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Feedback from feedback forms

1. Thank you to everyone who filled out the forms!
2.
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Recap: LQR

Problem Statement (finite horizon, time homogeneous):
T—1

arg min = (5, Os; Z (s'Os, +a'Ra)

g, . o 7oy : R RK —0

suchthat s_,=As,+Ba +w,, sy~puy, a =mn(s), w,~ N®O,cI)

d

- States s, € |
- Actions/controls a, € |
- Additive noise w, ~ (0,6°1)

- Dynamics linear with state coefficient matrix A € |

coefficient matrix B € R4
» Cost function quadratic with positive semidefinite state coefficient matrix

0 € R% and positive semidefinite action coefficient matrix R € R*¥
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Recap: LQR Optimal Control

V;(S) =5 (s, define Pr=0,p;r =0,

We showed that V*(s) = s ' P.s + p,, where:
P=Q+A'P, A—A'P_BR+B'P,_,B)"'B'P,, A
p,=1r (GZPHI) T P+l

Along the way, we also showed that 7(s) = — K s, where:

K.=R+B'P,, B 'B'P, A

Optimal policy has nothing to do with initial distribution i, or the noise o
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Beyond LQR

We saw a number of extensions to LQR that essentially reduced to the same problem

But what about problems with nonlinear dynamics and/or nonquadratic costs?

Boston Dynamics
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S.1. Sl+1 :f(St’ at)’ a, = ﬂ.(St)a 50 ~ Ho

No noise! No terminal cost ¢,(s7)! :
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Goal: stabilizing around the
goal (s =s*,a =a”™)

c(s,a)=d(a,a*)+d(s,s™)

minimize

S.t. s, =/(s,a,),

No noise!

T

_T-1

2 c(s,, at)_

=0

a, = 7(s,), Sy~ Mo

No terminal cost ¢,(s7)!

Assumptions:

1. We have black-box access to f & c:

f and ¢ have unknown analytical form
but can be queried at any (s, a) to give s’, c,
where s = f(s,a), c = c(s, a)

2. f is differentiable
and c is twice differentiable

V. f(s,a),V,_ f(s,a),V.(s,a),V c(s,a),

V?c(s, a), Vﬁc(s, a), Vf,ac(s, a)
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Local Linearization of Dynamics

Assume that all possible initial states s, are close to s* and can be kept there with actions close to a*

We can approximate f(s, a) locally with a first-order Taylor expansion:

f(s,a) = f(s*,a*)+ V_ f(s™, a*)(s — s*) +V_f(s*,a*)(a— a™)

where:
V,f(s,a) € RV f(s,a)[i,j] = af[l.] (s,a), V,f(s,a) € R®V f(s,a)li,j] = af[l.] (s, a)
Os[J] dalj]
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Local Linearization of Cost Function

We can approximate c(s, a) locally at (s*, a™) with second-order Taylor expansion:

c(s,a) ~ c(s*,a*) + V.c(s*,a*) (s —s*) + V c(s*,a*) " (a — a*)

1 |
(5 =5 Vie(s™,a™)(s = ) + —(a = a®) Vaels™, a*)a = a*) + (a = a*) ' Vo (s, a)(s = s¥)

p , ac
Vee(s,a) € R Vcs,a)li] = ——=(5,a),
os|1]

" , ac
V c(s,a) € RY, V_c(s,a)li] = (s,a),

dalil
Vie(s,a) € R™4 Vic(s,a)li, j] = ¢ (s,a),
ds[i10s[/]
V. c(s,a) € R V2 c(s,a)li, j] = 0 (s, a)

dali]os|/]
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Local Linearization: Putting it all Together

c(s,a) ~ c(s*,a*) + V.c(s*,a*) (s —s*)+ V c(s*,a*) (a — a™*)

| 1
(5 = 5T Vie(s™,a™)(s = ) + —(a = a®)Vaels™, a*)a = a*) + (a = a*) ' Vo (s, a)ls = s¥)
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Local Linearization: Putting it all Together

c(s,a) ~ c(s*,a*) + V.c(s*,a*) (s —s*)+ V c(s*,a*) (a — a™*)

| 1
(5 = 5T Vie(s™,a™)(s = ) + —(a = a®)Vaels™, a*)a = a*) + (a = a*) ' Vo (s, a)ls = s¥)

fis,a) = f(s*,a*) + V, f(s*,a*)(s — s*) + V, f(s*,a*)a — a*)

Rearranging terms, we get back to the following formulation:

T-1
arg min - Z (s'Os,+a'Ra,+a'Ms,+s'qg+a'r+c)
71'0,. . ,ﬂT_l:Rd—) Rk l‘—O

suchthat s .,=As,+Ba+v, sy~uy, a =mr(s)

(HW3 problem)



Summary So far:

For tasks such as balancing near goal state (s*, a*),
we can perform first order Taylor expansion on f(s, a),
and second order Taylor expansion on c¢(s, a) around the balancing point (s*, a™)
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Summary So far:

For tasks such as balancing near goal state (s*, a*),
we can perform first order Taylor expansion on f(s, a),
and second order Taylor expansion on c¢(s, a) around the balancing point (s*, a™)

T-1
arg min - Z (s'Os,+a'Ra,+a'Ms,+s'qg+a'r+c)
o, . a7 RI>RF —0

suchthat s, ,=As,+Ba,+v, sy~puy, a =mn(s)

Last step: checking some practical issues
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Locally Convexifying the Cost Function

Note that c(s, a) might not even be convex;

So, VZc(s*,a*) & VZc(s*, a™) may not be positive definite

In practice, we force them to be positive definite:

Given a symmetric matrix H € R4

we compute the eigen-decomposition H = Z alulul , and we approximate H as
=1

d
Z 1(c; > O)ouu + Al

for some small 4 > (
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Computing Approximate Derivatives

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (s, a), the black boxes outputs s’, ¢, where
s'=f(s,a),c = c(s,a)
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Computing Approximate Derivatives

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (s, a), the black boxes outputs s’, ¢, where
s'=f(s,a),c = c(s,a)

Compute gradient using finite differencing:

of [i] N J(s + 0, a)li] — f(s — 0, a)li]

—(s,a) . where 5]- = [0,...,0, O 0,...01"
os|j] 20 ~
jth entry
- 0°c
To compute second derivative, e.q., . —(s,a)
dali]os| ]

First implement finite differencing procedure for dc/0ali], and then perform another finite differencing with
respect to 5| j] on top of the first finite differencing procedure for dc/odal ]

15
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Summary for local linearization approach

1. Perform first order Taylor expansion on f(s, a)
and second order Taylor expansion on c¢(s, a), both around the balancing point (s*, a™)

2. Force Hessians Vfc(s, a) & Vgc(s, a) to be positive definite

3. Leverage finite differences to approximate gradients and Hessians

4. The approximation is an LQR, so we know how to compute the optimal policy

16
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stays there with near-optimal (i.e., near-a ™) actions
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Limits of Local Linearization

Local linearization can work if s, is very close to s™ and
")

stays there with near-optimal (i.e., near-a ™) actions

But when s, is far away from s or a, needs to be far from a™ for any t,
first/second-order Taylor expansion is not accurate anymore

18
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Idea of Iterative LQR

Instead of linearizing/quadratizing around (s*, a™), linearize/quadratize around some other (§, )

In fact, we can even linearize/quadratize around different points (§,, a,) at each ¢

After linearization and quadratization at time ¢ around waypoint (5,, @,), V¢, re-arranging terms gives:

T-1
- = T T T T T
arg min E s, Os,+a Ra +a Ms +s, q,+a, r,+c,)
gy - p_1:RY—=R —0

suchthat s,_.,=As,+Ba +v,, sy~ py, a =r(s,)

Time-dependent LQR problem: we know the solution

Question: how to choose the waypoints (5,, d,) to get the best approximation/solution?
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Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

=0 =0

Initialize a,, ..., ar_,, (e.g., by local linearization)

- - -0 _ = =0 —O _ =0 —O
Generate nominal trajectory: §; = 5, a, ..., d;, S, +1 f(St, at) ST, Ay
Fori =0.,1,...

For each ¢, linearize f(s, a) at (S*;, 'l) 1.(s, a) f(iﬁ, ") + V_ /i (5;, at)(s — i) + V, /i (5’;, al)(a — ;
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Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

nitialize a, ..., a,._,, (e.g., by local linearization)

: : .50 _ s =0 -0 50 _ g0 50 <0 =0
Generate nominal trajectory: 5, = 5, d, ..., a;, 8, = f(5;,a;), ..., Sp_1, Ay,

Fori=0.1,... Note that although tr.uef|§ stationary,
its approximation f, is not

For each 1, linearize f(s, a) at (5, @): f(s,a) ~ f(5,,a) + V f(5,a)(s —5)+ V, (5, a)a—a
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Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

=0 =0

Initialize a,, ..., ar_,, (e.g., by local linearization)
Generate nominal trajectory: 5 = 5., dg, ..., a,, 5o, = f(8},a?), ..., 59, a

J y 0 0> 0° ° f° t+1 ot T—1° T_l
Fori=0.1,... Note that although true f is stationary,

its approximation f, is not
For each ¢, linearize f(s, a) at (S*;, _l) f(s,a) f(S*;, ") + V f(E;, 'l)(s — Et) + V f(S*;, ")(a — a't)

For each t, quadratize ¢ (s, a) at (5, @'

T 2 (<l —l Sl —l —] i =1 i Sl —l
1 [s—5 V c(st, LC(83, a, s — 5 s — 5 V. c(5, a; o
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Recall sy ~ uy; denote E; _, [s9] = 5

=0 =0

Initialize a,, ..., ar_,, (e.g., by local linearization)
Generate nominal trajectory: 5 = 5., dg, ..., a,, 5o, = f(8},a?), ..., 59, a

J y 0 0> 0° ° f° t+1 ot T—1° T_l
Fori=0.1,... Note that although true f is stationary,

its approximation f, is not
For each ¢, linearize f(s, a) at (5;, _l) f(s,a) f(S*;, ") +V f(E;, 'l)(s — Et) + V f(S*;, ")(a —

For each t, quadratize ¢ (s, a) at (5, @'

_ i V2 (—l —l (—l —l i U o T \V, — _l
1 |s st c(8;, a c(s, a s — 5 s — 5 .c(S8, a, . _l
Ct(S’ a) X =1 < —l 2 < —z = T 1 gl —i C(

Formulate time-dependent LQR and compute its optimal control 71'6, oo ﬂ}_l
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Initialize a,, ..., ar_,, (e.g., by local linearization)
Generate nominal trajectory: 5 = 5., dg, ..., a,, 5o, = f(8},a?), ..., 59, a

J y 0 0> 0° ° f° t+1 ot T—1° T_l
Fori=0.1,... Note that although true f is stationary,

its approximation f, is not
For each ¢, linearize f(s, a) at (S*;, _’) f(s,a) f(S*;, ") +V f(E;, 'l)(s — Et) +V f(S*;, ")(a —

For each t, quadratize ¢ (s, a) at (5, @'

— T 2 (=l —l per] —l —] T —] T —] —l
1 [s-5 V c(st, ,C(85, ay s — 5 s — 5 V.c(5;, a, o
c(s,a) X — . 1 + . + c(5;,

2 |a—a G, al Vzc(g;, 1) | |a-a a—a V (3, a

Formulate time-dependent LQR and compute its optimal control ﬂé, oo 72'%_1
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Iterative LQR

Recall sy ~ uy; denote E; _, [s9] = 5

=0 =0

Initialize a,, ..., ar_,, (e.g., by local linearization)
Generate nominal trajectory: 5) = 5, ag, ..., ), 8., = f(37, @), ...,5%_,,a

J y 0 0> 0° ° f° t+1 ot T—1° T_l
Fori=0.1,... Note that although true f is stationary,

its approximation f, is not
For each ¢, linearize f(s, a) at (S*;, _’) f(s,a) f(S*;, ") + V f(§§, 'l)(s — Et) +V f(S*;, ")(a — a't)

For each t, quadratize ¢ (s, a) at (5, @'

1 |s—§ ! VZC(EZ 1 @ ayl | s-3 ! s — 3§ ! V.c(3,a
T t’ t’ T T —;  —
c(s,a) & — t- |+ ' " & + c(5,,

2 la—a L3, a VZC(E;, 7 a— d, a— da, V (5, a

Formulate time-dependent LQR and compute its optimal control ﬂé, oo 72'%_1

<i+1 = —1+1 l+1 —z— —l+1 —i+1
Set new nominal trajectory: S = So» 4y —7Z't( ), and § —f( d; )

20 Note this is truef, not approximation
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Practical Considerations of Iterative LQR:
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Given the previous nominal control 6_16, Cens c'l’T_l, and the latest computed controls ay, ..., d7_

We want to find a € [0,1] such that @'*! := a @' + (1 — @)a, has the smallest cost,

-1

min Z c(s,, athy
ae[0,]1] —0

st. s, =fs,a™), at'=ad+0-ma, s,=3,

This optimization is tractable because it is 1-dimensional!
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Summary:

Local Linearization:
Approximate an LQR at the balance (goal) position (S*, a*) and then solve the approximated LQR

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Iterative LQR
lterate between:
(1) forming an LQR around the current nominal trajectory,
(2) computing a new nominal trajectory using the optimal policy of the LQR

Computes a locally optimal (in policy space) solution for a large class of nonlinear control problems
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Today

Feedback from last lecture
Recap

Locally linearization
lterative LQR
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» Allows us to approximately optimally control any system near its optimum
lterative LQR

» Uses LQR approximation to find locally optimal nonlinear control solution

|E| et

Next time:
 Full RL!

1-minute feedback form: https://bit.ly/3RHtIxy


https://bit.ly/3RHtlxy

