From LQR to Nonlinear Control

Lucas Janson and Sham Kakade **CS/Stat 184: Introduction to Reinforcement Learning** Fall 2022

- Feedback from last lecture
- Recap
- Locally linearization
- Iterative LQR

Feedback from feedback forms

1. Thank you to everyone who filled out the forms! 2.

- Recap
- Locally linearization
- Iterative LQR

Recap: LQR

Problem Statement (finite horizon, time homogeneous):

$$Qs_T + \sum_{t=0}^{T-1} \left(s_t^{\mathsf{T}} Qs_t + a_t^{\mathsf{T}} Ra_t \right) \right]$$

such that $s_{t+1} = As_t + Ba_t + w_t$, $s_0 \sim \mu_0$, $a_t = \pi_t(s_t)$, $w_t \sim N(0, \sigma^2 I)$

Recap: LQR

Problem Statement (finite horizon, time homogeneous):

- States $s_t \in \mathbb{R}^d$
- Actions/controls $a_t \in \mathbb{R}^k$
- Additive noise $w_t \sim \mathcal{N}(0, \sigma^2 I)$
- coefficient matrix $B \in \mathbb{R}^{d \times k}$

$$2s_T + \sum_{t=0}^{T-1} \left(s_t^{\mathsf{T}} Q s_t + a_t^{\mathsf{T}} R a_t \right) \right]$$

such that $s_{t+1} = As_t + Ba_t + w_t$, $s_0 \sim \mu_0$, $a_t = \pi_t(s_t)$, $w_t \sim N(0, \sigma^2 I)$

• Dynamics linear with state coefficient matrix $A \in \mathbb{R}^{d \times d}$ and action

 Cost function quadratic with positive semidefinite state coefficient matrix $Q \in \mathbb{R}^{d \times d}$ and positive semidefinite action coefficient matrix $R \in \mathbb{R}^{k \times k}$

Recap: LQR Optimal Control

Recap: LQR Optimal Control

 $V_T^{\star}(s) = s^{\top}Qs$, define $P_T = Q, p_T = 0$,

We showed that $V_t^{\star}(s) = s^{\top} P_t s + p_t$, where: $P_{t} = Q + A^{\mathsf{T}} P_{t+1} A - A^{\mathsf{T}} P_{t+1} B (R + B^{\mathsf{T}} P_{t+1} B)^{-1} B^{\mathsf{T}} P_{t+1} A$ $p_t = \text{tr}(\sigma^2 P_{t+1}) + p_{t+1}$

Recap: LQR Optimal Control

 $V_T^{\star}(s) = s^{\top}Qs$, define $P_T = Q, p_T = 0$,

$$V_T^{\star}(s) = s^{\top} Q s,$$

 $p_t = \text{tr}(\sigma^2 P_{t+1}) + p_{t+1}$

 $K_t = (R + B)$

Recap: LQR Optimal Control

define $P_T = Q, p_T = 0$,

We showed that $V_t^{\star}(s) = s^{\top}P_t s + p_t$, where: $P_{t} = Q + A^{\mathsf{T}} P_{t+1} A - A^{\mathsf{T}} P_{t+1} B (R + B^{\mathsf{T}} P_{t+1} B)^{-1} B^{\mathsf{T}} P_{t+1} A$

Along the way, we also showed that $\pi_t^{\star}(s) = -K_t s$, where:

$$^{\mathsf{T}}P_{t+1}B)^{-1}B^{\mathsf{T}}P_{t+1}A$$

$$V_T^{\star}(s) = s^{\top} Q s,$$

We showed that V_{t}^{\star} $P_t = Q + A^{\mathsf{T}} P_{t+1} A - A^{\mathsf{T}}$ $p_t = \text{tr}(\sigma^2 P_{t+1}) + p_{t+1}$

 $K_t = (R + B)$

Optimal policy has nothing to do with initial distribution μ_0 or the noise σ^2 !

Recap: LQR Optimal Control

define $P_T = Q, p_T = 0$,

*(s) =
$$s^{\top}P_t s + p_t$$
, where:
 $P_{t+1}B(R + B^{\top}P_{t+1}B)^{-1}B^{\top}P_{t+1}A$

Along the way, we also showed that $\pi_t^{\star}(s) = -K_t s$, where:

$$^{\mathsf{T}}P_{t+1}B)^{-1}B^{\mathsf{T}}P_{t+1}A$$

Beyond LQR

Beyond LQR

We saw a number of extensions to LQR that essentially reduced to the same problem

Beyond LQR

But what about problems with nonlinear dynamics and/or nonquadratic costs?

We saw a number of extensions to LQR that essentially reduced to the same problem

- Recap
 - Locally linearization
 - Iterative LQR

Assumptions:

1. We have black-box access to f&c:

Assumptions:

1. We have black-box access to f&c:

f and c have unknown analytical form but can be queried at any (s, a) to give s', c, where s' = f(s, a), c = c(s, a)

Assumptions:

1. We have black-box access to f & c:

f and *c* have unknown analytical form but can be queried at any (s, a) to give s', c, where s' = f(s, a), c = c(s, a)

2. *f* is differentiable and *c* is twice differentiable

Assumptions:

1. We have black-box access to f & c:

f and *c* have unknown analytical form but can be queried at any (s, a) to give *s'*, *c*, where s' = f(s, a), c = c(s, a)

2. *f* is differentiable and *c* is twice differentiable

 $\nabla_{s} f(s, a), \nabla_{a} f(s, a), \nabla_{s} c(s, a), \nabla_{a} c(s, a),$ $\nabla_{s}^{2} c(s, a), \nabla_{a}^{2} c(s, a), \nabla_{s, a}^{2} c(s, a),$

Assume that all possible initial states s_0 are close to s^{\star} and can be kept there with actions close to a^{\star}

Assume that all possible initial states s_0 are close to s^{\star} and can be kept there with actions close to a^{\star}

We can approximate f(s, a) locally with a first-order Taylor expansion:

 $f(s,a) \approx f(s^{\star},a^{\star}) + \nabla_s f(s^{\star},a^{\star})$

$$a^{\star}(s-s^{\star}) + \nabla_a f(s^{\star}, a^{\star})(a-a^{\star})$$

Assume that all possible initial states s_0 are close to s^{\star} and can be kept there with actions close to a^{\star}

$$f(s,a) \approx f(s^{\star},a^{\star}) + \nabla_s f(s^{\star},a^{\star}) \left(s - s^{\star}\right) + \nabla_a f(s^{\star},a^{\star})(a - a^{\star})$$

$$\nabla_{s} f(s,a) \in \mathbb{R}^{d \times d}, \nabla_{s} f(s,a)[i,j] = \frac{\partial f[i]}{\partial s[j]}(s,a), \quad \nabla_{u} f(s,a) \in \mathbb{R}^{d \times k}, \nabla_{a} f(s,a)[i,j] = \frac{\partial f[i]}{\partial a[j]}(s,a)$$

We can approximate f(s, a) locally with a first-order Taylor expansion:

where:

We can approximate c(s, a) locally at (s^*, a^*) with second-order Taylor expansion:

We can approximate c(s, a) locally at (s^*, a^*) with second-order Taylor expansion:

$$c(s,a) \approx c(s^{\star},a^{\star}) + \nabla_s c(s^{\star},a^{\star})^{\top} (s-s^{\star}) + \nabla_a c(s^{\star})^{\top} \nabla_s^2 c(s^{\star},a^{\star}) (s-s^{\star}) + \frac{1}{2}(a-s^{\star})^{\top} \nabla_s^2 c(s^{\star},a^{\star}) (s-s^{\star}) (s-s^{\star$$

 $(s^{\star}, a^{\star})^{\mathsf{T}}(a - a^{\star})$

 $-a^{\star})^{\mathsf{T}} \nabla^2_a c(s^{\star}, a^{\star})(a - a^{\star}) + (a - a^{\star})^{\mathsf{T}} \nabla^2_{a,s} c(s, a)(s - s^{\star})$

$$c(s,a) \approx c(s^{\star},a^{\star}) + \nabla_s c(s^{\star},a^{\star})^{\top} (s-s^{\star}) + \nabla_a c(s^{\star})^{\top} \nabla_s^2 c(s^{\star},a^{\star}) (s-s^{\star}) + \frac{1}{2}(a-s^{\star})^{\top} \nabla_s^2 c(s^{\star},a^{\star}) (s-s^{\star}) (s-s^{\star$$

$$\nabla_{s}c(s,a) \in \mathbb{R}^{d}, \quad \nabla_{s}c(s,a)[i] = \frac{\partial c}{\partial s[i]}(s,a),$$

$$\nabla_{a}c(s,a) \in \mathbb{R}^{k}, \quad \nabla_{a}c(s,a)[i] = \frac{\partial c}{\partial a[i]}(s,a),$$

$$\nabla_{s}^{2}c(s,a) \in \mathbb{R}^{d \times d}, \quad \nabla_{s}^{2}c(s,a)[i,j] = \frac{\partial^{2}c}{\partial s[i]\partial s[j]}(s,a),$$

$$\nabla_{a,s}^{2}c(s,a) \in \mathbb{R}^{k \times d}, \quad \nabla_{a,s}^{2}c(s,a)[i,j] = \frac{\partial^{2}c}{\partial a[i]\partial s[j]}(s,a),$$

$$\nabla_{s}c(s,a) \in \mathbb{R}^{d}, \quad \nabla_{s}c(s,a)[i] = \frac{\partial c}{\partial s[i]}(s,a),$$

$$\nabla_{a}c(s,a) \in \mathbb{R}^{k}, \quad \nabla_{a}c(s,a)[i] = \frac{\partial c}{\partial a[i]}(s,a),$$

$$\nabla_{s}^{2}c(s,a) \in \mathbb{R}^{d \times d}, \quad \nabla_{s}^{2}c(s,a)[i,j] = \frac{\partial^{2}c}{\partial s[i]\partial s[j]}(s,a),$$

$$\nabla_{a,s}^{2}c(s,a) \in \mathbb{R}^{k \times d}, \quad \nabla_{a,s}^{2}c(s,a)[i,j] = \frac{\partial^{2}c}{\partial a[i]\partial s[j]}(s,a),$$

$$\nabla_{s}c(s,a) \in \mathbb{R}^{d}, \quad \nabla_{s}c(s,a)[i] = \frac{\partial c}{\partial s[i]}(s,a),$$

$$\nabla_{a}c(s,a) \in \mathbb{R}^{k}, \quad \nabla_{a}c(s,a)[i] = \frac{\partial c}{\partial a[i]}(s,a),$$

$$\nabla_{s}^{2}c(s,a) \in \mathbb{R}^{d \times d}, \quad \nabla_{s}^{2}c(s,a)[i,j] = \frac{\partial^{2}c}{\partial s[i]\partial s[j]}(s,a),$$

$$\nabla_{a,s}^{2}c(s,a) \in \mathbb{R}^{k \times d}, \quad \nabla_{a,s}^{2}c(s,a)[i,j] = \frac{\partial^{2}c}{\partial a[i]\partial s[j]}(s,a),$$

$$\nabla_{s}c(s,a) \in \mathbb{R}^{d}, \quad \nabla_{s}c(s,a)[i] = \frac{\partial c}{\partial s[i]}(s,a),$$

$$\nabla_{a}c(s,a) \in \mathbb{R}^{k}, \quad \nabla_{a}c(s,a)[i] = \frac{\partial c}{\partial a[i]}(s,a),$$

$$\nabla_{s}^{2}c(s,a) \in \mathbb{R}^{d \times d}, \quad \nabla_{s}^{2}c(s,a)[i,j] = \frac{\partial^{2}c}{\partial s[i]\partial s[j]}(s,a),$$

$$\nabla_{a,s}^{2}c(s,a) \in \mathbb{R}^{k \times d}, \quad \nabla_{a,s}^{2}c(s,a)[i,j] = \frac{\partial^{2}c}{\partial a[i]\partial s[j]}(s,a),$$

We can approximate c(s, a) locally at (s^*, a^*) with second-order Taylor expansion: $(s^{\star}, a^{\star})^{\mathsf{T}}(a - a^{\star})$ $(a^{\star})^{\mathsf{T}} \nabla^2_a c(s^{\star}, a^{\star})(a - a^{\star}) + (a - a^{\star})^{\mathsf{T}} \nabla^2_{a,s} c(s, a)(s - s^{\star})$

Local Linearization: Putting it all Together

$$c(s,a) \approx c(s^{\star},a^{\star}) + \nabla_s c(s^{\star},a^{\star})^{\top} (s-s^{\star}) + \nabla_a c(s^{\star})^{\top} \nabla_s^2 c(s^{\star},a^{\star}) (s-s^{\star}) + \frac{1}{2}(a-s^{\star})^{\top} \nabla_s^2 c(s^{\star},a^{\star}) (s-s^{\star}) (s-s^{\star$$

 $f(s,a) \approx f(s^{\star},a^{\star}) + \nabla_s f(s^{\star},a^{\star}) \left(s - s^{\star}\right) + \nabla_a f(s^{\star},a^{\star})(a - a^{\star})$

 $(a^{\star}, a^{\star})^{\top}(a - a^{\star})$ $(a^{\star})^{\mathsf{T}} \nabla^2_a c(s^{\star}, a^{\star})(a - a^{\star}) + (a - a^{\star})^{\mathsf{T}} \nabla^2_{a,s} c(s, a)(s - s^{\star})$

Local Linearization: Putting it all Together

$$c(s,a) \approx c(s^{\star},a^{\star}) + \nabla_{s}c(s^{\star},a^{\star})^{\top}(s-s^{\star}) + \nabla_{a}c(s^{\star},a^{\star})^{\top}(a-a^{\star}) + \frac{1}{2}(s-s^{\star})^{\top}\nabla_{s}^{2}c(s^{\star},a^{\star})(s-s^{\star}) + \frac{1}{2}(a-a^{\star})^{\top}\nabla_{a}^{2}c(s^{\star},a^{\star})(a-a^{\star}) + (a-a^{\star})^{\top}\nabla_{a,s}^{2}c(s,a)(s-s^{\star}) + f(s,a) \approx f(s^{\star},a^{\star}) + \nabla_{s}f(s^{\star},a^{\star})(s-s^{\star}) + \nabla_{s}f(s^{\star},a^{\star})(a-a^{\star})$$

$$\begin{split} c(s,a) &\approx c(s^{\star},a^{\star}) + \nabla_s c(s^{\star},a^{\star})^{\top} (s-s^{\star}) + \nabla_a c(s^{\star},a^{\star})^{\top} (a-a^{\star}) \\ &+ \frac{1}{2} (s-s^{\star})^{\top} \nabla_s^2 c(s^{\star},a^{\star}) (s-s^{\star}) + \frac{1}{2} (a-a^{\star})^{\top} \nabla_a^2 c(s^{\star},a^{\star}) (a-a^{\star}) + (a-a^{\star})^{\top} \nabla_{a,s}^2 c(s,a) (s-s^{\star}) \\ f(s,a) &\approx f(s^{\star},a^{\star}) + \nabla_s f(s^{\star},a^{\star}) (s-s^{\star}) + \nabla_a f(s^{\star},a^{\star}) (a-a^{\star}) \end{split}$$

Rearranging terms, we get back to the following formulation:

$$\arg\min_{\pi_0,\ldots,\pi_{T-1}:\mathbb{R}^d\to\mathbb{R}^k} \mathbb{E}\left[\sum_{t=0}^{T-1} \left(s_t^\top Q s_t + a_t^\top R a_t + a_t^\top M s_t + s_t^\top q + a_t^\top r + c\right)\right]$$

such that $s_{t+1} = A s_t + B a_t + v$, $s_0 \sim \mu_0$, $a_t = \pi_t(s_t)$

(HW3 problem) 12

Summary So far:

For tasks such as balancing near goal state (s^{\star}, a^{\star}) , we can perform first order Taylor expansion on f(s, a),

and second order Taylor expansion on c(s, a) around the balancing point (s^*, a^*)

$$s_t + a_t^{\mathsf{T}} R a_t + a_t^{\mathsf{T}} M s_t + s_t^{\mathsf{T}} q + a_t^{\mathsf{T}} r + c) \bigg]$$

, $s_0 \sim \mu_0$, $a_t = \pi_t(s_t)$

Summary So far:

$$\arg\min_{\pi_0,\ldots,\pi_{T-1}:\mathbb{R}^d\to\mathbb{R}^k} \mathbb{E}\left[\sum_{t=0}^{T-1} \left(s_t^\top Q s_t + a_t^\top R a_t + a_t^\top M s_t + s_t^\top q + a_t^\top r + c\right)\right]$$

such that $s_{t+1} = A s_t + B a_t + v$, $s_0 \sim \mu_0$, $a_t = \pi_t(s_t)$

Last step: checking some practical issues

For tasks such as balancing near goal state (s^{\star}, a^{\star}) , we can perform first order Taylor expansion on f(s, a),

and second order Taylor expansion on c(s, a) around the balancing point (s^*, a^*)

Locally Convexifying the Cost Function
Locally Convexifying the Cost Function

Note that c(s, a) might not even be convex;

So,
$$\nabla_s^2 c(s^\star, a^\star)$$
 & $\nabla_a^2 c(s^\star)$

 \star, a^{\star}) may not be positive definite

Locally Convexifying the Cost Function

Note that c(s, a) might not even be convex;

So,
$$\nabla_s^2 c(s^\star, a^\star)$$
 & $\nabla_a^2 c(s^\star)$

In practice, we force them to be positive definite:

 \star, a^{\star}) may not be positive definite

Locally Convexifying the Cost Function

Note that c(s, a) might not even be convex;

So,
$$\nabla_s^2 c(s^\star, a^\star)$$
 & $\nabla_a^2 c(s^\star)$

In practice, we force them to be positive definite:

i=1

for some small $\lambda > 0$

 \star, a^{\star}) may not be positive definite

Given a symmetric matrix $H \in \mathbb{R}^{d \times d}$, we compute the eigen-decomposition $H = \sum_{i=1}^{d} \sigma_{i} u_{i} u_{i}^{\mathsf{T}}$, and we approximate H as $H \approx \sum_{i=1}^{d} \mathbf{1}(\sigma_{i} > 0) \sigma_{i} u_{i} u_{i}^{\mathsf{T}} + \lambda I,$

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (s, a), the black boxes outputs s', c, where s' = f(s, a), c = c(s, a)

Recall our assumption: we only have black-box access to f & c**:**

- i.e., unknown analytical form, but given any (s, a), the black boxes outputs s', c, where s' = f(s, a), c = c(s, a)
 - Compute gradient using finite differencing:

Recall our assumption: we only have black-box access to f & c:

$$\frac{\partial f[i]}{\partial s[j]}(s,a) \approx \frac{f(s+\delta_j,a)[i] - f(s-\delta_j,a)[i]}{2\delta}, \text{ where } \delta_j = [0,...,0, \underbrace{\delta}_{j'th} \text{ entry}]^{\mathsf{T}}$$

- i.e., unknown analytical form, but given any (s, a), the black boxes outputs s', c, where s' = f(s, a), c = c(s, a)
 - Compute gradient using finite differencing:

Recall our assumption: we only have black-box access to f & c:

$$\frac{\partial f[i]}{\partial s[j]}(s,a) \approx \frac{f(s+\delta_j,a)[i] - f(s-\delta_j,a)[i]}{2\delta}, \text{ where } \delta_j = [0,...,0, \underbrace{\delta}_{j'th} \text{ entry}$$

$$\int_{j'th} entry$$
To compute second derivative, e.g.,
$$\frac{\partial^2 c}{\partial a[i]\partial s[j]}(s,a)$$

- i.e., unknown analytical form, but given any (s, a), the black boxes outputs s', c, where s' = f(s, a), c = c(s, a)
 - Compute gradient using finite differencing:

Recall our assumption: we only have black-box access to f & c:

$$\frac{\partial f[i]}{\partial s[j]}(s,a) \approx \frac{f(s+\delta_j,a)[i] - f(s-\delta_j,a)[i]}{2\delta}, \text{ where } \delta_j = [0,...,0, \underbrace{\delta}_{j'th} \text{ entry} ,0,...0]^{\mathsf{T}}$$

$$\text{To compute second derivative, e.g., } \frac{\partial^2 c}{\partial a[i]\partial s[j]}(s,a)$$

- i.e., unknown analytical form, but given any (s, a), the black boxes outputs s', c, where s' = f(s, a), c = c(s, a)
 - Compute gradient using finite differencing:

First implement finite differencing procedure for $\partial c/\partial a[i]$, and then perform another finite differencing with respect to s[j] on top of the first finite differencing procedure for $\partial c/\partial a[i]$

- 1. Perform first order Taylor expansion on f(s, a)
- and second order Taylor expansion on c(s, a), both around the balancing point (s^*, a^*)

1. Perform first order and second order Taylor expansion on c

2. Force Hessians $\nabla_s^2 c(s, a) \& \nabla_a^2 c(s, a)$ to be positive definite

1. Perform first order Taylor expansion on f(s, a)

and second order Taylor expansion on c(s, a), both around the balancing point (s^*, a^*)

1. Perform first order Taylor expansion on f(s, a)and second order Taylor expansion on c(s, a), both around the balancing point (s^*, a^*)

2. Force Hessians $\nabla_s^2 c(s, a)$

&
$$\nabla_a^2 c(s, a)$$
 to be positive definite

3. Leverage finite differences to approximate gradients and Hessians

1. Perform first order Taylor expansion on f(s, a)and second order Taylor expansion on c(s, a), both around the balancing point (s^*, a^*)

2. Force Hessians $\nabla_s^2 c(s, a)$

4. The approximation is an LQR, so we know how to compute the optimal policy

&
$$\nabla_a^2 c(s, a)$$
 to be positive definite

3. Leverage finite differences to approximate gradients and Hessians

- Recap
- Locally linearization
 - Iterative LQR

Limits of Local Linearization

Limits of Local Linearization

Local linearization can work if s_0 is very close to s^* and stays there with near-optimal (i.e., near- a^{\star}) actions

Limits of Local Linearization

Local linearization can work if s_0 is very close to s^* and stays there with near-optimal (i.e., near- a^{\star}) actions

But when s_t is far away from s^* or a_t needs to be far from a^* for any t, first/second-order Taylor expansion is not accurate anymore

Instead of linearizing/quadratizing around (s^{\star}, a^{\star}) , linearize/quadratize around some other (\bar{s}, \bar{a})

- Instead of linearizing/quadratizing around (s^{\star}, a^{\star}) , linearize/quadratize around some other (\bar{s}, \bar{a})
 - In fact, we can even linearize/quadratize around different points (\bar{s}_t, \bar{a}_t) at each t

Instead of linearizing/quadratizing around (s^{\star}, a^{\star}) , linearize/quadratize around some other (\bar{s}, \bar{a}) In fact, we can even linearize/quadratize around different points (\bar{s}_t, \bar{a}_t) at each t

After linearization and quadratization at time t around waypoint (\bar{s}_t, \bar{a}_t) , $\forall t$, re-arranging terms gives:

$$\begin{bmatrix} t + a_t^{\mathsf{T}} R_t a_t + a_t^{\mathsf{T}} M_t s_t + s_t^{\mathsf{T}} q_t + a_t^{\mathsf{T}} r_t + c_t \end{bmatrix}$$

$$\begin{bmatrix} t + a_t^{\mathsf{T}} R_t a_t + a_t^{\mathsf{T}} M_t s_t + s_t^{\mathsf{T}} q_t + a_t^{\mathsf{T}} r_t + c_t \end{bmatrix}$$

Instead of linearizing/quadratizing around (s^{\star}, a^{\star}) , linearize/quadratize around some other (\bar{s}, \bar{a}) In fact, we can even linearize/quadratize around different points (\bar{s}_t, \bar{a}_t) at each t

$$\arg\min_{\pi_0,\ldots,\pi_{T-1}:\mathbb{R}^d\to\mathbb{R}^k} \mathbb{E}\left[\sum_{t=0}^{T-1} \left(s_t^{\mathsf{T}}Q_t s_t + a_t^{\mathsf{T}}R_t a_t + a_t^{\mathsf{T}}M_t s_t + s_t^{\mathsf{T}}q_t + a_t^{\mathsf{T}}r_t + c_t\right)\right]$$

such that $s_{t+1} = A_t s_t + B_t a_t + v_t$, $s_0 \sim \mu_0$, $a_t = \pi_t(s_t)$

Time-dependent LQR problem: we know the solution

After linearization and quadratization at time t around waypoint (\bar{s}_t, \bar{a}_t) , $\forall t$, re-arranging terms gives:

Instead of linearizing/quadratizing around (s^{\star}, a^{\star}) , linearize/quadratize around some other (\bar{s}, \bar{a}) In fact, we can even linearize/quadratize around different points (\bar{s}_t, \bar{a}_t) at each t

$$\arg\min_{\pi_0,\ldots,\pi_{T-1}:\mathbb{R}^d\to\mathbb{R}^k} \mathbb{E}\left[\sum_{t=0}^{T-1} (s_t^\top Q_t s_t + a_t^\top R_t a_t + a_t^\top M_t s_t + s_t^\top q_t + a_t^\top r_t + c_t)\right]$$

such that $s_{t+1} = A_t s_t + B_t a_t + v_t$, $s_0 \sim \mu_0$, $a_t = \pi_t(s_t)$

Time-dependent LQR problem: we know the solution

After linearization and quadratization at time t around waypoint (\bar{s}_t, \bar{a}_t) , $\forall t$, re-arranging terms gives:

<u>Question</u>: how to choose the waypoints (\bar{s}_t, \bar{a}_t) to get the best approximation/solution?

Initialize $\bar{a}_0^0, \dots, \bar{a}_{T-1}^0$, (e.g., by local linearization)

Initialize $\bar{a}_0^0, \ldots, \bar{a}_{T-1}^0$, (e.g., by local linearization) Generate nominal trajectory: $\bar{s}_0^0 = \bar{s}_0, \bar{a}_0^0, \dots, \bar{a}_t^0, \bar{s}_{t+1}^0 = f(\bar{s}_t^0, \bar{a}_t^0), \dots, \bar{s}_{T-1}^0, \bar{a}_{T-1}^0$

Initialize $\bar{a}_0^0, \dots, \bar{a}_{T-1}^0$, (e.g., by local linearization) Generate nominal trajectory: $\bar{s}_0^0 = \bar{s}_0, \bar{a}_0^0, \dots, \bar{a}_t^0, \bar{s}_{t+1}^0 = f(\bar{s}_t^0, \bar{a}_t^0), \dots, \bar{s}_{T-1}^0, \bar{a}_{T-1}^0$

For i = 0, 1, ...

Initialize $\bar{a}_0^0, \dots, \bar{a}_{T-1}^0$, (e.g., by local linearization) Generate nominal trajectory: $\bar{s}_0^0 = \bar{s}_0, \bar{a}_0^0, \dots, \bar{a}_t^0, \bar{s}_{t+1}^0 = f(\bar{s}_t^0, \bar{a}_t^0), \dots, \bar{s}_{T-1}^0, \bar{a}_{T-1}^0$ For i = 0, 1, ...

Recall $s_0 \sim \mu_0$; denote $\mathbb{E}_{s_0 \sim \mu_0}[s_0] = \bar{s}_0$

For each t, linearize f(s, a) at $(\bar{s}_t^i, \bar{a}_t^i)$: $f_t(s, a) \approx f(\bar{s}_t^i, \bar{a}_t^i) + \nabla_s f(\bar{s}_t^i, \bar{a}_t^i)(s - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{a}_t^i)(a - \bar{a}_t^i)$

Initialize $\bar{a}_0^0, \dots, \bar{a}_{T-1}^0$, (e.g., by local linearization) Generate nominal trajectory: $\bar{s}_0^0 = \bar{s}_0, \bar{a}_0^0, \dots, \bar{a}_t^0$, Note that although true f is stationary, For i = 0, 1, ...its approximation f_t is not

For each t, linearize f(s, a) at $(\bar{s}_t^i, \bar{a}_t^i)$: $f_t(s, a) \approx f(\bar{s}_t^i, \bar{a}_t^i) + \nabla_s f(\bar{s}_t^i, \bar{a}_t^i)(s - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{a}_t^i)(a - \bar{a}_t^i)$

$$\bar{s}_{t+1}^0 = f(\bar{s}_t^0, \bar{a}_t^0), \dots, \bar{s}_{T-1}^0, \bar{a}_{T-1}^0$$

Initialize $\bar{a}_0^0, \ldots, \bar{a}_{T-1}^0$, (e.g., by local linearization) Generate nominal trajectory: $\bar{s}_0^0 = \bar{s}_0, \bar{a}_0^0, \dots, \bar{a}_t^0$, Note that although true f is stationary, For i = 0, 1, ...its approximation f_t is not For each t, linearize f(s, a) at $(\bar{s}_t^i, \bar{a}_t^i)$: $f_t(s, a)$ For each t, quadratize $c_t(s, a)$ at $(\bar{s}_t^l, \bar{a}_t^l)$: $c_t(s,a) \approx \frac{1}{2} \begin{bmatrix} s - \bar{s}_t^i \\ a - \bar{a}_t^i \end{bmatrix}^{\top} \begin{bmatrix} \nabla_s^2 c(\bar{s}_t^i, \bar{a}_t^i) & \nabla_{s,a}^2 c(\bar{s}_t^i, \bar{a}_t^i) \\ \nabla_a^2 c(\bar{s}_t^i, \bar{a}_t^i) & \nabla_a^2 c(\bar{s}_t^i, \bar{s}_t^i) \end{bmatrix}$

$$\bar{s}_{t+1}^0 = f(\bar{s}_t^0, \bar{a}_t^0), \dots, \bar{s}_{T-1}^0, \bar{a}_{T-1}^0$$

$$) \approx f(\bar{s}_t^i, \bar{a}_t^i) + \nabla_s f(\bar{s}_t^i, \bar{a}_t^i)(s - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{a}_t^i)(a - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{a}_t^i)(a - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{s}_t^i)(a - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i$$

$$\begin{pmatrix} \bar{s}_t^i, \bar{a}_t^i \end{pmatrix} \begin{bmatrix} s - \bar{s}_t^i \\ a - \bar{a}_t^i \end{bmatrix}^\top + \begin{bmatrix} s - \bar{s}_t^i \\ a - \bar{a}_t^i \end{bmatrix}^\top \begin{bmatrix} \nabla_s c(\bar{s}_t^i, \bar{a}_t^i) \\ \nabla_a c(\bar{s}_t^i, \bar{a}_t^i) \end{bmatrix} + c$$

Initialize $\bar{a}_0^0, \dots, \bar{a}_{T-1}^0$, (e.g., by local linearization) Generate nominal trajectory: $\bar{s}_0^0 = \bar{s}_0, \bar{a}_0^0, \dots, \bar{a}_t^0$, Note that although true f is stationary, For i = 0, 1, ...its approximation f_t is not For each t, linearize f(s, a) at $(\bar{s}_t^i, \bar{a}_t^i)$: $f_t(s, a)$ For each *t*, quadratize $c_t(s, a)$ at $(\bar{s}_t^l, \bar{a}_t^l)$: $c_t(s,a) \approx \frac{1}{2} \begin{bmatrix} s - \bar{s}_t^i \\ a - \bar{a}_t^i \end{bmatrix}^{\top} \begin{bmatrix} \nabla_s^2 c(\bar{s}_t^i, \bar{a}_t^i) & \nabla_{s,a}^2 c(\bar{s}_t^i, \bar{a}_t^i) \\ \nabla_a^2 c(\bar{s}_t^i, \bar{a}_t^i) & \nabla_a^2 c(\bar{s}_t^i, \bar{s}_t^i) \end{bmatrix}$

Formulate **time-dependent** LQR and compute its optimal control $\pi_0^l, \ldots, \pi_{T-1}^l$

$$\bar{s}_{t+1}^0 = f(\bar{s}_t^0, \bar{a}_t^0), \dots, \bar{s}_{T-1}^0, \bar{a}_{T-1}^0$$

$$\approx f(\bar{s}_t^i, \bar{a}_t^i) + \nabla_s f(\bar{s}_t^i, \bar{a}_t^i)(s - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{a}_t^i)(a - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{a}_t^i)(a - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{s}_t^i)(a - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i,$$

$$\begin{pmatrix} \bar{s}_t^i, \bar{a}_t^i \end{pmatrix} \begin{bmatrix} s - \bar{s}_t^i \\ a - \bar{a}_t^i \end{bmatrix}^\top + \begin{bmatrix} s - \bar{s}_t^i \\ a - \bar{a}_t^i \end{bmatrix}^\top \begin{bmatrix} \nabla_s c(\bar{s}_t^i, \bar{a}_t^i) \\ \nabla_a c(\bar{s}_t^i, \bar{a}_t^i) \end{bmatrix} + c$$

Initialize $\bar{a}_0^0, \dots, \bar{a}_{T-1}^0$, (e.g., by local linearization) Generate nominal trajectory: $\bar{s}_0^0 = \bar{s}_0, \bar{a}_0^0, \dots, \bar{a}_t^0$, Note that although true f is stationary, For i = 0, 1, ...its approximation f_t is not For each t, linearize f(s, a) at $(\bar{s}_t^i, \bar{a}_t^i)$: $f_t(s, a)$ For each *t*, quadratize $c_t(s, a)$ at $(\bar{s}_t^l, \bar{a}_t^l)$: $c_t(s,a) \approx \frac{1}{2} \begin{bmatrix} s - \bar{s}_t^i \\ a - \bar{a}_t^i \end{bmatrix}^{\top} \begin{bmatrix} \nabla_s^2 c(\bar{s}_t^i, \bar{a}_t^i) & \nabla_{s,a}^2 c(\bar{s}_t^i, \bar{a}_t^i) \\ \nabla_a^2 c(\bar{s}_t^i, \bar{a}_t^i) & \nabla_a^2 c(\bar{s}_t^i, \bar{s}_t^i) \end{bmatrix}$

Formulate **time-dependent** LQR and compute its optimal control $\pi_0^l, \ldots, \pi_{T-1}^l$

Set new nominal trajectory: $\bar{s}_0^{i+1} = \bar{s}_0$, $\bar{a}_t^{i+1} = \pi_t^i(\bar{s}_t^{i+1})$, and $\bar{s}_{t+1}^{i+1} = f(\bar{s}_t^{i+1}, \bar{a}_t^{i+1})$

$$\bar{s}_{t+1}^0 = f(\bar{s}_t^0, \bar{a}_t^0), \dots, \bar{s}_{T-1}^0, \bar{a}_{T-1}^0$$

$$) \approx f(\bar{s}_t^i, \bar{a}_t^i) + \nabla_s f(\bar{s}_t^i, \bar{a}_t^i)(s - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{a}_t^i)(a - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{a}_t^i)(a - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{s}_t^i)(a - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i$$

$$\begin{pmatrix} \bar{s}_t^i, \bar{a}_t^i \end{pmatrix} \begin{bmatrix} s - \bar{s}_t^i \\ a - \bar{a}_t^i \end{bmatrix}^{\mathsf{T}} + \begin{bmatrix} s - \bar{s}_t^i \\ a - \bar{a}_t^i \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \nabla_s c(\bar{s}_t^i, \bar{a}_t^i) \\ \nabla_a c(\bar{s}_t^i, \bar{a}_t^i) \end{bmatrix} + c$$

Initialize $\bar{a}_0^0, \dots, \bar{a}_{T-1}^0$, (e.g., by local linearization) Generate nominal trajectory: $\bar{s}_0^0 = \bar{s}_0, \bar{a}_0^0, \dots, \bar{a}_t^0$, Note that although true f is stationary, For i = 0, 1, ...its approximation f_t is not For each t, linearize f(s, a) at $(\bar{s}_t^i, \bar{a}_t^i)$: $f_t(s, a)$ For each *t*, quadratize $c_t(s, a)$ at $(\bar{s}_t^l, \bar{a}_t^l)$: $c_t(s,a) \approx \frac{1}{2} \begin{bmatrix} s - \bar{s}_t^i \\ a - \bar{a}_t^i \end{bmatrix}^{\top} \begin{bmatrix} \nabla_s^2 c(\bar{s}_t^i, \bar{a}_t^i) & \nabla_{s,a}^2 c(\bar{s}_t^i, \bar{a}_t^i) \\ \nabla_a^2 c(\bar{s}_t^i, \bar{a}_t^i) & \nabla_a^2 c(\bar{s}_t^i, \bar{s}_t^i) \end{bmatrix}$

Formulate **time-dependent** LQR and compute its optimal control $\pi_0^l, \ldots, \pi_{T-1}^l$

Set new nominal trajectory: $\bar{s}_0^{i+1} = \bar{s}_0, \ \bar{a}_t^{i+1}$

Recall $s_0 \sim \mu_0$; denote $\mathbb{E}_{s_0 \sim \mu_0}[s_0] = \bar{s}_0$

$$\bar{s}_{t+1}^0 = f(\bar{s}_t^0, \bar{a}_t^0), \dots, \bar{s}_{T-1}^0, \bar{a}_{T-1}^0$$

$$) \approx f(\bar{s}_t^i, \bar{a}_t^i) + \nabla_s f(\bar{s}_t^i, \bar{a}_t^i)(s - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{a}_t^i)(a - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{a}_t^i)(a - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{s}_t^i)(a - \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i, \bar{s}_t^i) + \nabla_a f(\bar{s}_t^i$$

$$\begin{pmatrix} \bar{s}_t^i, \bar{a}_t^i \end{pmatrix} \begin{bmatrix} s - \bar{s}_t^i \\ a - \bar{a}_t^i \end{bmatrix}^\top + \begin{bmatrix} s - \bar{s}_t^i \\ a - \bar{a}_t^i \end{bmatrix}^\top \begin{bmatrix} \nabla_s c(\bar{s}_t^i, \bar{a}_t^i) \\ \nabla_a c(\bar{s}_t^i, \bar{a}_t^i) \end{bmatrix} + c$$

$$= \pi_t^i(\bar{s}_t^{i+1}), \text{ and } \bar{s}_{t+1}^{i+1} = f(\bar{s}_t^{i+1}, \bar{a}_t^{i+1})$$

Note this is true *f*, not approximation 20

Practical Considerations of Iterative LQR:

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

2. Still want to use finite differences to approximate derivatives
- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:
- Given the previous nominal control $\bar{a}_0^i, \ldots, \bar{a}_{T-1}^i$, and the latest computed controls $\bar{a}_0, \ldots, \bar{a}_{T-1}$

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:
- Given the previous nominal control $\bar{a}_0^i, \ldots, \bar{a}_{T-1}^i$, and the latest computed controls $\bar{a}_0, \ldots, \bar{a}_{T-1}$ We want to find $\alpha \in [0,1]$ such that $\bar{a}_t^{i+1} := \alpha \, \bar{a}_t^i + (1-\alpha) \bar{a}_t$ has the smallest cost,

$$\min_{\alpha \in [0,1]} \sum_{t=0}^{T-1} c(s_t, \bar{a}_t^{i+1})$$

s.t. $s_{t+1} = f(s_t, \bar{a}_t^{i+1}), \quad \bar{a}_t^{i+1} = \alpha \bar{a}_t^i + (1-\alpha) \bar{a}_t, \quad s_0 = \bar{s}_0$

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:
- Given the previous nominal control $\bar{a}_0^i, \ldots, \bar{a}_{T-1}^i$, and the latest computed controls $\bar{a}_0, \ldots, \bar{a}_{T-1}$ We want to find $\alpha \in [0,1]$ such that $\bar{a}_t^{i+1} := \alpha \, \bar{a}_t^i + (1-\alpha) \bar{a}_t$ has the smallest cost,

$$\min_{\alpha \in [0,1]} \sum_{t=0}^{T-1} c(s_t, \bar{a}_t^{i+1})$$

s.t.
$$s_{t+1} = f(s_t, \bar{a}_t^{i+1}), \quad \bar{a}_t^{i+1} = \alpha \bar{a}_t^i + (1 - \alpha) \bar{a}_t, \quad s_0 = \bar{s}_0$$

This optimization is tractable because it is 1-dimensional!

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:
- Given the previous nominal control $\bar{a}_0^i, \ldots, \bar{a}_{T-1}^i$, and the latest computed controls $\bar{a}_0, \ldots, \bar{a}_{T-1}$ We want to find $\alpha \in [0,1]$ such that $\bar{a}_t^{i+1} := \alpha \, \bar{a}_t^i + (1-\alpha) \bar{a}_t$ has the smallest cost,

Example:

2-d car navigation

Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

Example:

2-d car navigation

Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

Summary:

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Summary:

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Iterative LQR

Iterate between:

(1) forming an LQR around the current nominal trajectory,

(2) computing a new nominal trajectory using the optimal policy of the LQR

Summary:

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Iterative LQR

Iterate between:

Computes a locally optimal (in policy space) solution for a large class of nonlinear control problems

Summary:

- (1) forming an LQR around the current nominal trajectory,
- (2) computing a new nominal trajectory using the optimal policy of the LQR

- Recap
- Locally linearization
- Iterative LQR

Local linearization

Allows us to approximately optimally control any system near its optimum

Local linearization

Iterative LQR

- Allows us to approximately optimally control any system near its optimum
- Uses LQR approximation to find locally optimal nonlinear control solution

Local linearization

Allows us to approximately optir
Iterative LQR

Uses LQR approximation to find locally optimal nonlinear control solution

Next time:

• Full RL!

Allows us to approximately optimally control any system near its optimum

Local linearization

Iterative LQR

Uses LQR approximation to find locally optimal nonlinear control solution

Next time:

• Full RL!

1-minute feedback form: <u>https://bit.ly/3RHtlxy</u>

Allows us to approximately optimally control any system near its optimum

