,s = P(s′ |s, π(s))
V ∈ ℝ|S| V = Rπ + γPπV

Exact Policy Evaluation: Matrix Version

+ γ=

V R P V

P(⋅ |s, π(s))r(s, π(s))V(s)

9

• Algo: compute  
One can show that is full rank (thus invertible).

• Runtime: This approach runs in time .

V = (I − γPπ)−1Rπ

I − γPπ

O(|S |3)

An Iterative Version for Policy Eval

Algorithm (Iterative PE):

1. Initialization:

2. Iterate until convergence:  

V0 : ∥V0∥∞ ∈ [0, 1
1 − γ]

Vt+1 ← R + γPVt

10

Policy Iteration (PI)
• Initialization: choose a policy

• For

1. Policy Evaluation: compute and , where 
 	

2. Policy Improvement: set 
	

π0 : S ↦ A
t = 0,1,…

Vπt(s) Qπt(s, a)
Qπt(s, a) = r(s, a) + γ∑

s′

P(s′ |s, a)Vπt(s′)

πt+1(s) := arg max
a

Qπt(s, a)

What’s computation complexity per iteration?

 O(|S |3 + |S |2 |A |)

11

Recap  
+ 

Finite Horizon MDPs

12

,
ℳ = {S, A, r, P, H}
r : S × A ↦ [0,1], H ∈ ℕ, P : S × A ↦ Δ(S)

Finite horizon Markov Decision Process

,
ℳ = {S, A, r, P, H}
r : S × A ↦ [0,1], H ∈ ℕ, P : S × A ↦ Δ(S)

Finite horizon Markov Decision Process

Note that in finite horizon setting, we will consider time-dependent policies, i.e.,

π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h

,
ℳ = {S, A, r, P, H}
r : S × A ↦ [0,1], H ∈ ℕ, P : S × A ↦ Δ(S)

Finite horizon Markov Decision Process

Note that in finite horizon setting, we will consider time-dependent policies, i.e.,

π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h

a0 = π0(s0), s1 ∼ P(⋅ |s0, a0), a1 = π1(s1), … sh ∼ P(⋅ |sh−1, ah−1), ah = πh(sh)…

Policy interacts with the MDP as follows to sample a 
 trajectory as follows:τ = {s0, a0, r0, s1, a1, r1, …, sH−1, aH−1, rH−1}

V/Q functions in Finite horizon MDP

Vπ
h (s) = 1 [

H−1

∑
τ=h

r(sτ, aτ) sh = s]
Qπ

h (s, a) = 1 [
H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]

V/Q functions in Finite horizon MDP

Vπ
h (s) = 1 [

H−1

∑
τ=h

r(sτ, aτ) sh = s]
Qπ

h (s, a) = 1 [
H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]

Qπ
h (s, a) = r(s, a) + 1s′ ∼P(s,a) [Vπ

h+1(s′)]
Bellman Consistency Equation:

Compute Optimal Policy via Dynamic Programming
DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

Compute Optimal Policy via Dynamic Programming
DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Compute Optimal Policy via Dynamic Programming
DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a)

Compute Optimal Policy via Dynamic Programming
DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

Compute Optimal Policy via Dynamic Programming
DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

Compute Optimal Policy via Dynamic Programming
DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , then:

(i.e. assuming we know how to perform optimally starting at)

V⋆
h+1, h ≤ H − 2

h + 1

Compute Optimal Policy via Dynamic Programming
DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , then:

(i.e. assuming we know how to perform optimally starting at)

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + 1s′ ∼P(s,a)V⋆

h+1(s′)

Compute Optimal Policy via Dynamic Programming
DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , then:

(i.e. assuming we know how to perform optimally starting at)

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + 1s′ ∼P(s,a)V⋆

h+1(s′)

π⋆
h (s) = arg max

a
Q⋆

h (s, a),

Compute Optimal Policy via Dynamic Programming
DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , then:

(i.e. assuming we know how to perform optimally starting at)

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + 1s′ ∼P(s,a)V⋆

h+1(s′)

π⋆
h (s) = arg max

a
Q⋆

h (s, a), V⋆
h = max

a
Q⋆

h (s, a)

Summary on Finite horizon MDP
,
ℳ = {S, A, r, P, H}

r : S × A ↦ [0,1], H ∈ ℕ, P : S × A ↦ Δ(S)

Comparing to the infinite horizon, discounted MDP:

1. Policy will be time dependent

2. DP takes steps to compute  

- total computation time is  
- no need to use contraction argument and no discount factor

3. Extension to non-stationary setting works immediately:  
(i.e. with a non-stationary transition model:) 

H π⋆

O(H |S |2 |A |)

P0(s′ |s, a), P1(s′ |s, a), …PH−1(s′ |s, a)

Today

17

• Feedback from last lecture

• Recap

• Finite-horizon discrete MDPs

• General optimal control problem

• The linear quadratic regulator (LQR) problem

Robotics and Controls

18

Example: CartPole

19

Example: CartPole
State: position and velocity of the cart,

angle and angular velocity of the pole

19

Example: CartPole
State: position and velocity of the cart,

angle and angular velocity of the pole

Control: force on the cart

19

Example: CartPole
State: position and velocity of the cart,

angle and angular velocity of the pole

Control: force on the cart

19

Goal: stabilizing around the point (s = s⋆, a = 0)

Example: CartPole

c(st, at) = a⊤
t Rat + (st − s⋆)⊤Q(st − s⋆)

State: position and velocity of the cart,

angle and angular velocity of the pole

Control: force on the cart

19

Goal: stabilizing around the point (s = s⋆, a = 0)

Example: CartPole

c(st, at) = a⊤
t Rat + (st − s⋆)⊤Q(st − s⋆)

State: position and velocity of the cart,

angle and angular velocity of the pole

Control: force on the cart

min
π0,…,πT−1:S→A

1 [
T−1

∑
t=0

c(st, at)] s.t. st+1 = f(st, at), s0 ∼ μ0

Optimal control:

19

Goal: stabilizing around the point (s = s⋆, a = 0)

Example: CartPole

c(st, at) = a⊤
t Rat + (st − s⋆)⊤Q(st − s⋆)

State: position and velocity of the cart,

angle and angular velocity of the pole

Control: force on the cart

min
π0,…,πT−1:S→A

1 [
T−1

∑
t=0

c(st, at)] s.t. st+1 = f(st, at), s0 ∼ μ0

Optimal control:

19

Goal: stabilizing around the point (s = s⋆, a = 0)

More Generally: Optimal Control

20

More Generally: Optimal Control
General dynamical system is described as , wherest+1 = ft(st, at, wt)

20

More Generally: Optimal Control
General dynamical system is described as , wherest+1 = ft(st, at, wt)
• is the state which starts at initial value ,st ∈ ℝd s0 ∼ μ0

20

More Generally: Optimal Control
General dynamical system is described as , wherest+1 = ft(st, at, wt)
• is the state which starts at initial value ,st ∈ ℝd s0 ∼ μ0
• is the control (action),at ∈ ℝk

20

More Generally: Optimal Control
General dynamical system is described as , wherest+1 = ft(st, at, wt)
• is the state which starts at initial value ,st ∈ ℝd s0 ∼ μ0
• is the control (action),at ∈ ℝk

• is the noise/disturbance, wt

20

More Generally: Optimal Control
General dynamical system is described as , wherest+1 = ft(st, at, wt)
• is the state which starts at initial value ,st ∈ ℝd s0 ∼ μ0
• is the control (action),at ∈ ℝk

• is the noise/disturbance, wt
• is a function (the dynamics) that determines the next state ft st+1 ∈ ℝd

20

More Generally: Optimal Control
General dynamical system is described as , wherest+1 = ft(st, at, wt)
• is the state which starts at initial value ,st ∈ ℝd s0 ∼ μ0
• is the control (action),at ∈ ℝk

• is the noise/disturbance, wt
• is a function (the dynamics) that determines the next state ft st+1 ∈ ℝd

Objective is to find control policy which minimizes the total cost (finite horizon),πt T

20

More Generally: Optimal Control
General dynamical system is described as , wherest+1 = ft(st, at, wt)
• is the state which starts at initial value ,st ∈ ℝd s0 ∼ μ0
• is the control (action),at ∈ ℝk

• is the noise/disturbance, wt
• is a function (the dynamics) that determines the next state ft st+1 ∈ ℝd

Objective is to find control policy which minimizes the total cost (finite horizon),πt T

minimize 1[cT(sT) +
T−1

∑
t=0

ct(st, at)]
s.t. st+1 = ft(st, at, wt), at = πt(st), s0 ∼ μ0

20

More Generally: Optimal Control
General dynamical system is described as , wherest+1 = ft(st, at, wt)
• is the state which starts at initial value ,st ∈ ℝd s0 ∼ μ0
• is the control (action),at ∈ ℝk

• is the noise/disturbance, wt
• is a function (the dynamics) that determines the next state ft st+1 ∈ ℝd

Objective is to find control policy which minimizes the total cost (finite horizon),πt T

minimize 1[cT(sT) +
T−1

∑
t=0

ct(st, at)]
s.t. st+1 = ft(st, at, wt), at = πt(st), s0 ∼ μ0

• Randomness (in the expectation) generally enters via , e.g., wt wt ∼ 6(0,Σ)

20

More Generally: Optimal Control
General dynamical system is described as , wherest+1 = ft(st, at, wt)
• is the state which starts at initial value ,st ∈ ℝd s0 ∼ μ0
• is the control (action),at ∈ ℝk

• is the noise/disturbance, wt
• is a function (the dynamics) that determines the next state ft st+1 ∈ ℝd

Objective is to find control policy which minimizes the total cost (finite horizon),πt T

minimize 1[cT(sT) +
T−1

∑
t=0

ct(st, at)]
s.t. st+1 = ft(st, at, wt), at = πt(st), s0 ∼ μ0

• Randomness (in the expectation) generally enters via , e.g., wt wt ∼ 6(0,Σ)
• Note separated out because by convention there is no cT aT

20

Discretize to finite state/action spaces?
s ∈ ℝd, a ∈ ℝk

21

Discretize to finite state/action spaces?
s ∈ ℝd, a ∈ ℝk

21

Idea: Round states and actions onto an -grid of their spaces; then use tools from finite MDPsϵ

Discretize to finite state/action spaces?
s ∈ ℝd, a ∈ ℝk

21

Idea: Round states and actions onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 s a

Discretize to finite state/action spaces?
s ∈ ℝd, a ∈ ℝk

21

Idea: Round states and actions onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 s a

Assuming state/control spaces are bounded, this makes both finite

Discretize to finite state/action spaces?
s ∈ ℝd, a ∈ ℝk

21

Idea: Round states and actions onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 s a

Assuming state/control spaces are bounded, this makes both finite

Recall: VI/PI computation times scaled polynomially in and |S | |A |

Discretize to finite state/action spaces?
s ∈ ℝd, a ∈ ℝk

21

Idea: Round states and actions onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 s a

Assuming state/control spaces are bounded, this makes both finite

Recall: VI/PI computation times scaled polynomially in and |S | |A |

But curse of dimensionality means and will scale like |S | |A | (1/ϵ)d

Discretize to finite state/action spaces?
s ∈ ℝd, a ∈ ℝk

21

Idea: Round states and actions onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 s a

Assuming state/control spaces are bounded, this makes both finite

Recall: VI/PI computation times scaled polynomially in and |S | |A |

But curse of dimensionality means and will scale like |S | |A | (1/ϵ)d

E.g., , gives on the order of …ϵ = 0.01 d = k = 10 |S |2 |A | 1060

Discretize to finite state/action spaces?
s ∈ ℝd, a ∈ ℝk

21

Idea: Round states and actions onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 s a

Assuming state/control spaces are bounded, this makes both finite

Recall: VI/PI computation times scaled polynomially in and |S | |A |

But curse of dimensionality means and will scale like |S | |A | (1/ϵ)d

E.g., , gives on the order of …ϵ = 0.01 d = k = 10 |S |2 |A | 1060

Even the idea of discretizing relies on continuity (i.e., rounding nearby values to the same grid point only
works if system treats them nearly the same),

Discretize to finite state/action spaces?
s ∈ ℝd, a ∈ ℝk

21

Idea: Round states and actions onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round and to 2 decimal placesϵ = 0.01 s a

Assuming state/control spaces are bounded, this makes both finite

Recall: VI/PI computation times scaled polynomially in and |S | |A |

But curse of dimensionality means and will scale like |S | |A | (1/ϵ)d

E.g., , gives on the order of …ϵ = 0.01 d = k = 10 |S |2 |A | 1060

Even the idea of discretizing relies on continuity (i.e., rounding nearby values to the same grid point only
works if system treats them nearly the same),

So why not rely on this more formally by assuming smoothness/structure on the dynamics and cost ?f c

Today

22

• Feedback from last lecture

• Recap

• Finite-horizon discrete MDPs

• General optimal control problem

• The linear quadratic regulator (LQR) problem

The Linear Quadratic Regulator (LQR)

23

The Linear Quadratic Regulator (LQR)

23

Linear dynamics: st+1 = f(st, at, wt) = Ast + Bat + wt

The Linear Quadratic Regulator (LQR)

23

Linear dynamics: st+1 = f(st, at, wt) = Ast + Bat + wt
Quadratic cost function: c(st, at) = s⊤

t Qst + a⊤
t Rat, cT(sT) = s⊤

T QsT

The Linear Quadratic Regulator (LQR)

23

Linear dynamics: st+1 = f(st, at, wt) = Ast + Bat + wt
Quadratic cost function: c(st, at) = s⊤

t Qst + a⊤
t Rat, cT(sT) = s⊤

T QsT

Gaussian noise: wt ∼ 6(0,Σ)

The Linear Quadratic Regulator (LQR)

23

Linear dynamics: st+1 = f(st, at, wt) = Ast + Bat + wt

• Why not linear for ? Want it bounded below so we can minimize itc

Quadratic cost function: c(st, at) = s⊤
t Qst + a⊤

t Rat, cT(sT) = s⊤
T QsT

Gaussian noise: wt ∼ 6(0,Σ)

The Linear Quadratic Regulator (LQR)

23

Linear dynamics: st+1 = f(st, at, wt) = Ast + Bat + wt

• Why not linear for ? Want it bounded below so we can minimize itc
• and are positive definite matricesQ ∈ ℝd×d R ∈ ℝk×k

Quadratic cost function: c(st, at) = s⊤
t Qst + a⊤

t Rat, cT(sT) = s⊤
T QsT

Gaussian noise: wt ∼ 6(0,Σ)

The Linear Quadratic Regulator (LQR)

23

Linear dynamics: st+1 = f(st, at, wt) = Ast + Bat + wt

• Why not linear for ? Want it bounded below so we can minimize itc
• and are positive definite matricesQ ∈ ℝd×d R ∈ ℝk×k

• , , determine the dynamicsA ∈ ℝd×d B ∈ ℝd×k Σ ∈ ℝd×d

Quadratic cost function: c(st, at) = s⊤
t Qst + a⊤

t Rat, cT(sT) = s⊤
T QsT

Gaussian noise: wt ∼ 6(0,Σ)

The Linear Quadratic Regulator (LQR)

23

Linear dynamics: st+1 = f(st, at, wt) = Ast + Bat + wt

• Why not linear for ? Want it bounded below so we can minimize itc
• and are positive definite matricesQ ∈ ℝd×d R ∈ ℝk×k

• , , determine the dynamicsA ∈ ℝd×d B ∈ ℝd×k Σ ∈ ℝd×d

• Note lack of subscripts on (except at) and : time-homogeneousc T f

Quadratic cost function: c(st, at) = s⊤
t Qst + a⊤

t Rat, cT(sT) = s⊤
T QsT

Gaussian noise: wt ∼ 6(0,Σ)

Is LQR useful?

24

Is LQR useful?

24

Surprisingly yes, despite its simplicity!

Is LQR useful?

24

Surprisingly yes, despite its simplicity!
Any smooth dynamics function is locally approximately linear, and any smooth
function with a minimum is locally approximately quadratic near its minimum

Is LQR useful?

24

Surprisingly yes, despite its simplicity!
Any smooth dynamics function is locally approximately linear, and any smooth
function with a minimum is locally approximately quadratic near its minimum

E.g., think of heating/cooling a room: if done right, temperature should rarely deviate
much from a fixed value, and shouldn’t have to do too much heating or cooling, i.e.,

states and actions stay local to some fixed points!

Is LQR useful?

24

Surprisingly yes, despite its simplicity!
Any smooth dynamics function is locally approximately linear, and any smooth
function with a minimum is locally approximately quadratic near its minimum

In fact, because the LQR model is so well-studied in control theory, many human-
engineered systems are designed to be approximately linear where possible

E.g., think of heating/cooling a room: if done right, temperature should rarely deviate
much from a fixed value, and shouldn’t have to do too much heating or cooling, i.e.,

states and actions stay local to some fixed points!

Is LQR useful?

24

Surprisingly yes, despite its simplicity!
Any smooth dynamics function is locally approximately linear, and any smooth
function with a minimum is locally approximately quadratic near its minimum

In fact, because the LQR model is so well-studied in control theory, many human-
engineered systems are designed to be approximately linear where possible

E.g., think of heating/cooling a room: if done right, temperature should rarely deviate
much from a fixed value, and shouldn’t have to do too much heating or cooling, i.e.,

states and actions stay local to some fixed points!

That said, it is indeed far too simple for many more complex (nonlinear) systems, yet
in a couple lectures we will see how to extend its ideas to such systems to get
surprisingly good solutions to apparently intractable nonlinear control problems

Example: 1-d Vehicle

25

Robot moving in 1-d by choosing to apply force left (negative) or right (positive)at

Example: 1-d Vehicle

25

Robot moving in 1-d by choosing to apply force left (negative) or right (positive)at

Newton: Force = mass x acceleration, so if vehicle mass = , acceleration = m
at

m

Example: 1-d Vehicle

25

Robot moving in 1-d by choosing to apply force left (negative) or right (positive)at

Newton: Force = mass x acceleration, so if vehicle mass = , acceleration = m
at

m
If time steps are separated by (small), then we can approximate acceleration

(derivative of velocity) by finite difference of velocities :

δ

vt

accelerationt = vt − vt−1
δ

= at

m

Example: 1-d Vehicle

25

Robot moving in 1-d by choosing to apply force left (negative) or right (positive)at

Newton: Force = mass x acceleration, so if vehicle mass = , acceleration = m
at

m
If time steps are separated by (small), then we can approximate acceleration

(derivative of velocity) by finite difference of velocities :

δ

vt

accelerationt = vt − vt−1
δ

= at

m
Same trick to approximate velocity (derivative of position) via positions :
pt

vt = pt − pt−1
δ

Preliminaries about LQR

26

Preliminaries about LQR

26

Iterating the dynamics all the way back to time gives: st = Ast−1 + Bat−1 + wt−1 0

st = Ats0 +
t−1

∑
i=0

Ai(Bat−i−1 + wt−i−1)

Preliminaries about LQR

26

Iterating the dynamics all the way back to time gives: st = Ast−1 + Bat−1 + wt−1 0

st = Ats0 +
t−1

∑
i=0

Ai(Bat−i−1 + wt−i−1)

So assuming , we get 1[wt] = 0 1[st ∣ s0, a0, …, at−1] = Ats0 +
t−1

∑
i=0

AiBat−i−1

Preliminaries about LQR

26

Looking ahead: we will show next lecture that the optimal control/policy is linear:
π⋆

t (st) = − Ktst

Iterating the dynamics all the way back to time gives: st = Ast−1 + Bat−1 + wt−1 0

st = Ats0 +
t−1

∑
i=0

Ai(Bat−i−1 + wt−i−1)

So assuming , we get 1[wt] = 0 1[st ∣ s0, a0, …, at−1] = Ats0 +
t−1

∑
i=0

AiBat−i−1

Preliminaries about LQR

26

Looking ahead: we will show next lecture that the optimal control/policy is linear:
π⋆

t (st) = − Ktst

Iterating the dynamics all the way back to time gives: st = Ast−1 + Bat−1 + wt−1 0

st = Ats0 +
t−1

∑
i=0

Ai(Bat−i−1 + wt−i−1)

So assuming , we get 1[wt] = 0 1[st ∣ s0, a0, …, at−1] = Ats0 +
t−1

∑
i=0

AiBat−i−1

Plugging in gives a relatively simple form for the expected state:
1[st ∣ s0, at = − Ktst] = (Πt−1

i=0(A − BKi)) s0

LQR Value and Q functions

27

LQR Value and Q functions
Given a policy (abbreviating a sequence of policies , one for each), π π0, …, πt−1 t

27

LQR Value and Q functions
Given a policy (abbreviating a sequence of policies , one for each), π π0, …, πt−1 t

27

Define the value function as:
Vπ
t : ℝd → ℝ

Vπ
t (s) = 1[s⊤

T QsT +
T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) ai = πi(si) ∀i ≥ t, st = s]

LQR Value and Q functions
Given a policy (abbreviating a sequence of policies , one for each), π π0, …, πt−1 t

27

Define the value function as:
Vπ
t : ℝd → ℝ

Vπ
t (s) = 1[s⊤

T QsT +
T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) ai = πi(si) ∀i ≥ t, st = s]
and the Q function as:
Qπ

t : ℝd × ℝk → ℝ

Qπ
t (s, a) = 1[s⊤

T QsT +
T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) at = a, ai = πi(si) ∀i > t, st = s]

LQR Value and Q functions
Given a policy (abbreviating a sequence of policies , one for each), π π0, …, πt−1 t

27

Next time: we will solve for the optimal policy via dynamic programming on theseπ

Define the value function as:
Vπ
t : ℝd → ℝ

Vπ
t (s) = 1[s⊤

T QsT +
T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) ai = πi(si) ∀i ≥ t, st = s]
and the Q function as:
Qπ

t : ℝd × ℝk → ℝ

Qπ
t (s, a) = 1[s⊤

T QsT +
T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) at = a, ai = πi(si) ∀i > t, st = s]

Today

28

• Feedback from last lecture

• Recap

• Finite-horizon discrete MDPs

• General optimal control problem

• The linear quadratic regulator (LQR) problem

Today’s summary:

29

Today’s summary:
Finite-horizon discrete MDPs

•Solvable by dynamic programming

29

Today’s summary:
Finite-horizon discrete MDPs

•Solvable by dynamic programming
Optimal control problem

•Find optimal policy in MDP with infinite/continuous state and action spaces

•Requires some sort of structure

29

Today’s summary:
Finite-horizon discrete MDPs

•Solvable by dynamic programming
Optimal control problem

•Find optimal policy in MDP with infinite/continuous state and action spaces

•Requires some sort of structure

Linear quadratic regulator (LQR) problem

•Canonical problem in optimal control

•Linear dynamics, Gaussian errors, quadratic costs

29

Today’s summary:
Finite-horizon discrete MDPs

•Solvable by dynamic programming
Optimal control problem

•Find optimal policy in MDP with infinite/continuous state and action spaces

•Requires some sort of structure

Linear quadratic regulator (LQR) problem

•Canonical problem in optimal control

•Linear dynamics, Gaussian errors, quadratic costs

Next time:

•Deriving the LQR optimal value and policy

29

1-minute feedback form: https://bit.ly/3RHtlxy

Today’s summary:
Finite-horizon discrete MDPs

•Solvable by dynamic programming
Optimal control problem

•Find optimal policy in MDP with infinite/continuous state and action spaces

•Requires some sort of structure

Linear quadratic regulator (LQR) problem

•Canonical problem in optimal control

•Linear dynamics, Gaussian errors, quadratic costs

Next time:

•Deriving the LQR optimal value and policy

29

https://bit.ly/3RHtlxy

