Optimal Control for the Linear Quadratic Regulator

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2022

Today

- Feedback from last lecture
- Recap
- Derivation of optimal LQR policy
- Extensions

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!
2.

Today

- Feedback from last lecture
- Recap
- Derivation of optimal LQR policy
- Extensions

Recap: LQR

Problem Statement:

$$
\arg \min _{\pi_{0}, \ldots, \pi_{T-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}} \mathbb{E}\left[s_{T}^{\top} Q s_{T}+\sum_{t=0}^{T-1}\left(s_{t}^{\top} Q s_{t}+a_{t}^{\top} R a_{t}\right)\right]
$$

$$
\text { such that } \quad s_{t+1}=A s_{t}+B a_{t}+w_{t}, \quad s_{0} \sim \mu_{0}, \quad a_{t}=\pi_{t}\left(s_{t}\right), \quad w_{t} \sim N\left(0, \sigma^{2} I\right)
$$

Value function for a policy $\pi=\left(\pi_{0}, \ldots, \pi_{T-1}\right)$:

$$
V_{t}^{\pi}(s)=\mathbb{E}\left[s_{T}^{\top} Q s_{T}+\sum_{i=t}^{T-1}\left(s_{i}^{\top} Q s_{i}+a_{i}^{\top} R a_{i}\right) \mid a_{i}=\pi_{i}\left(s_{i}\right) \forall i \geq t, s_{t}=s\right]
$$

And corresponding Q function:

$$
Q_{t}^{\pi}(s, a)=\mathbb{E}\left[s_{T}^{\top} Q s_{T}+\sum_{i=t}^{T-1}\left(s_{i}^{\top} Q s_{i}+a_{i}^{\top} R a_{i}\right) \mid a_{t}=a, a_{i}=\pi_{i}\left(s_{i}\right) \forall i>t, s_{t}=s\right]
$$

Today

- Feedback from last lecture
- Recap
- Derivation of optimal LQR policy
- Extensions

LQR Optimal Control

$$
V_{t}^{\star}(s)=\min _{\pi} V_{t}^{\pi}(s)=\min _{\pi_{i} \pi_{t+1}, \ldots, \pi_{T-1}} \mathbb{E}\left[s_{T}^{\top} Q s_{T}+\sum_{i=t}^{T-1}\left(s_{i}^{\top} Q s_{i}+a_{i}^{\top} R a_{i}\right) \mid a_{i}=\pi_{i}\left(s_{i}\right) \forall i \geq t, s_{t}=s\right]
$$

Theorem:

1. V_{t}^{\star} is a quadratic function, i.e., $V_{t}^{\star}(s)=s^{\top} P_{t} s+p_{t}$ for some $P_{t} \in \mathbb{R}^{d \times d}$ and $p_{t} \in \mathbb{R}^{d}$
2. The optimal policy π_{t}^{\star} is linear, i.e., $\pi_{t}^{\star}(s)=-K_{t} s$ for some $K_{t} \in \mathbb{R}^{k \times d}$
3. P_{t}, p_{t}, and K_{t} can be computed exactly

Today: prove the above theorem, deriving the optimal policy along the way

Key Steps in the Proof

Dynamic programming (finite-horizon), stepping backwards in time from T to 0

1. Base case: Show that $V_{T}^{\star}(s)$ is quadratic
2. Inductive hypothesis: Assuming $V_{t+1}^{\star}(s)$ is quadratic,
a) Show that $Q_{t}^{\star}(s, a)$ is quadratic (in both s and a)
b) Derive the optimal policy $\pi_{t}^{\star}(s)=\arg \min Q_{t}^{\star}(s, a)$, and show that it's linear
c) Show $V_{t}^{\star}(s)$ is quadratic
3. Conclusion: $V_{t}^{\star}(s)$ is quadratic and $\pi_{t}^{\star}(s)$ is linear and we'll have their formulas

Base case at T

Recall the value function at a given t is:

$$
V_{t}^{\pi}(s)=\mathbb{E}\left[s_{T}^{\top} Q s_{T}+\sum_{i=t}^{T-1}\left(s_{i}^{\top} Q s_{i}+a_{i}^{\top} R a_{i}\right) \mid a_{i}=\pi_{i}\left(s_{i}\right) \forall i \geq t, s_{t}=s\right]
$$

For V_{T}^{π}, everything disappears except first term $s_{T}^{\top} Q s_{T}=s^{\top} Q s$:

$$
V_{T}^{\star}(s)=s^{\top} Q s
$$

Denoting $P_{T}:=Q$ and $p_{T}:=0$, we get

$$
V_{T}^{\star}(s)=s^{\top} P_{T} s+p_{T}
$$

(P_{t} and p_{t} didn't do much here, but we're going to define them recursively in the next step)

Induction Step

Assume $V_{t+1}^{\star}(s)=s^{\top} P_{t+1} s+p_{t+1}$, for all s, where $P_{t+1} \in \mathbb{R}^{d \times d}$ and $p_{t+1} \in \mathbb{R}^{d}$ $Q_{t}^{\star}(s, a)=$

Induction Step (continued)

$$
\begin{aligned}
Q_{t}^{\star}(s, a) & =c(s, a)+\mathbb{E}_{s^{\prime} \sim f\left(s, a, w_{t+1}\right)}\left[V_{t+1}^{\star}\left(s^{\prime}\right)\right] \\
& =s^{\top}\left(Q+A^{\top} P_{t+1} A\right) s+a^{\top}\left(R+B^{\top} P_{t+1} B\right) a+2 s^{\top} A^{\top} P_{t+1} B a+\operatorname{tr}\left(\sigma^{2} P_{t+1}\right)+p_{t+1}
\end{aligned}
$$

$$
\pi_{t}^{\star}(s)=\arg \min _{a} Q_{t}^{\star}(s, a)
$$

Set $\nabla_{a} Q_{t}^{\star}(s, a)=0$ and solve for a :

$$
\nabla_{a} Q_{t}^{\star}(s, a)=
$$

Concluding the Induction step:

$$
\begin{aligned}
Q_{t}^{\star}(s, a) & =s^{\top}\left(Q+A^{\top} P_{t+1} A\right) s+a^{\top}\left(R+B^{\top} P_{t+1} B\right) a+2 s^{\top} A^{\top} P_{t+1} B a+\operatorname{tr}\left(\sigma^{2} P_{t+1}\right)+p_{t+1} \\
\pi_{t}^{\star}(s) & =-\underbrace{\left(R+B^{\top} P_{t+1} B\right)^{-1} B^{\top} P_{t+1} A s}_{:=K_{t}}
\end{aligned}
$$

$$
V_{t}^{\star}(s)=Q_{t}^{\star}\left(s, \pi_{t}^{\star}(s)\right)
$$

$$
=s^{\top}\left(Q+A^{\top} P_{t+1} A\right) s+s^{\top} K_{t}^{\top}\left(R+B^{\top} P_{t+1} B\right) K_{t} s-2 s^{\top} A^{\top} P_{t+1} B K_{t} s+\operatorname{tr}\left(\sigma^{2} P_{t+1}\right)+p_{t+1}
$$

Collecting the quadratic and constant terms together, $V_{t}^{\star}(s)=s^{\top} P_{t} s+p_{t}$, where:

$$
\begin{aligned}
& P_{t}=Q+A^{\top} P_{t+1} A-A^{\top} P_{t+1} B\left(R+B^{\top} P_{t+1} B\right)^{-1} B^{\top} P_{t+1} A \longleftarrow \text { Ricatti Equation } \\
& p_{t}=\operatorname{tr}\left(\sigma^{2} P_{t+1}\right)+p_{t+1}
\end{aligned}
$$

Summary:

$$
V_{T}^{\star}(s)=s^{\top} Q s, \quad \text { define } P_{T}=Q, p_{T}=0
$$

We have shown that $V_{t}^{\star}(s)=s^{\top} P_{t} s+p_{t}$, where:

$$
\begin{aligned}
& P_{t}=Q+A^{\top} P_{t+1} A-A^{\top} P_{t+1} B\left(R+B^{\top} P_{t+1} B\right)^{-1} B^{\top} P_{t+1} A \\
& p_{t}=\operatorname{tr}\left(\sigma^{2} P_{t+1}\right)+p_{t+1}
\end{aligned}
$$

Along the way, we also have shown that $\pi_{t}^{\star}(s)=-K_{t} s$, where:

$$
K_{t}=\left(R+B^{\top} P_{t+1} B\right)^{-1} B^{\top} P_{t+1} A
$$

Optimal policy has nothing to do with initial distribution μ_{0} or the noise σ^{2} !

Today

- Feedback from last lecture
- Recap
- Derivation of optimal LQR policy
- Extensions

Time-Dependent Costs and Dynamics

$\arg \min _{\pi_{0} \ldots, \ldots \pi_{T-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}} \mathbb{E}\left[s_{T}^{\top} Q_{T} s_{T}+\sum_{t=0}^{T-1}\left(s_{t}^{\top} Q_{t} s_{t}+a_{t}^{\top} R_{t} a_{t}\right]\right.$
such that $\quad s_{t+1}=A_{t} s_{t}+B_{t} a_{t}+w_{t}, \quad s_{0} \sim \mu_{0}, \quad a_{t}=\pi_{t}\left(s_{t}\right), \quad w_{t} \sim N\left(0, \sigma^{2} I\right)$

Exact same derivation, only thing that changes is the Ricatti equation:

$$
P_{t}=Q_{t}+A_{t}^{\top} P_{t+1} A_{t}-A_{t}^{\top} P_{t+1} B_{t}\left(R_{t}+B_{t}^{\top} P_{t+1} B_{t}\right)^{-1} B_{t}^{\top} P_{t+1} A_{t}
$$

More General Quadratic Cost Function

$\arg \min _{\pi_{0}, \ldots, \pi_{T-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}} \mathbb{E}\left[s_{T}^{\top} Q_{T} s_{T}+s_{T}^{\top} q_{T}+c_{T}+\sum_{t=0}^{T-1}\left(s_{t}^{\top} Q_{t} s_{t}+a_{t}^{\top} R_{t} a_{t}+a_{t}^{\top} M_{t} s_{t}+s_{t}^{\top} q_{t}+a_{t}^{\top} r_{t}+c_{t}\right)\right]$
such that $\quad s_{t+1}=A_{t} s_{t}+B_{t} a_{t}+v_{t}+w_{t}, \quad s_{0} \sim \mu_{0}, \quad a_{t}=\pi_{t}\left(s_{t}\right), \quad w_{t} \sim N\left(0, \sigma^{2} I\right)$

Derivation is similar-you will work it out on HW3

Tracking a Predefined Trajectory

$\arg \min _{\pi_{0}, \ldots, \pi_{T-1}: \mathbb{R}^{\star} \rightarrow \mathbb{R}^{k}} \mathbb{E}\left[\left(s_{T}-s_{T}^{\star}\right)^{\top} Q_{T}\left(s_{T}-s_{T}^{\star}\right)+\sum_{t=0}^{T-1}\left(\left(s_{t}-s_{t}^{\star}\right)^{\top} Q_{t}\left(s_{t}-s_{t}^{\star}\right)+\left(a_{t}-a_{t}^{\star}\right)^{\top} R_{t}\left(a_{t}-a_{t}^{\star}\right)\right)\right]$
such that $\quad s_{t+1}=A_{t} s_{t}+B_{t} a_{t}+w_{t}, \quad s_{0} \sim \mu_{0}, \quad a_{t}=\pi_{t}\left(s_{t}\right), \quad w_{t} \sim N\left(0, \sigma^{2} I\right)$

Expanding all the quadratic terms produces a special case of the previous slide!

Today

- Feedback from last lecture
- Recap
- Derivation of optimal LQR policy
- Extensions

Today's summary:

LQR optimal policy/controller

- Used dynamic programming / inductive argument to derive π_{t}^{\star}
- Same argument applies to extensions to some more complicated situations

Next time:

- Applying LQR approximation separately at each time point to get a locally-optimal solution to a nonlinear control problem

1-minute feedback form: https://bit.ly/3RHtlxy

