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Today

• Feedback from last lecture


• Recap


• Derivation of optimal LQR policy


• Extensions

2



Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.
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Recap: LQR
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arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [s⊤
T QsT +

T−1

∑
t=0

(s⊤
t Qst + a⊤

t Rat)]
such that st+1 = Ast + Bat + wt , s0 ∼ μ0 , at = πt(st) , wt ∼ N(0,σ2I)

Problem Statement:
Used to be , but  is simplerΣ σ2I

Vπ
t (s) = 𝔼[s⊤

T QsT +
T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) ai = πi(si) ∀i ≥ t, st = s]

Value function for a policy :π = (π0, …, πT−1)

Qπ
t (s, a) = 𝔼[s⊤

T QsT +
T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) at = a, ai = πi(si) ∀i > t, st = s]

And corresponding Q function:
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LQR Optimal Control

V⋆
t (s) = min

π
Vπ

t (s) = min
πt, πt+1,…, πT−1

𝔼[s⊤
T QsT +

T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) ai = πi(si) ∀i ≥ t, st = s]

Theorem: 

1.  is a quadratic function, i.e.,  for some  and 

2. The optimal policy  is linear, i.e.,  for some 

3. , , and  can be computed exactly

V⋆
t V⋆

t (s) = s⊤Pts + pt Pt ∈ ℝd×d pt ∈ ℝd

π⋆
t π⋆

t (s) = − Kts Kt ∈ ℝk×d

Pt pt Kt

Today: prove the above theorem, deriving the optimal policy along the way
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Key Steps in the Proof
Dynamic programming (finite-horizon), stepping backwards in time from  to T 0

1. Base case: Show that  is quadraticV⋆
T (s)

2. Inductive hypothesis: Assuming  is quadratic,

a) Show that  is quadratic (in both  and )

b) Derive the optimal policy , and show that it’s linear


c) Show  is quadratic

V⋆
t+1(s)

Q⋆
t (s, a) s a

π⋆
t (s) = arg min

a
Q⋆

t (s, a)

V⋆
t (s)

3. Conclusion:  is quadratic and  is linear and we’ll have their formulasV⋆
t (s) π⋆

t (s)
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Base case at T

Denoting  and , we get 
PT := Q pT := 0
V⋆

T (s) = s⊤PTs + pT
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Recall the value function at a given  is:t

Vπ
t (s) = 𝔼[s⊤

T QsT +
T−1

∑
i=t

(s⊤
i Qsi + a⊤

i Rai) ai = πi(si) ∀i ≥ t, st = s]

For , everything disappears except first term :Vπ
T s⊤

T QsT = s⊤Qs

V⋆
T (s) = s⊤Qs

(  and  didn’t do much here, but we’re going to define them recursively in the next step)Pt pt



Induction Step
Assume , for all , where  and V⋆

t+1(s) = s⊤Pt+1s + pt+1 s Pt+1 ∈ ℝd×d pt+1 ∈ ℝd

Q⋆
t (s, a) =
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Induction Step (continued)

π⋆
t (s) = arg min

a
Q⋆

t (s, a)

Set  and solve for :∇aQ⋆
t (s, a) = 0 a
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Q⋆
t (s, a) = c(s, a) + 𝔼s′ ∼f(s,a,wt+1) [V⋆

t+1(s′ )]
= s⊤ (Q + A⊤Pt+1A) s + a⊤ (R + B⊤Pt+1B) a + 2s⊤A⊤Pt+1Ba + tr (σ2Pt+1) + pt+1

∇aQ⋆
t (s, a) =



Concluding the Induction step:

V⋆
t (s) = Q⋆

t (s, π⋆
t (s))

Collecting the quadratic and constant terms together, where:V⋆
t (s) = s⊤Pts + pt,

Pt = Q + A⊤Pt+1A − A⊤Pt+1B(R + B⊤Pt+1B)−1B⊤Pt+1A

pt = tr (σ2Pt+1) + pt+1
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Q⋆
t (s, a) = s⊤ (Q + A⊤Pt+1A) s + a⊤ (R + B⊤Pt+1B) a + 2s⊤A⊤Pt+1Ba + tr (σ2Pt+1) + pt+1

π⋆
t (s) = − (R + B⊤Pt+1B)−1B⊤Pt+1A

:=Kt

s

= s⊤ (Q + A⊤Pt+1A) s + s⊤K⊤
t (R + B⊤Pt+1B) Kts − 2s⊤A⊤Pt+1BKts + tr (σ2Pt+1) + pt+1

Ricatti Equation



Summary: 

V⋆
T (s) = s⊤Qs, define PT = Q, pT = 0,

We have shown that , where: V⋆
t (s) = s⊤Pts + pt

Pt = Q + A⊤Pt+1A − A⊤Pt+1B(R + B⊤Pt+1B)−1B⊤Pt+1A

pt = tr (σ2Pt+1) + pt+1

Along the way, we also have shown that , where: π⋆
t (s) = − Kts

Kt = (R + B⊤Pt+1B)−1B⊤Pt+1A

Optimal policy has nothing to do with initial distribution  or the noise ! μ0 σ2
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Time-Dependent Costs and Dynamics

Exact same derivation, only thing that changes is the Ricatti equation:
Pt = Qt + A⊤

t Pt+1At − A⊤
t Pt+1Bt(Rt + B⊤

t Pt+1Bt)−1B⊤
t Pt+1At
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arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [s⊤
T QTsT +

T−1

∑
t=0

(s⊤
t Qtst + a⊤

t Rtat)]
such that st+1 = Atst + Btat + wt , s0 ∼ μ0 , at = πt(st) , wt ∼ N(0,σ2I)



More General Quadratic Cost Function

Derivation is similar—you will work it out on HW3
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arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [s⊤
T QTsT+s⊤

T qT + cT+
T−1

∑
t=0

(s⊤
t Qtst + a⊤

t Rtat+a⊤
t Mtst + s⊤

t qt + a⊤
t rt + ct)]

such that st+1 = Atst + Btat+vt+wt , s0 ∼ μ0 , at = πt(st) , wt ∼ N(0,σ2I)



Tracking a Predefined Trajectory

Expanding all the quadratic terms produces a special case of the previous slide!
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arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [(sT−s⋆
T )⊤QT(sT−s⋆

T ) +
T−1

∑
t=0

((st−s⋆
t )⊤Qt(st−s⋆

t ) + (at−a⋆
t )⊤Rt(at−a⋆

t ))]
such that st+1 = Atst + Btat + wt , s0 ∼ μ0 , at = πt(st) , wt ∼ N(0,σ2I)
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1-minute feedback form: https://bit.ly/3RHtlxy 

Today’s summary:

LQR optimal policy/controller

•Used dynamic programming / inductive argument to derive 

•Same argument applies to extensions to some more complicated situations


Next time:

•Applying LQR approximation separately at each time

point to get a locally-optimal solution to a nonlinear 

control problem

π⋆
t
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https://bit.ly/3RHtlxy

