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Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.
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Recap

•For discrete MDPs, we covered some great algorithms for computing the 
optimal policy (reminder, we haven’t done any learning in MDPs yet)
•But all algorithms polynomially in the size of the state and action spaces… 
what if one or both are infinite?
• In this unit (next 3 lectures), we will discuss computation of good/optimal 
policies in continuous state and action spaces (still no learning yet!)
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Value Iteration Algorithm:

1. Initialization:  V0 : ∥V0∥∞ ∈ [0, 1
1 − γ ]

2. Iterate until convergence: Vt+1 ← &Vt
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• Define:  where , and , where  

•So we want to find , s.t.   

R ∈ ℝ|S|, Rπ
s = r(s, π(s)) Pπ ∈ ℝ|S|×|S| Pπ

s′ ,s = P(s′ |s, π(s))
V ∈ ℝ|S| V = Rπ + γPπV

Exact Policy Evaluation: Matrix Version

+ γ=

V R P V

P( ⋅ |s, π(s))r(s, π(s))V(s)

9

• Algo: compute  
One can show that  is full rank (thus invertible).

• Runtime: This approach runs in time .

V = (I − γPπ)−1Rπ

I − γPπ

O( |S |3 )



An Iterative Version for Policy Eval

Algorithm (Iterative PE):  

1. Initialization:  


2. Iterate until convergence:  

V0 : ∥V0∥∞ ∈ [0, 1
1 − γ ]

Vt+1 ← R + γPVt
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Policy Iteration (PI)
• Initialization: choose a policy 

• For 


1. Policy Evaluation: compute  and , where 
 	 


2. Policy Improvement: set 
	

π0 : S ↦ A
t = 0,1,…

Vπt(s) Qπt(s, a)
Qπt(s, a) = r(s, a) + γ∑

s′ 

P(s′ |s, a)Vπt(s′ )

πt+1(s) := arg max
a

Qπt(s, a)

What’s computation complexity per iteration?

 O( |S |3 + |S |2 |A | )
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r : S × A ↦ [0,1], H ∈ ℕ, P : S × A ↦ Δ(S)

Finite horizon Markov Decision Process

Note that in finite horizon setting, we will consider time-dependent policies, i.e.,

π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h

a0 = π0(s0), s1 ∼ P( ⋅ |s0, a0), a1 = π1(s1), … sh ∼ P( ⋅ |sh−1, ah−1), ah = πh(sh)…

Policy interacts with the MDP as follows to sample a 
 trajectory  as follows:τ = {s0, a0, r0, s1, a1, r1, …, sH−1, aH−1, rH−1}



V/Q functions in Finite horizon MDP

Vπ
h (s) = 1 [

H−1

∑
τ=h

r(sτ, aτ) sh = s]
Qπ

h (s, a) = 1 [
H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]



V/Q functions in Finite horizon MDP

Vπ
h (s) = 1 [

H−1

∑
τ=h

r(sτ, aτ) sh = s]
Qπ

h (s, a) = 1 [
H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]

Qπ
h (s, a) = r(s, a) + 1s′ ∼P(s,a) [Vπ

h+1(s′ )]
Bellman Consistency Equation:
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Compute Optimal Policy via Dynamic Programming
DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , then:

(i.e. assuming we know how to perform optimally starting at )

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + 1s′ ∼P(s,a)V⋆

h+1(s′ )

π⋆
h (s) = arg max

a
Q⋆

h (s, a), V⋆
h = max

a
Q⋆

h (s, a)



Summary on Finite horizon MDP
, 
ℳ = {S, A, r, P, H}

r : S × A ↦ [0,1], H ∈ ℕ, P : S × A ↦ Δ(S)

Comparing to the infinite horizon, discounted MDP: 

1. Policy will be time dependent

2. DP takes  steps to compute  

- total computation time is  
- no need to use contraction argument and no discount factor


3. Extension to non-stationary setting works immediately:  
(i.e. with a non-stationary transition model: ) 

H π⋆

O(H |S |2 |A | )

P0(s′ |s, a), P1(s′ |s, a), …PH−1(s′ |s, a)
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•  is the noise/disturbance, wt
•  is a function (the dynamics) that determines the next state ft st+1 ∈ ℝd

Objective is to find control policy  which minimizes the total cost (finite horizon  ),πt T

minimize 1[cT(sT) +
T−1

∑
t=0
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•  is the state which starts at initial value ,st ∈ ℝd s0 ∼ μ0
•  is the control (action),at ∈ ℝk

•  is the noise/disturbance, wt
•  is a function (the dynamics) that determines the next state ft st+1 ∈ ℝd

Objective is to find control policy  which minimizes the total cost (finite horizon  ),πt T

minimize 1[cT(sT) +
T−1

∑
t=0

ct(st, at)]
s.t. st+1 = ft(st, at, wt), at = πt(st), s0 ∼ μ0

• Randomness (in the expectation) generally enters via , e.g., wt wt ∼ 6(0,Σ)
• Note  separated out because by convention there is no cT aT
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Idea: Round states and actions onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round  and  to 2 decimal placesϵ = 0.01 s a

Assuming state/control spaces are bounded, this makes both finite

Recall: VI/PI computation times scaled polynomially in  and |S | |A |

But curse of dimensionality means  and  will scale like |S | |A | (1/ϵ)d

E.g., ,  gives  on the order of …ϵ = 0.01 d = k = 10 |S |2 |A | 1060

Even the idea of discretizing relies on continuity (i.e., rounding nearby values to the same grid point only 
works if system treats them nearly the same), 

So why not rely on this more formally by assuming smoothness/structure on the dynamics  and cost ?f c
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Linear dynamics: st+1 = f(st, at, wt) = Ast + Bat + wt

• Why not linear for ? Want it bounded below so we can minimize itc
•  and  are positive definite matricesQ ∈ ℝd×d R ∈ ℝk×k

• , ,  determine the dynamicsA ∈ ℝd×d B ∈ ℝd×k Σ ∈ ℝd×d

• Note lack of subscripts on  (except at  ) and : time-homogeneousc T f

Quadratic cost function: c(st, at) = s⊤
t Qst + a⊤

t Rat, cT(sT) = s⊤
T QsT

Gaussian noise: wt ∼ 6(0,Σ)
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Surprisingly yes, despite its simplicity!
Any smooth dynamics function is locally approximately linear, and any smooth 
function with a minimum is locally approximately quadratic near its minimum

In fact, because the LQR model is so well-studied in control theory, many human-
engineered systems are designed to be approximately linear where possible

E.g., think of heating/cooling a room: if done right, temperature should rarely deviate 
much from a fixed value, and shouldn’t have to do too much heating or cooling, i.e., 

states and actions stay local to some fixed points!

That said, it is indeed far too simple for many more complex (nonlinear) systems, yet 
in a couple lectures we will see how to extend its ideas to such systems to get 
surprisingly good solutions to apparently intractable nonlinear control problems
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Example: 1-d Vehicle 

25

Robot moving in 1-d by choosing to apply force  left (negative) or right (positive)at

Newton: Force = mass x acceleration, so if vehicle mass = , acceleration = m
at

m
If time steps are separated by  (small), then we can approximate acceleration 

(derivative of velocity) by finite difference of velocities :

δ

vt

accelerationt = vt − vt−1
δ

= at

m
Same trick to approximate velocity (derivative of position) via positions :
pt

vt = pt − pt−1
δ
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Iterating the dynamics  all the way back to time  gives: st = Ast−1 + Bat−1 + wt−1 0

st = Ats0 +
t−1

∑
i=0

Ai(Bat−i−1 + wt−i−1)
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Looking ahead: we will show next lecture that the optimal control/policy is linear:
π⋆

t (st) = − Ktst
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Looking ahead: we will show next lecture that the optimal control/policy is linear:
π⋆

t (st) = − Ktst

Iterating the dynamics  all the way back to time  gives: st = Ast−1 + Bat−1 + wt−1 0

st = Ats0 +
t−1

∑
i=0

Ai(Bat−i−1 + wt−i−1)

So assuming , we get 1[wt] = 0 1[st ∣ s0, a0, …, at−1] = Ats0 +
t−1

∑
i=0

AiBat−i−1

Plugging in gives a relatively simple form for the expected state: 
1[st ∣ s0, at = − Ktst] = (Πt−1

i=0(A − BKi)) s0
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Define the value function  as:
Vπ
t : ℝd → ℝ

Vπ
t (s) = 1[s⊤

T QsT +
T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) ai = πi(si) ∀i ≥ t, st = s]
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Define the value function  as:
Vπ
t : ℝd → ℝ

Vπ
t (s) = 1[s⊤

T QsT +
T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) ai = πi(si) ∀i ≥ t, st = s]
and the Q function  as:
Qπ

t : ℝd × ℝk → ℝ

Qπ
t (s, a) = 1[s⊤

T QsT +
T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) at = a, ai = πi(si) ∀i > t, st = s]
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Next time: we will solve for the optimal policy  via dynamic programming on theseπ

Define the value function  as:
Vπ
t : ℝd → ℝ

Vπ
t (s) = 1[s⊤

T QsT +
T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) ai = πi(si) ∀i ≥ t, st = s]
and the Q function  as:
Qπ

t : ℝd × ℝk → ℝ

Qπ
t (s, a) = 1[s⊤

T QsT +
T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) at = a, ai = πi(si) ∀i > t, st = s]
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• Feedback from last lecture

• Recap

• Finite-horizon discrete MDPs

• General optimal control problem

• The linear quadratic regulator (LQR) problem
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