From LQR to Nonlinear Control

CS/Stat 184: Introduction to Reinforcement Learning
Fall 2022

Today

Feedback from last lecture
Recap

Locally linearization
lterative LQR

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!
2.

Today

Feedback from last lecture
Recap

Locally linearization
lterative LQR

Recap: LQR

Problem Statement (finite horizon, time homogeneous):

T-1
arg min = (5, Os; Z (s'Os, + a'Ra,)
s oy ﬂT_l:Rd—)Rk
=0

suchthat s_,=As,+Ba +w,, sy~puy, a =mn(s), w,~ N®O,cI)

Recap: LQR

Problem Statement (finite horizon, time homogeneous):
T—1

arg min = (5, Os; Z (s'Os, +a'Ra)

g, . o 7oy : R RK —0

suchthat s_,=As,+Ba +w,, sy~puy, a =mn(s), w,~ N®O,cI)

d

- States s, € |
- Actions/controls a, € |
- Additive noise w, ~ (0,6°1)

- Dynamics linear with state coefficient matrix A € |

coefficient matrix B € R4
» Cost function quadratic with positive semidefinite state coefficient matrix

0 € R% and positive semidefinite action coefficient matrix R € R*¥

5

k

dxd

and action

Recap: LQR Optimal Control

Recap: LQR Optimal Control

V;f(S) =5 (s, definePr=Q,p;=0,

Recap: LQR Optimal Control

V;f(S) =5 (s, definePr=Q,p;=0,

We showed that V*(s) = s ' P.s + p,, where:

P=Q+A'P_A-A'P B(R+B'P,
p,=1r (GZPHI) T P+l

B)'B'P,

Recap: LQR Optimal Control

V;(S) =) QS, define PT = Q,pT

= 0,

We showed that V*(s) = s ' P.s + p,, where:

P=Q+A'P_A-A'P B(R+B'P,

p,=1r (GZPHI) T P+l

Along the way, we also showed that 7(s) = — K s, where:

K.=R+B'P,, B 'B'P, A

B)'B'P,

Recap: LQR Optimal Control

V;(S) =5 (s, define Pr=0,p;r =0,

We showed that V*(s) = s ' P.s + p,, where:
P=Q+A'P, A—A'P_BR+B'P,_,B)"'B'P,, A
p,=1r (GZPHI) T P+l

Along the way, we also showed that 7(s) = — K s, where:

K.=R+B'P,, B 'B'P, A

Optimal policy has nothing to do with initial distribution i, or the noise o

6

Beyond LQR

Beyond LQR

We saw a number of extensions to LQR that essentially reduced to the same problem

Beyond LQR

We saw a number of extensions to LQR that essentially reduced to the same problem

But what about problems with nonlinear dynamics and/or nonquadratic costs?

Boston Dynamics

Today

Feedback from last lecture
Recap

Locally linearization
lterative LQR

Setting for Local Linearization Approach:

<
Ty

[77 7777 777777777777 77777777777

Goal: stabilizing around the
goal (s =s*,a =a”™)

c(s,a)=d(a,a*)+d(s,s™)

Setting for Local Linearization Approach:

<
gl

[77 7777 777777777777 77777777777

Goal: stabilizing around the
goal (s = s*,a = a*)
c(s,a)=d(a,a*)+d(s,s™)
T-1

minimize E Zc(st, a,)
S _

S.1. St+1 :f(Sl" at)’ a, = ﬂ(St)a 50 ~ Ho

Setting for Local Linearization Approach:

<
gl

[77 7777 777777777777 77777777777

Goal: stabilizing around the
goal (s = s*,a = a*)
c(s,a)=d(a,a*)+d(s,s™)
T-1

minimize E Zc(st, a,)
S _

S.1. St+1 :f(St’ at)’ a, = ﬂ(St)a 50 ~ Ho

No noise! 0

Setting for Local Linearization Approach:

<
gl

[77 7777 777777777777 77777777777

Goal: stabilizing around the
goal (s = s*,a = a*)
c(s,a)=d(a,a*)+d(s,s™)
T-1

minimize E Zc(st, a,)
S _

S.1. Sl+1 :f(St’ at)’ a, = ﬂ.(St)a 50 ~ Ho

No noise! No terminal cost ¢,(s7)! :

Setting for Local Linearization Approach:

Y

[77 7777777777777 7777777777777

Goal: stabilizing around the
goal (s = s*,a = a*)

c(s,a)=d(a,a*)+d(s,s™)

minimize

S.t. s, =/(s,,a),

No noise!

T

_T-1

Z c(s,, at)_

=0

a, = 7(s,), Sy~ Mo

No terminal cost ¢,(s7)!

Assumptions:

1. We have black-box access to f & c:

Setting for Local Linearization Approach:

Y

[77 7777 777777777777 77777777777

Goal: stabilizing around the
goal (s =s*,a =a”™)

c(s,a)=d(a,a*)+d(s,s™)

minimize

s.t. s, =f(s,a,),

No noise!

T

_T-1

2 c(s,, at)_

=0

a, = 7(s,), Sy~ Mo

No terminal cost ¢,(s7)!

Assumptions:

1. We have black-box access to f & c:

f and ¢ have unknown analytical form
but can be queried at any (s, a) to give s’, c,
where s = f(s,a), c = c(s, a)

Setting for Local Linearization Approach:

Y

[77 7777 777777777777 77777777777

Goal: stabilizing around the
goal (s = s*,a = a*)

c(s,a)=d(a,a*)+d(s,s™)

minimize

S.t. s, =/(s,a,),

No noise!

T

_T-1

Z c(s,, at)_

=0

a, = 7(s,), Sy~ Mo

No terminal cost ¢,(s7)!

Assumptions:

1. We have black-box access to f & c:

f and ¢ have unknown analytical form
but can be queried at any (s, a) to give s’, c,
where s = f(s,a), c = c(s, a)

2. f is differentiable
and c is twice differentiable

Setting for Local Linearization Approach:

Y

[77 7777 777777777777 77777777777

Goal: stabilizing around the
goal (s =s*,a =a”™)

c(s,a)=d(a,a*)+d(s,s™)

minimize

S.t. s, =/(s,a,),

No noise!

T

_T-1

2 c(s,, at)_

=0

a, = 7(s,), Sy~ Mo

No terminal cost ¢,(s7)!

Assumptions:

1. We have black-box access to f & c:

f and ¢ have unknown analytical form
but can be queried at any (s, a) to give s’, c,
where s = f(s,a), c = c(s, a)

2. f is differentiable
and c is twice differentiable

V. f(s,a),V,_ f(s,a),V.(s,a),V c(s,a),

V?c(s, a), Vﬁc(s, a), Vf,ac(s, a)

Local Linearization of Dynamics

10

Local Linearization of Dynamics

Assume that all possible initial states s, are close to s* and can be kept there with actions close to a*

10

Local Linearization of Dynamics

Assume that all possible initial states s, are close to s* and can be kept there with actions close to a*

We can approximate f(s, a) locally with a first-order Taylor expansion:

f(s,a) = f(s*,a*)+ V_ f(s™, a*)(s — s*) +V_f(s*,a*)(a— a™)

10

Local Linearization of Dynamics

Assume that all possible initial states s, are close to s* and can be kept there with actions close to a*

We can approximate f(s, a) locally with a first-order Taylor expansion:

f(s,a) = f(s*,a*)+ V_ f(s™, a*)(s — s*) +V_f(s*,a*)(a— a™)

where:
V,f(s,a) € RV f(s,a)[i,j] = af[l.] (s,a), V,f(s,a) € R®V f(s,a)li,j] = af[l.] (s, a)
Os[J] dalj]

10

Local Linearization of Cost Function

11

Local Linearization of Cost Function

We can approximate c(s, a) locally at (s*, a™) with second-order Taylor expansion:

11

Local Linearization of Cost Function

We can approximate c(s, a) locally at (s*, a™) with second-order Taylor expansion:

c(s,a) ~ c(s*,a*) + V.c(s*,a*) (s —s*) + V c(s*,a*) " (a — a*)

1 |
(5 =5 Vie(s™,a™)(s =) + —(a = a®) Vaels™, a*)a = a*) + (a = a*) ' Vo (s, a)(s = s¥)

11

Local Linearization of Cost Function

We can approximate c(s, a) locally at (s*, a™) with second-order Taylor expansion:

c(s,a) ~ c(s*,a*) + V.c(s*,a*) (s —s*) + V c(s*,a*) " (a — a*)

1 |
(5 =5 Vie(s™,a™)(s =) + —(a = a®) Vaels™, a*)a = a*) + (a = a*) ' Vo (s, a)(s = s¥)

p , ac
Vee(s,a) € R Vcs,a)li] = ——=(5,a),
os|1]

" , ac
V c(s,a) € RY, V_c(s,a)li] = (s,a),

dalil
Vie(s,a) € R™4 Vic(s,a)li, j] = ¢ (s,a),
ds[i10s[/]
V. c(s,a) € R V2 c(s,a)li, j] = 0 (s, a)

dali]os|/]

11

Local Linearization: Putting it all Together

c(s,a) ~ c(s*,a*) + V.c(s*,a*) (s —s*)+ V c(s*,a*) (a — a™*)

| 1
(5 = 5T Vie(s™,a™)(s =) + —(a = a®)Vaels™, a*)a = a*) + (a = a*) ' Vo (s, a)ls = s¥)

fis,a) = f(s*,a*) + V, f(s*,a*)(s — s*) + V, f(s*,a*)a — a*)

12

Local Linearization: Putting it all Together

c(s,a) ~ c(s*,a*) + V.c(s*,a*) (s —s*)+ V c(s*,a*) (a — a™*)

| 1
(5 = 5T Vie(s™,a™)(s =) + —(a = a®)Vaels™, a*)a = a*) + (a = a*) ' Vo (s, a)ls = s¥)

fis,a) = f(s*,a*) + V, f(s*,a*)(s — s*) + V, f(s*,a*)a — a*)

Rearranging terms, we get back to the following formulation:

T-1
arg min - Z (s'Os,+a'Ra,+a'Ms,+s'qg+a'r+c)
71'0,. . ,ﬂT_l:Rd—) Rk l‘—O

suchthat s .,=As,+Ba+v, sy~uy, a =mr(s)

(HW3 problem)

Summary So far:

For tasks such as balancing near goal state (s*, a*),
we can perform first order Taylor expansion on f(s, a),
and second order Taylor expansion on c¢(s, a) around the balancing point (s*, a™)

T-1
arg min - Z (s'Os,+a'Ra,+a'Ms,+s'qg+a'r+c)
o, . a7 RI>RF —0

suchthat s, ,=As,+Ba,+v, sy~puy, a =mn(s)

13

Summary So far:

For tasks such as balancing near goal state (s*, a*),
we can perform first order Taylor expansion on f(s, a),
and second order Taylor expansion on c¢(s, a) around the balancing point (s*, a™)

T-1
arg min - Z (s'Os,+a'Ra,+a'Ms,+s'qg+a'r+c)
o, . a7 RI>RF —0

suchthat s, ,=As,+Ba,+v, sy~puy, a =mn(s)

Last step: checking some practical issues

13

Locally Convexifying the Cost Function

14

Locally Convexifying the Cost Function

Note that c(s, a) might not even be convex;

So, VZc(s*,a*) & VZc(s*, a™) may not be positive definite

14

Locally Convexifying the Cost Function

Note that c(s, a) might not even be convex;

So, VZc(s*,a*) & VZc(s*, a™) may not be positive definite

In practice, we force them to be positive definite:

14

Locally Convexifying the Cost Function

Note that c(s, a) might not even be convex;

So, VZc(s*,a*) & VZc(s*, a™) may not be positive definite

In practice, we force them to be positive definite:

Given a symmetric matrix H € R4

we compute the eigen-decomposition H = Z alulul , and we approximate H as
=1

d
Z 1(c; > O)ouu + Al

for some small 4 > (

14

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (s, a), the black boxes outputs s’, ¢, where
s'=f(s,a),c = c(s,a)

15

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (s, a), the black boxes outputs s’, ¢, where
s'=f(s,a),c = c(s,a)

Compute gradient using finite differencing:

15

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (s, a), the black boxes outputs s’, ¢, where
s'=f(s,a),c = c(s,a)

Compute gradient using finite differencing:

sl T 25

,where 5, =[0,....0, 6§ ,0,...0]"

——

jth entry

15

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (s, a), the black boxes outputs s’, ¢, where
s'=f(s,a),c = c(s,a)

Compute gradient using finite differencing:

—(s,a) . where 5j = [0,...,0, O 0,...01"
os|j] 20 ~
jth entry
- d’c
To compute second derivative, e.q., (s,a)

dali]os|]

15

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (s, a), the black boxes outputs s’, ¢, where
s'=f(s,a),c = c(s,a)

Compute gradient using finite differencing:

of [i] N J(s + 0, a)li] — f(s — 0, a)li]

—(s,a) . where 5]- = [0,...,0, O 0,...01"
os|j] 20 ~
jth entry
- 0°c
To compute second derivative, e.q., . —(s,a)
dali]os|]

First implement finite differencing procedure for dc/0ali], and then perform another finite differencing with
respect to 5| j] on top of the first finite differencing procedure for dc/odal]

15

Summary for local linearization approach

16

Summary for local linearization approach

1. Perform first order Taylor expansion on f(s, a)
and second order Taylor expansion on c¢(s, a), both around the balancing point (s*, a™)

16

Summary for local linearization approach

1. Perform first order Taylor expansion on f(s, a)
and second order Taylor expansion on c¢(s, a), both around the balancing point (s*, a™)

2. Force Hessians Vfc(s, a) & Vgc(s, a) to be positive definite

16

Summary for local linearization approach

1. Perform first order Taylor expansion on f(s, a)
and second order Taylor expansion on c¢(s, a), both around the balancing point (s*, a™)

2. Force Hessians Vfc(s, a) & Vgc(s, a) to be positive definite

3. Leverage finite differences to approximate gradients and Hessians

16

Summary for local linearization approach

1. Perform first order Taylor expansion on f(s, a)
and second order Taylor expansion on c¢(s, a), both around the balancing point (s*, a™)

2. Force Hessians Vfc(s, a) & Vgc(s, a) to be positive definite

3. Leverage finite differences to approximate gradients and Hessians

4. The approximation is an LQR, so we know how to compute the optimal policy

16

Today

Feedback from last lecture
Recap

Locally linearization
lterative LQR

17

Limits of Local Linearization

18

Limits of Local Linearization

Local linearization can work if s, is very close to s™ and
")

stays there with near-optimal (i.e., near-a ™) actions

18

Limits of Local Linearization

Local linearization can work if s, is very close to s™ and
")

stays there with near-optimal (i.e., near-a ™) actions

But when s, is far away from s or a, needs to be far from a™ for any t,
first/second-order Taylor expansion is not accurate anymore

18

Idea of Iterative LQR

19

Idea of Iterative LQR

Instead of linearizing/quadratizing around (s*, a™), linearize/quadratize around some other (§,)

19

Idea of Iterative LQR

Instead of linearizing/quadratizing around (s*, a™), linearize/quadratize around some other (§,)

In fact, we can even linearize/quadratize around different points (§,, a,) at each ¢

19

Idea of Iterative LQR

Instead of linearizing/quadratizing around (s*, a™), linearize/quadratize around some other (§,)

In fact, we can even linearize/quadratize around different points (§,, a,) at each ¢

After linearization and quadratization at time ¢ around waypoint (5,, @,), V¢, re-arranging terms gives:

T-1
- = T T T T T
arg min E s, Os,+a Ra +a Ms +s, q,+a, r,+c,)
gy - p_1:RY—=R —0

suchthat s,_.,=As,+Ba +v,, sy~ py, a =r(s,)

19

Idea of Iterative LQR

Instead of linearizing/quadratizing around (s*, a™), linearize/quadratize around some other (§,)

In fact, we can even linearize/quadratize around different points (§,, a,) at each ¢

After linearization and quadratization at time ¢ around waypoint (5,, @,), V¢, re-arranging terms gives:

T-1
- = T T T T T
arg min E s, Os,+a Ra +a Ms +s, q,+a, r,+c,)
gy - p_1:RY—=R —0

suchthat s,_.,=As,+Ba +v,, sy~ py, a =r(s,)

Time-dependent LQR problem: we know the solution

19

Idea of Iterative LQR

Instead of linearizing/quadratizing around (s*, a™), linearize/quadratize around some other (§,)

In fact, we can even linearize/quadratize around different points (§,, a,) at each ¢

After linearization and quadratization at time ¢ around waypoint (5,, @,), V¢, re-arranging terms gives:

T-1
- = T T T T T
arg min E s, Os,+a Ra +a Ms +s, q,+a, r,+c,)
gy - p_1:RY—=R —0

suchthat s,_.,=As,+Ba +v,, sy~ py, a =r(s,)

Time-dependent LQR problem: we know the solution

Question: how to choose the waypoints (5,, d,) to get the best approximation/solution?

19

Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

20

Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

nitialize a, ..., a,._,, (e.g., by local linearization)

20

Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

Y -0 -0 . ..
Initialize a,, ..., ar_,, (e.g., by local linearization)

Generate nominal trajectory: S8 = S0 ag, _O t+1 _f(St, Clt) 5(%_19 _(}_1

20

Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

e =0 -0 . L
Initialize a,, ..., ar_,, (e.g., by local linearization)

- - -0 _ = =0 —O _ =() —O
Generate nominal trajectory: §; = 5, d,, . .. 5 +1 f(St,Clt) ST, Ay

Fori =0,1,...

20

Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

=0 =0

Initialize a,, ..., ar_,, (e.g., by local linearization)

- - -0 _ = =0 —O _ =0 —O
Generate nominal trajectory: §; = 5, a, ..., d;, S, +1 f(St, at) ST, Ay
Fori =0.,1,...

For each ¢, linearize f(s, a) at (S*;, 'l) 1.(s, a) f(iﬁ, ") + V_ /i (5;, at)(s — i) + V, /i (5’;, al)(a — ;

20

Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

nitialize a, ..., a,._,, (e.g., by local linearization)

: : .50 _ s =0 -0 50 _ g0 50 <0 =0
Generate nominal trajectory: 5, = 5, d, ..., a;, 8, = f(5;,a;), ..., Sp_1, Ay,

Fori=0.1,... Note that although tr.uef|§ stationary,
its approximation f, is not

For each 1, linearize f(s, a) at (5, @): f(s,a) ~ f(5,,a) + V f(5,a)(s —5)+ V, (5, a)a—a

20

Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

=0 =0

Initialize a,, ..., ar_,, (e.g., by local linearization)
Generate nominal trajectory: 5 = 5., dg, ..., a,, 5o, = f(8},a?), ..., 59, a

J y 0 0> 0° ° f° t+1 ot T—1° T_l
Fori=0.1,... Note that although true f is stationary,

its approximation f, is not
For each ¢, linearize f(s, a) at (S*;, _l) f(s,a) f(S*;, ") + V f(E;, 'l)(s — Et) + V f(S*;, ")(a — a't)

For each t, quadratize ¢ (s, a) at (5, @'

T 2 (<l —l Sl —l —] i =1 i Sl —l
1 [s—5 V c(st, LC(83, a, s — 5 s — 5 V. c(5, a; o
c(s,a) X — . 1 + . + c(5;,

2 la—a L3, a VZC(E;, 7 a— d, a— da, V (5, a

20

Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

=0 =0

Initialize a,, ..., ar_,, (e.g., by local linearization)
Generate nominal trajectory: 5 = 5., dg, ..., a,, 5o, = f(8},a?), ..., 59, a

J y 0 0> 0° ° f° t+1 ot T—1° T_l
Fori=0.1,... Note that although true f is stationary,

its approximation f, is not
For each ¢, linearize f(s, a) at (5;, _l) f(s,a) f(S*;, ") +V f(E;, 'l)(s — Et) + V f(S*;, ")(a —

For each t, quadratize ¢ (s, a) at (5, @'

_ i V2 (—l —l (—l —l i U o T \V, — _l
1 |s st c(8;, a c(s, a s — 5 s — 5 .c(S8, a, . _l
Ct(S’ a) X =1 < —l 2 < —z = T 1 gl —i C(

Formulate time-dependent LQR and compute its optimal control 71'6, oo ﬂ}_l

20

Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

=0 =0

Initialize a,, ..., ar_,, (e.g., by local linearization)
Generate nominal trajectory: 5 = 5., dg, ..., a,, 5o, = f(8},a?), ..., 59, a

J y 0 0> 0° ° f° t+1 ot T—1° T_l
Fori=0.1,... Note that although true f is stationary,

its approximation f, is not
For each ¢, linearize f(s, a) at (S*;, _’) f(s,a) f(S*;, ") +V f(E;, 'l)(s — Et) +V f(S*;, ")(a —

For each t, quadratize ¢ (s, a) at (5, @'

— T 2 (=l —l per] —l —] T —] T —] —l
1 [s-5 V c(st, ,C(85, ay s — 5 s — 5 V.c(5;, a, o
c(s,a) X — . 1 + . + c(5;,

2 |a—a G, al Vzc(g;, 1) | |a-a a—a V (3, a

Formulate time-dependent LQR and compute its optimal control ﬂé, oo 72'%_1

Set new nominal trajectory: S’Jrl = 50 c"zi“ — 7Z't(§;+1) and § _" —f(_lJr1 _§+1)

20

Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

=0 =0

Initialize a,, ..., ar_,, (e.g., by local linearization)
Generate nominal trajectory: 5) = 5, ag, ...,), 8., = f(37, @), ...,5%_,,a

J y 0 0> 0° ° f° t+1 ot T—1° T_l
Fori=0.1,... Note that although true f is stationary,

its approximation f, is not
For each ¢, linearize f(s, a) at (S*;, _’) f(s,a) f(S*;, ") + V f(§§, 'l)(s — Et) +V f(S*;, ")(a — a't)

For each t, quadratize ¢ (s, a) at (5, @'

1 |s—§ ! VZC(EZ 1 @ ayl | s-3 ! s — 3§ ! V.c(3,a
T t’ t’ T T —; —
c(s,a) & — t- |+ ' " & + c(5,,

2 la—a L3, a VZC(E;, 7 a— d, a— da, V (5, a

Formulate time-dependent LQR and compute its optimal control ﬂé, oo 72'%_1

<i+1 = —1+1 l+1 —z— —l+1 —i+1
Set new nominal trajectory: S = So» 4y —7Z't(), and § —f(d;)

20 Note this is truef, not approximation

Practical Considerations of Iterative LQR:

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

2. Still want to use finite differences to approximate derivatives

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
2. Still want to use finite differences to approximate derivatives

3. We want to use line-search to get monotonic improvement:

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
2. Still want to use finite differences to approximate derivatives

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control 6_16, Cens c'llT_l, and the latest computed controls ay, ..., d7_

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
2. Still want to use finite differences to approximate derivatives

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control 6_16, Cens c'llT_l, and the latest computed controls ay, ..., d7_

We want to find a € [0,1] such that @'*! := a @' + (1 — @)a, has the smallest cost,

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
2. Still want to use finite differences to approximate derivatives

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control 6_16, Cens c'l’T_l, and the latest computed controls ay, ..., d7_

We want to find a € [0,1] such that @'*! := a @' + (1 — @)a, has the smallest cost,

-1

min Z c(s,, athy
ae[0,]1] —0

st. s, =fs,a™), at'=ad+0-ma, s,=3,

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
2. Still want to use finite differences to approximate derivatives

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control 6_16, Cens c'l’T_l, and the latest computed controls ay, ..., d7_

We want to find a € [0,1] such that @'*! := a @' + (1 — @)a, has the smallest cost,

-1

min Z c(s,, athy
ae[0,]1] —0

st. s, =fs,a™), at'=ad+0-ma, s,=3,

This optimization is tractable because it is 1-dimensional!

21

Example:
2-d car navigation
Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

22

Example:
2-d car navigation
Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

22

Summary:

23

Summary:

Local Linearization:
Approximate an LQR at the balance (goal) position (S*, a*) and then solve the approximated LQR

23

Summary:

Local Linearization:
Approximate an LQR at the balance (goal) position (S*, a*) and then solve the approximated LQR

Computes an approximately globally optimal solution for a small class of nonlinear control problems

23

Summary:

Local Linearization:
Approximate an LQR at the balance (goal) position (S*, a*) and then solve the approximated LQR

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Iterative LQR
lterate between:
(1) forming an LQR around the current nominal trajectory,
(2) computing a new nominal trajectory using the optimal policy of the LQR

23

Summary:

Local Linearization:
Approximate an LQR at the balance (goal) position (S*, a*) and then solve the approximated LQR

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Iterative LQR
lterate between:
(1) forming an LQR around the current nominal trajectory,
(2) computing a new nominal trajectory using the optimal policy of the LQR

Computes a locally optimal (in policy space) solution for a large class of nonlinear control problems

23

Today

Feedback from last lecture
Recap

Locally linearization
lterative LQR

24

loday’s summary:

loday’s summary:

Local linearization
» Allows us to approximately optimally control any system near its optimum

25

loday’s summary:

Local linearization
» Allows us to approximately optimally control any system near its optimum
lterative LQR

» Uses LQR approximation to find locally optimal nonlinear control solution

25

loday’s summary:

Local linearization
» Allows us to approximately optimally control any system near its optimum
lterative LQR

» Uses LQR approximation to find locally optimal nonlinear control solution

Next time:
 Full RL!

25

loday’'s summary:

Local linearization
» Allows us to approximately optimally control any system near its optimum
lterative LQR

» Uses LQR approximation to find locally optimal nonlinear control solution

|E| et

Next time:
 Full RL!

1-minute feedback form: https://bit.ly/3RHtIxy

https://bit.ly/3RHtlxy

