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Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.
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arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [s⊤
T QsT +

T−1

∑
t=0

(s⊤
t Qst + a⊤

t Rat)]
such that st+1 = Ast + Bat + wt , s0 ∼ μ0 , at = πt(st) , wt ∼ N(0,σ2I)

Problem Statement (finite horizon, time homogeneous):
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arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [s⊤
T QsT +

T−1

∑
t=0

(s⊤
t Qst + a⊤

t Rat)]
such that st+1 = Ast + Bat + wt , s0 ∼ μ0 , at = πt(st) , wt ∼ N(0,σ2I)

Problem Statement (finite horizon, time homogeneous):

• States 

• Actions/controls 

• Additive noise 

• Dynamics linear with state coefficient matrix  and action 

coefficient matrix 

• Cost function quadratic with positive semidefinite state coefficient matrix 

 and positive semidefinite action coefficient matrix 

st ∈ ℝd

at ∈ ℝk

wt ∼ 𝒩(0,σ2I)
A ∈ ℝd×d

B ∈ ℝd×k

Q ∈ ℝd×d R ∈ ℝk×k
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Recap: LQR Optimal Control

6

V⋆
T (s) = s⊤Qs, define PT = Q, pT = 0,

We showed that , where: V⋆
t (s) = s⊤Pts + pt

Pt = Q + A⊤Pt+1A − A⊤Pt+1B(R + B⊤Pt+1B)−1B⊤Pt+1A

pt = tr (σ2Pt+1) + pt+1

Along the way, we also showed that , where: π⋆
t (s) = − Kts

Kt = (R + B⊤Pt+1B)−1B⊤Pt+1A

Optimal policy has nothing to do with initial distribution  or the noise ! μ0 σ2
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But what about problems with nonlinear dynamics and/or nonquadratic costs?

We saw a number of extensions to LQR that essentially reduced to the same problem
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• Locally linearization


• Iterative LQR
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goal (s = s⋆, a = a⋆)
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Setting for Local Linearization Approach:

minimize 𝔼π[
T−1

∑
t=0

c(st, at)]
s.t.  st+1 = f(st, at), at = π(st), s0 ∼ μ0

c(st, at) = d(at, a⋆) + d(st, s⋆)

Goal: stabilizing around the 

goal (s = s⋆, a = a⋆)

Assumptions: 

1. We have black-box access to : f & c

 and  have unknown analytical form 

but can be queried at any  to give  


where 

f c
(s, a) s′ , c,

s′ = f(s, a), c = c(s, a)

2.  is differentiable  
and  is twice differentiable

f
c

∇s f(s, a), ∇a f(s, a), ∇sc(s, a), ∇ac(s, a),
∇2

s c(s, a), ∇2
ac(s, a), ∇2

s,ac(s, a)
No noise! No terminal cost !ct(sT) 9
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Local Linearization of Dynamics

Assume that all possible initial states  are close to  and can be kept there with actions close to s0 s⋆ a⋆

We can approximate  locally with a first-order Taylor expansion:f(s, a)

f(s, a) ≈ f(s⋆, a⋆) + ∇s f(s⋆, a⋆)(s − s⋆) + ∇a f(s⋆, a⋆)(a − a⋆)

where: 


∇s f(s, a) ∈ ℝd×d, ∇s f(s, a)[i, j] =
∂f[i]
∂s[ j]

(s, a), ∇u f(s, a) ∈ ℝd×k, ∇a f(s, a)[i, j] =
∂f[i]
∂a[ j]

(s, a)
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Local Linearization of Cost Function

We can approximate  locally at  with second-order Taylor expansion:c(s, a) (s⋆, a⋆)

c(s, a) ≈ c(s⋆, a⋆) + ∇sc(s⋆, a⋆)⊤(s − s⋆) + ∇ac(s⋆, a⋆)⊤(a − a⋆)

+
1
2

(s − s⋆)⊤ ∇2
s c(s⋆, a⋆)(s − s⋆) +

1
2

(a − a⋆)⊤ ∇2
ac(s⋆, a⋆)(a − a⋆) + (a − a⋆)⊤ ∇2

a,sc(s, a)(s − s⋆)

∇sc(s, a) ∈ ℝd, ∇sc(s, a)[i] =
∂c

∂s[i]
(s, a),

∇ac(s, a) ∈ ℝk, ∇ac(s, a)[i] =
∂c

∂a[i]
(s, a),

∇2
s c(s, a) ∈ ℝd×d, ∇2

s c(s, a)[i, j] =
∂2c

∂s[i]∂s[ j]
(s, a),

∇2
a,sc(s, a) ∈ ℝk×d, ∇2

a,sc(s, a)[i, j] =
∂2c

∂a[i]∂s[ j]
(s, a)

11



Local Linearization: Putting it all Together

c(s, a) ≈ c(s⋆, a⋆) + ∇sc(s⋆, a⋆)⊤(s − s⋆) + ∇ac(s⋆, a⋆)⊤(a − a⋆)

+
1
2
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2
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a,sc(s, a)(s − s⋆)
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Local Linearization: Putting it all Together

Rearranging terms, we get back to the following formulation:

arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [
T−1

∑
t=0

(s⊤
t Qst + a⊤

t Rat + a⊤
t Mst + s⊤

t q + a⊤
t r + c)]

such that st+1 = Ast + Bat + v , s0 ∼ μ0 , at = πt(st)

(HW3 problem)

c(s, a) ≈ c(s⋆, a⋆) + ∇sc(s⋆, a⋆)⊤(s − s⋆) + ∇ac(s⋆, a⋆)⊤(a − a⋆)

+
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s c(s⋆, a⋆)(s − s⋆) +
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(a − a⋆)⊤ ∇2
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Summary So far:
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For tasks such as balancing near goal state ,

we can perform first order Taylor expansion on , 


and second order Taylor expansion on  around the balancing point 

(s⋆, a⋆)
f(s, a)

c(s, a) (s⋆, a⋆)

Last step: checking some practical issues

arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [
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∑
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t r + c)]
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Locally Convexifying the Cost Function

Note that  might not even be convex;c(s, a)

So,  may not be positive definite∇2
s c(s⋆, a⋆) & ∇2

ac(s⋆, a⋆)

In practice, we force them to be positive definite:

Given a symmetric matrix , 

we compute the eigen-decomposition , and we approximate  as 


 


for some small 

H ∈ ℝd×d

H =
d

∑
i=1

σiuiu⊤
i H

H ≈
d

∑
i=1

1(σi > 0)σiuiu⊤
i + λI,

λ > 0

14



Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes outputs , where (s, a) s′ , c

s′ = f(s, a), c = c(s, a)
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Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes outputs , where (s, a) s′ , c

s′ = f(s, a), c = c(s, a)

Compute gradient using finite differencing:

∂f [i]
∂s[ j]

(s, a) ≈
f(s + δj, a)[i] − f(s − δj, a)[i]

2δ
, where δj = [0,…,0, δ

⏟
j′ th entry

,0,…0]⊤

To compute second derivative, e.g., 
∂2c

∂a[i]∂s[ j]
(s, a)

First implement finite differencing procedure for , and then perform another finite differencing with 
respect to  on top of the first finite differencing procedure for 

∂c/∂a[i]
s[ j] ∂c/∂a[i]

15
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Summary for local linearization approach

1. Perform first order Taylor expansion on 

and second order Taylor expansion on , both around the balancing point 

f(s, a)
c(s, a) (s⋆, a⋆)

2. Force Hessians  to be positive definite∇2
s c(s, a) & ∇2

ac(s, a)

3. Leverage finite differences to approximate gradients and Hessians

4. The approximation is an LQR, so we know how to compute the optimal policy
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Limits of Local Linearization

Local linearization can work if  is very close to  and 

stays there with near-optimal (i.e., near- ) actions
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Limits of Local Linearization

Local linearization can work if  is very close to  and 

stays there with near-optimal (i.e., near- ) actions

s0 s⋆

a⋆

But when  is far away from  or  needs to be far from  for any , 

first/second-order Taylor expansion is not accurate anymore

st s⋆ at a⋆ t

18
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Idea of Iterative LQR

After linearization and quadratization at time  around waypoint , , re-arranging terms gives:t (s̄t, āt) ∀t

arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [
T−1

∑
t=0

(s⊤
t Qtst + a⊤

t Rtat + a⊤
t Mtst + s⊤

t qt + a⊤
t rt + ct)]

such that st+1 = Atst + Btat + vt , s0 ∼ μ0 , at = πt(st)

Instead of linearizing/quadratizing around , linearize/quadratize around some other (s⋆, a⋆) (s̄, ā)
In fact, we can even linearize/quadratize around different points  at each (s̄t, āt) t

Question: how to choose the waypoints  to get the best approximation/solution?(s̄t, āt)

Time-dependent LQR problem: we know the solution
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T−1,

Generate nominal trajectory: s̄0
0 = s̄0, ā0
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0, …, ā0
t , s̄0

t+1 = f(s̄0
t , ā0
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t) ft(s, a) ≈ f(s̄i
t, āi
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0, …, ā0
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t]

⊤

+ [s − s̄i
t

a − āi
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This optimization is tractable because it is 1-dimensional!
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Computes a locally optimal (in policy space) solution for a large class of nonlinear control problems



Today
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• Feedback from last lecture


• Recap


• Locally linearization


• Iterative LQR
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