
From LQR to Nonlinear Control
 

Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning 

Fall 2022

1

Today

• Feedback from last lecture

• Recap

• Locally linearization

• Iterative LQR

2

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.

3

Today

4

• Feedback from last lecture

• Recap

• Locally linearization

• Iterative LQR

Recap: LQR

5

arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [s⊤
T QsT +

T−1

∑
t=0

(s⊤
t Qst + a⊤

t Rat)]
such that st+1 = Ast + Bat + wt , s0 ∼ μ0 , at = πt(st) , wt ∼ N(0,σ2I)

Problem Statement (finite horizon, time homogeneous):

Recap: LQR

5

arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [s⊤
T QsT +

T−1

∑
t=0

(s⊤
t Qst + a⊤

t Rat)]
such that st+1 = Ast + Bat + wt , s0 ∼ μ0 , at = πt(st) , wt ∼ N(0,σ2I)

Problem Statement (finite horizon, time homogeneous):

• States

• Actions/controls

• Additive noise

• Dynamics linear with state coefficient matrix and action

coefficient matrix

• Cost function quadratic with positive semidefinite state coefficient matrix

 and positive semidefinite action coefficient matrix

st ∈ ℝd

at ∈ ℝk

wt ∼ 𝒩(0,σ2I)
A ∈ ℝd×d

B ∈ ℝd×k

Q ∈ ℝd×d R ∈ ℝk×k

Recap: LQR Optimal Control

6

Recap: LQR Optimal Control

6

V⋆
T (s) = s⊤Qs, define PT = Q, pT = 0,

Recap: LQR Optimal Control

6

V⋆
T (s) = s⊤Qs, define PT = Q, pT = 0,

We showed that , where: V⋆
t (s) = s⊤Pts + pt

Pt = Q + A⊤Pt+1A − A⊤Pt+1B(R + B⊤Pt+1B)−1B⊤Pt+1A

pt = tr (σ2Pt+1) + pt+1

Recap: LQR Optimal Control

6

V⋆
T (s) = s⊤Qs, define PT = Q, pT = 0,

We showed that , where: V⋆
t (s) = s⊤Pts + pt

Pt = Q + A⊤Pt+1A − A⊤Pt+1B(R + B⊤Pt+1B)−1B⊤Pt+1A

pt = tr (σ2Pt+1) + pt+1

Along the way, we also showed that , where: π⋆
t (s) = − Kts

Kt = (R + B⊤Pt+1B)−1B⊤Pt+1A

Recap: LQR Optimal Control

6

V⋆
T (s) = s⊤Qs, define PT = Q, pT = 0,

We showed that , where: V⋆
t (s) = s⊤Pts + pt

Pt = Q + A⊤Pt+1A − A⊤Pt+1B(R + B⊤Pt+1B)−1B⊤Pt+1A

pt = tr (σ2Pt+1) + pt+1

Along the way, we also showed that , where: π⋆
t (s) = − Kts

Kt = (R + B⊤Pt+1B)−1B⊤Pt+1A

Optimal policy has nothing to do with initial distribution or the noise ! μ0 σ2

Beyond LQR

7

Beyond LQR

7

We saw a number of extensions to LQR that essentially reduced to the same problem

Beyond LQR

7

But what about problems with nonlinear dynamics and/or nonquadratic costs?

We saw a number of extensions to LQR that essentially reduced to the same problem

Today

8

• Feedback from last lecture

• Recap

• Locally linearization

• Iterative LQR

Setting for Local Linearization Approach:

c(st, at) = d(at, a⋆) + d(st, s⋆)

Goal: stabilizing around the

goal (s = s⋆, a = a⋆)

9

Setting for Local Linearization Approach:

minimize 𝔼π[
T−1

∑
t=0

c(st, at)]
s.t. st+1 = f(st, at), at = π(st), s0 ∼ μ0

c(st, at) = d(at, a⋆) + d(st, s⋆)

Goal: stabilizing around the

goal (s = s⋆, a = a⋆)

9

Setting for Local Linearization Approach:

minimize 𝔼π[
T−1

∑
t=0

c(st, at)]
s.t. st+1 = f(st, at), at = π(st), s0 ∼ μ0

c(st, at) = d(at, a⋆) + d(st, s⋆)

Goal: stabilizing around the

goal (s = s⋆, a = a⋆)

No noise! 9

Setting for Local Linearization Approach:

minimize 𝔼π[
T−1

∑
t=0

c(st, at)]
s.t. st+1 = f(st, at), at = π(st), s0 ∼ μ0

c(st, at) = d(at, a⋆) + d(st, s⋆)

Goal: stabilizing around the

goal (s = s⋆, a = a⋆)

No noise! No terminal cost !ct(sT) 9

Setting for Local Linearization Approach:

minimize 𝔼π[
T−1

∑
t=0

c(st, at)]
s.t. st+1 = f(st, at), at = π(st), s0 ∼ μ0

c(st, at) = d(at, a⋆) + d(st, s⋆)

Goal: stabilizing around the

goal (s = s⋆, a = a⋆)

Assumptions:

1. We have black-box access to : f & c

No noise! No terminal cost !ct(sT) 9

Setting for Local Linearization Approach:

minimize 𝔼π[
T−1

∑
t=0

c(st, at)]
s.t. st+1 = f(st, at), at = π(st), s0 ∼ μ0

c(st, at) = d(at, a⋆) + d(st, s⋆)

Goal: stabilizing around the

goal (s = s⋆, a = a⋆)

Assumptions:

1. We have black-box access to : f & c

 and have unknown analytical form

but can be queried at any to give

where

f c
(s, a) s′ , c,

s′ = f(s, a), c = c(s, a)

No noise! No terminal cost !ct(sT) 9

Setting for Local Linearization Approach:

minimize 𝔼π[
T−1

∑
t=0

c(st, at)]
s.t. st+1 = f(st, at), at = π(st), s0 ∼ μ0

c(st, at) = d(at, a⋆) + d(st, s⋆)

Goal: stabilizing around the

goal (s = s⋆, a = a⋆)

Assumptions:

1. We have black-box access to : f & c

 and have unknown analytical form

but can be queried at any to give

where

f c
(s, a) s′ , c,

s′ = f(s, a), c = c(s, a)

2. is differentiable
and is twice differentiable

f
c

No noise! No terminal cost !ct(sT) 9

Setting for Local Linearization Approach:

minimize 𝔼π[
T−1

∑
t=0

c(st, at)]
s.t. st+1 = f(st, at), at = π(st), s0 ∼ μ0

c(st, at) = d(at, a⋆) + d(st, s⋆)

Goal: stabilizing around the

goal (s = s⋆, a = a⋆)

Assumptions:

1. We have black-box access to : f & c

 and have unknown analytical form

but can be queried at any to give

where

f c
(s, a) s′ , c,

s′ = f(s, a), c = c(s, a)

2. is differentiable
and is twice differentiable

f
c

∇s f(s, a), ∇a f(s, a), ∇sc(s, a), ∇ac(s, a),
∇2

s c(s, a), ∇2
ac(s, a), ∇2

s,ac(s, a)
No noise! No terminal cost !ct(sT) 9

Local Linearization of Dynamics

10

Local Linearization of Dynamics

Assume that all possible initial states are close to and can be kept there with actions close to s0 s⋆ a⋆

10

Local Linearization of Dynamics

Assume that all possible initial states are close to and can be kept there with actions close to s0 s⋆ a⋆

We can approximate locally with a first-order Taylor expansion:f(s, a)

f(s, a) ≈ f(s⋆, a⋆) + ∇s f(s⋆, a⋆)(s − s⋆) + ∇a f(s⋆, a⋆)(a − a⋆)

10

Local Linearization of Dynamics

Assume that all possible initial states are close to and can be kept there with actions close to s0 s⋆ a⋆

We can approximate locally with a first-order Taylor expansion:f(s, a)

f(s, a) ≈ f(s⋆, a⋆) + ∇s f(s⋆, a⋆)(s − s⋆) + ∇a f(s⋆, a⋆)(a − a⋆)

where:

∇s f(s, a) ∈ ℝd×d, ∇s f(s, a)[i, j] =
∂f[i]
∂s[j]

(s, a), ∇u f(s, a) ∈ ℝd×k, ∇a f(s, a)[i, j] =
∂f[i]
∂a[j]

(s, a)

10

Local Linearization of Cost Function

11

Local Linearization of Cost Function

We can approximate locally at with second-order Taylor expansion:c(s, a) (s⋆, a⋆)

11

Local Linearization of Cost Function

We can approximate locally at with second-order Taylor expansion:c(s, a) (s⋆, a⋆)

c(s, a) ≈ c(s⋆, a⋆) + ∇sc(s⋆, a⋆)⊤(s − s⋆) + ∇ac(s⋆, a⋆)⊤(a − a⋆)

+
1
2

(s − s⋆)⊤ ∇2
s c(s⋆, a⋆)(s − s⋆) +

1
2

(a − a⋆)⊤ ∇2
ac(s⋆, a⋆)(a − a⋆) + (a − a⋆)⊤ ∇2

a,sc(s, a)(s − s⋆)

11

Local Linearization of Cost Function

We can approximate locally at with second-order Taylor expansion:c(s, a) (s⋆, a⋆)

c(s, a) ≈ c(s⋆, a⋆) + ∇sc(s⋆, a⋆)⊤(s − s⋆) + ∇ac(s⋆, a⋆)⊤(a − a⋆)

+
1
2

(s − s⋆)⊤ ∇2
s c(s⋆, a⋆)(s − s⋆) +

1
2

(a − a⋆)⊤ ∇2
ac(s⋆, a⋆)(a − a⋆) + (a − a⋆)⊤ ∇2

a,sc(s, a)(s − s⋆)

∇sc(s, a) ∈ ℝd, ∇sc(s, a)[i] =
∂c

∂s[i]
(s, a),

∇ac(s, a) ∈ ℝk, ∇ac(s, a)[i] =
∂c

∂a[i]
(s, a),

∇2
s c(s, a) ∈ ℝd×d, ∇2

s c(s, a)[i, j] =
∂2c

∂s[i]∂s[j]
(s, a),

∇2
a,sc(s, a) ∈ ℝk×d, ∇2

a,sc(s, a)[i, j] =
∂2c

∂a[i]∂s[j]
(s, a)

11

Local Linearization: Putting it all Together

c(s, a) ≈ c(s⋆, a⋆) + ∇sc(s⋆, a⋆)⊤(s − s⋆) + ∇ac(s⋆, a⋆)⊤(a − a⋆)

+
1
2

(s − s⋆)⊤ ∇2
s c(s⋆, a⋆)(s − s⋆) +

1
2

(a − a⋆)⊤ ∇2
ac(s⋆, a⋆)(a − a⋆) + (a − a⋆)⊤ ∇2

a,sc(s, a)(s − s⋆)

f(s, a) ≈ f(s⋆, a⋆) + ∇s f(s⋆, a⋆)(s − s⋆) + ∇a f(s⋆, a⋆)(a − a⋆)

12

Local Linearization: Putting it all Together

Rearranging terms, we get back to the following formulation:

arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [
T−1

∑
t=0

(s⊤
t Qst + a⊤

t Rat + a⊤
t Mst + s⊤

t q + a⊤
t r + c)]

such that st+1 = Ast + Bat + v , s0 ∼ μ0 , at = πt(st)

(HW3 problem)

c(s, a) ≈ c(s⋆, a⋆) + ∇sc(s⋆, a⋆)⊤(s − s⋆) + ∇ac(s⋆, a⋆)⊤(a − a⋆)

+
1
2

(s − s⋆)⊤ ∇2
s c(s⋆, a⋆)(s − s⋆) +

1
2

(a − a⋆)⊤ ∇2
ac(s⋆, a⋆)(a − a⋆) + (a − a⋆)⊤ ∇2

a,sc(s, a)(s − s⋆)

f(s, a) ≈ f(s⋆, a⋆) + ∇s f(s⋆, a⋆)(s − s⋆) + ∇a f(s⋆, a⋆)(a − a⋆)

12

Summary So far:

For tasks such as balancing near goal state ,

we can perform first order Taylor expansion on ,

and second order Taylor expansion on around the balancing point

(s⋆, a⋆)
f(s, a)

c(s, a) (s⋆, a⋆)

arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [
T−1

∑
t=0

(s⊤
t Qst + a⊤

t Rat + a⊤
t Mst + s⊤

t q + a⊤
t r + c)]

such that st+1 = Ast + Bat + v , s0 ∼ μ0 , at = πt(st)

13

Summary So far:

For tasks such as balancing near goal state ,

we can perform first order Taylor expansion on ,

and second order Taylor expansion on around the balancing point

(s⋆, a⋆)
f(s, a)

c(s, a) (s⋆, a⋆)

Last step: checking some practical issues

arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [
T−1

∑
t=0

(s⊤
t Qst + a⊤

t Rat + a⊤
t Mst + s⊤

t q + a⊤
t r + c)]

such that st+1 = Ast + Bat + v , s0 ∼ μ0 , at = πt(st)

13

Locally Convexifying the Cost Function

14

Locally Convexifying the Cost Function

Note that might not even be convex;c(s, a)

So, may not be positive definite∇2
s c(s⋆, a⋆) & ∇2

ac(s⋆, a⋆)

14

Locally Convexifying the Cost Function

Note that might not even be convex;c(s, a)

So, may not be positive definite∇2
s c(s⋆, a⋆) & ∇2

ac(s⋆, a⋆)

In practice, we force them to be positive definite:

14

Locally Convexifying the Cost Function

Note that might not even be convex;c(s, a)

So, may not be positive definite∇2
s c(s⋆, a⋆) & ∇2

ac(s⋆, a⋆)

In practice, we force them to be positive definite:

Given a symmetric matrix ,

we compute the eigen-decomposition , and we approximate as

for some small

H ∈ ℝd×d

H =
d

∑
i=1

σiuiu⊤
i H

H ≈
d

∑
i=1

1(σi > 0)σiuiu⊤
i + λI,

λ > 0

14

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes outputs , where (s, a) s′ , c

s′ = f(s, a), c = c(s, a)

15

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes outputs , where (s, a) s′ , c

s′ = f(s, a), c = c(s, a)

Compute gradient using finite differencing:

15

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes outputs , where (s, a) s′ , c

s′ = f(s, a), c = c(s, a)

Compute gradient using finite differencing:

∂f [i]
∂s[j]

(s, a) ≈
f(s + δj, a)[i] − f(s − δj, a)[i]

2δ
, where δj = [0,…,0, δ

⏟
j′ th entry

,0,…0]⊤

15

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes outputs , where (s, a) s′ , c

s′ = f(s, a), c = c(s, a)

Compute gradient using finite differencing:

∂f [i]
∂s[j]

(s, a) ≈
f(s + δj, a)[i] − f(s − δj, a)[i]

2δ
, where δj = [0,…,0, δ

⏟
j′ th entry

,0,…0]⊤

To compute second derivative, e.g.,
∂2c

∂a[i]∂s[j]
(s, a)

15

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes outputs , where (s, a) s′ , c

s′ = f(s, a), c = c(s, a)

Compute gradient using finite differencing:

∂f [i]
∂s[j]

(s, a) ≈
f(s + δj, a)[i] − f(s − δj, a)[i]

2δ
, where δj = [0,…,0, δ

⏟
j′ th entry

,0,…0]⊤

To compute second derivative, e.g.,
∂2c

∂a[i]∂s[j]
(s, a)

First implement finite differencing procedure for , and then perform another finite differencing with
respect to on top of the first finite differencing procedure for

∂c/∂a[i]
s[j] ∂c/∂a[i]

15

Summary for local linearization approach

16

Summary for local linearization approach

1. Perform first order Taylor expansion on

and second order Taylor expansion on , both around the balancing point

f(s, a)
c(s, a) (s⋆, a⋆)

16

Summary for local linearization approach

1. Perform first order Taylor expansion on

and second order Taylor expansion on , both around the balancing point

f(s, a)
c(s, a) (s⋆, a⋆)

2. Force Hessians to be positive definite∇2
s c(s, a) & ∇2

ac(s, a)

16

Summary for local linearization approach

1. Perform first order Taylor expansion on

and second order Taylor expansion on , both around the balancing point

f(s, a)
c(s, a) (s⋆, a⋆)

2. Force Hessians to be positive definite∇2
s c(s, a) & ∇2

ac(s, a)

3. Leverage finite differences to approximate gradients and Hessians

16

Summary for local linearization approach

1. Perform first order Taylor expansion on

and second order Taylor expansion on , both around the balancing point

f(s, a)
c(s, a) (s⋆, a⋆)

2. Force Hessians to be positive definite∇2
s c(s, a) & ∇2

ac(s, a)

3. Leverage finite differences to approximate gradients and Hessians

4. The approximation is an LQR, so we know how to compute the optimal policy

16

Today

17

• Feedback from last lecture

• Recap

• Locally linearization

• Iterative LQR

Limits of Local Linearization

18

Limits of Local Linearization

Local linearization can work if is very close to and

stays there with near-optimal (i.e., near-) actions

s0 s⋆

a⋆

18

Limits of Local Linearization

Local linearization can work if is very close to and

stays there with near-optimal (i.e., near-) actions

s0 s⋆

a⋆

But when is far away from or needs to be far from for any ,

first/second-order Taylor expansion is not accurate anymore

st s⋆ at a⋆ t

18

Idea of Iterative LQR

19

Idea of Iterative LQR

Instead of linearizing/quadratizing around , linearize/quadratize around some other (s⋆, a⋆) (s̄, ā)

19

Idea of Iterative LQR

Instead of linearizing/quadratizing around , linearize/quadratize around some other (s⋆, a⋆) (s̄, ā)
In fact, we can even linearize/quadratize around different points at each (s̄t, āt) t

19

Idea of Iterative LQR

After linearization and quadratization at time around waypoint , , re-arranging terms gives:t (s̄t, āt) ∀t

arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [
T−1

∑
t=0

(s⊤
t Qtst + a⊤

t Rtat + a⊤
t Mtst + s⊤

t qt + a⊤
t rt + ct)]

such that st+1 = Atst + Btat + vt , s0 ∼ μ0 , at = πt(st)

Instead of linearizing/quadratizing around , linearize/quadratize around some other (s⋆, a⋆) (s̄, ā)
In fact, we can even linearize/quadratize around different points at each (s̄t, āt) t

19

Idea of Iterative LQR

After linearization and quadratization at time around waypoint , , re-arranging terms gives:t (s̄t, āt) ∀t

arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [
T−1

∑
t=0

(s⊤
t Qtst + a⊤

t Rtat + a⊤
t Mtst + s⊤

t qt + a⊤
t rt + ct)]

such that st+1 = Atst + Btat + vt , s0 ∼ μ0 , at = πt(st)

Instead of linearizing/quadratizing around , linearize/quadratize around some other (s⋆, a⋆) (s̄, ā)
In fact, we can even linearize/quadratize around different points at each (s̄t, āt) t

Time-dependent LQR problem: we know the solution

19

Idea of Iterative LQR

After linearization and quadratization at time around waypoint , , re-arranging terms gives:t (s̄t, āt) ∀t

arg min
π0,…,πT−1:ℝd→ℝk

𝔼 [
T−1

∑
t=0

(s⊤
t Qtst + a⊤

t Rtat + a⊤
t Mtst + s⊤

t qt + a⊤
t rt + ct)]

such that st+1 = Atst + Btat + vt , s0 ∼ μ0 , at = πt(st)

Instead of linearizing/quadratizing around , linearize/quadratize around some other (s⋆, a⋆) (s̄, ā)
In fact, we can even linearize/quadratize around different points at each (s̄t, āt) t

Question: how to choose the waypoints to get the best approximation/solution?(s̄t, āt)

Time-dependent LQR problem: we know the solution

19

Iterative LQR

Recall ; denote s0 ∼ μ0 𝔼s0∼μ0
[s0] = s̄0

20

Iterative LQR

Initialize (e.g., by local linearization)ā0
0, …, ā0

T−1,

Recall ; denote s0 ∼ μ0 𝔼s0∼μ0
[s0] = s̄0

20

Iterative LQR

Initialize (e.g., by local linearization)ā0
0, …, ā0

T−1,

Generate nominal trajectory: s̄0
0 = s̄0, ā0

0, …, ā0
t , s̄0

t+1 = f(s̄0
t , ā0

t), …, s̄0
T−1, ā0

T−1

Recall ; denote s0 ∼ μ0 𝔼s0∼μ0
[s0] = s̄0

20

Iterative LQR

For i = 0,1,…

Initialize (e.g., by local linearization)ā0
0, …, ā0

T−1,

Generate nominal trajectory: s̄0
0 = s̄0, ā0

0, …, ā0
t , s̄0

t+1 = f(s̄0
t , ā0

t), …, s̄0
T−1, ā0

T−1

Recall ; denote s0 ∼ μ0 𝔼s0∼μ0
[s0] = s̄0

20

Iterative LQR

For i = 0,1,…

Initialize (e.g., by local linearization)ā0
0, …, ā0

T−1,

Generate nominal trajectory: s̄0
0 = s̄0, ā0

0, …, ā0
t , s̄0

t+1 = f(s̄0
t , ā0

t), …, s̄0
T−1, ā0

T−1

For each , linearize at : t f(s, a) (s̄i
t, āi

t) ft(s, a) ≈ f(s̄i
t, āi

t) + ∇s f(s̄i
t, āi

t)(s − s̄i
t) + ∇a f(s̄i

t, āi
t)(a − āi

t)

Recall ; denote s0 ∼ μ0 𝔼s0∼μ0
[s0] = s̄0

20

Iterative LQR

For i = 0,1,…

Initialize (e.g., by local linearization)ā0
0, …, ā0

T−1,

Generate nominal trajectory: s̄0
0 = s̄0, ā0

0, …, ā0
t , s̄0

t+1 = f(s̄0
t , ā0

t), …, s̄0
T−1, ā0

T−1

For each , linearize at : t f(s, a) (s̄i
t, āi

t) ft(s, a) ≈ f(s̄i
t, āi

t) + ∇s f(s̄i
t, āi

t)(s − s̄i
t) + ∇a f(s̄i

t, āi
t)(a − āi

t)

Recall ; denote s0 ∼ μ0 𝔼s0∼μ0
[s0] = s̄0

20

Note that although true is stationary,
its approximation is not

f
ft

Iterative LQR

For i = 0,1,…

Initialize (e.g., by local linearization)ā0
0, …, ā0

T−1,

Generate nominal trajectory: s̄0
0 = s̄0, ā0

0, …, ā0
t , s̄0

t+1 = f(s̄0
t , ā0

t), …, s̄0
T−1, ā0

T−1

For each , linearize at : t f(s, a) (s̄i
t, āi

t) ft(s, a) ≈ f(s̄i
t, āi

t) + ∇s f(s̄i
t, āi

t)(s − s̄i
t) + ∇a f(s̄i

t, āi
t)(a − āi

t)

For each , quadratize at : t ct(s, a) (s̄i
t, āi

t)

ct(s, a) ≈
1
2 [s − s̄i

t

a − āi
t]

⊤

[
∇2

s c(s̄i
t, āi

t) ∇2
s,ac(s̄i

t, āi
t)

∇2
a,sc(s̄i

t, āi
t) ∇2

ac(s̄i
t, āi

t)] [s − s̄i
t

a − āi
t]

⊤

+ [s − s̄i
t

a − āi
t]

⊤

[∇sc(s̄i
t, āi

t)
∇ac(s̄i

t, āi
t)] + c(s̄i

t, āi
t)

Recall ; denote s0 ∼ μ0 𝔼s0∼μ0
[s0] = s̄0

20

Note that although true is stationary,
its approximation is not

f
ft

Iterative LQR

For i = 0,1,…

Initialize (e.g., by local linearization)ā0
0, …, ā0

T−1,

Generate nominal trajectory: s̄0
0 = s̄0, ā0

0, …, ā0
t , s̄0

t+1 = f(s̄0
t , ā0

t), …, s̄0
T−1, ā0

T−1

For each , linearize at : t f(s, a) (s̄i
t, āi

t) ft(s, a) ≈ f(s̄i
t, āi

t) + ∇s f(s̄i
t, āi

t)(s − s̄i
t) + ∇a f(s̄i

t, āi
t)(a − āi

t)

For each , quadratize at : t ct(s, a) (s̄i
t, āi

t)

ct(s, a) ≈
1
2 [s − s̄i

t

a − āi
t]

⊤

[
∇2

s c(s̄i
t, āi

t) ∇2
s,ac(s̄i

t, āi
t)

∇2
a,sc(s̄i

t, āi
t) ∇2

ac(s̄i
t, āi

t)] [s − s̄i
t

a − āi
t]

⊤

+ [s − s̄i
t

a − āi
t]

⊤

[∇sc(s̄i
t, āi

t)
∇ac(s̄i

t, āi
t)] + c(s̄i

t, āi
t)

Formulate time-dependent LQR and compute its optimal control πi
0, …, πi

T−1

Recall ; denote s0 ∼ μ0 𝔼s0∼μ0
[s0] = s̄0

20

Note that although true is stationary,
its approximation is not

f
ft

Iterative LQR

For i = 0,1,…

Initialize (e.g., by local linearization)ā0
0, …, ā0

T−1,

Generate nominal trajectory: s̄0
0 = s̄0, ā0

0, …, ā0
t , s̄0

t+1 = f(s̄0
t , ā0

t), …, s̄0
T−1, ā0

T−1

For each , linearize at : t f(s, a) (s̄i
t, āi

t) ft(s, a) ≈ f(s̄i
t, āi

t) + ∇s f(s̄i
t, āi

t)(s − s̄i
t) + ∇a f(s̄i

t, āi
t)(a − āi

t)

For each , quadratize at : t ct(s, a) (s̄i
t, āi

t)

ct(s, a) ≈
1
2 [s − s̄i

t

a − āi
t]

⊤

[
∇2

s c(s̄i
t, āi

t) ∇2
s,ac(s̄i

t, āi
t)

∇2
a,sc(s̄i

t, āi
t) ∇2

ac(s̄i
t, āi

t)] [s − s̄i
t

a − āi
t]

⊤

+ [s − s̄i
t

a − āi
t]

⊤

[∇sc(s̄i
t, āi

t)
∇ac(s̄i

t, āi
t)] + c(s̄i

t, āi
t)

Formulate time-dependent LQR and compute its optimal control πi
0, …, πi

T−1

Set new nominal trajectory: s̄i+1
0 = s̄0, āi+1

t = πi
t(s̄i+1

t), and s̄i+1
t+1 = f(s̄i+1

t , āi+1
t)

Recall ; denote s0 ∼ μ0 𝔼s0∼μ0
[s0] = s̄0

20

Note that although true is stationary,
its approximation is not

f
ft

Iterative LQR

For i = 0,1,…

Initialize (e.g., by local linearization)ā0
0, …, ā0

T−1,

Generate nominal trajectory: s̄0
0 = s̄0, ā0

0, …, ā0
t , s̄0

t+1 = f(s̄0
t , ā0

t), …, s̄0
T−1, ā0

T−1

For each , linearize at : t f(s, a) (s̄i
t, āi

t) ft(s, a) ≈ f(s̄i
t, āi

t) + ∇s f(s̄i
t, āi

t)(s − s̄i
t) + ∇a f(s̄i

t, āi
t)(a − āi

t)

For each , quadratize at : t ct(s, a) (s̄i
t, āi

t)

ct(s, a) ≈
1
2 [s − s̄i

t

a − āi
t]

⊤

[
∇2

s c(s̄i
t, āi

t) ∇2
s,ac(s̄i

t, āi
t)

∇2
a,sc(s̄i

t, āi
t) ∇2

ac(s̄i
t, āi

t)] [s − s̄i
t

a − āi
t]

⊤

+ [s − s̄i
t

a − āi
t]

⊤

[∇sc(s̄i
t, āi

t)
∇ac(s̄i

t, āi
t)] + c(s̄i

t, āi
t)

Formulate time-dependent LQR and compute its optimal control πi
0, …, πi

T−1

Set new nominal trajectory: s̄i+1
0 = s̄0, āi+1

t = πi
t(s̄i+1

t), and s̄i+1
t+1 = f(s̄i+1

t , āi+1
t)

Recall ; denote s0 ∼ μ0 𝔼s0∼μ0
[s0] = s̄0

Note this is true , not approximationf20

Note that although true is stationary,
its approximation is not

f
ft

Practical Considerations of Iterative LQR:

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

2. Still want to use finite differences to approximate derivatives

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

2. Still want to use finite differences to approximate derivatives

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls āi
0, …, āi

T−1, ā0, …, āT−1

2. Still want to use finite differences to approximate derivatives

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls āi
0, …, āi

T−1, ā0, …, āT−1

We want to find such that has the smallest cost, α ∈ [0,1] āi+1
t := α āi

t + (1 − α)āt

2. Still want to use finite differences to approximate derivatives

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls āi
0, …, āi

T−1, ā0, …, āT−1

We want to find such that has the smallest cost, α ∈ [0,1] āi+1
t := α āi

t + (1 − α)āt

min
α∈[0,1]

T−1

∑
t=0

c(st, āi+1
t)

s.t. st+1 = f(st, āi+1
t), āi+1

t = αāi
t + (1 − α)āt, s0 = s̄0

2. Still want to use finite differences to approximate derivatives

21

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls āi
0, …, āi

T−1, ā0, …, āT−1

We want to find such that has the smallest cost, α ∈ [0,1] āi+1
t := α āi

t + (1 − α)āt

min
α∈[0,1]

T−1

∑
t=0

c(st, āi+1
t)

s.t. st+1 = f(st, āi+1
t), āi+1

t = αāi
t + (1 − α)āt, s0 = s̄0

2. Still want to use finite differences to approximate derivatives

This optimization is tractable because it is 1-dimensional!
21

Example:

2-d car navigation

Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

22

Example:

2-d car navigation

Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

22

Summary:

23

Summary:

Local Linearization:
Approximate an LQR at the balance (goal) position and then solve the approximated LQR(s⋆, a⋆)

23

Summary:

Local Linearization:
Approximate an LQR at the balance (goal) position and then solve the approximated LQR(s⋆, a⋆)

23

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Summary:

Local Linearization:
Approximate an LQR at the balance (goal) position and then solve the approximated LQR(s⋆, a⋆)

Iterative LQR
Iterate between:

(1) forming an LQR around the current nominal trajectory,

(2) computing a new nominal trajectory using the optimal policy of the LQR

23

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Summary:

Local Linearization:
Approximate an LQR at the balance (goal) position and then solve the approximated LQR(s⋆, a⋆)

Iterative LQR
Iterate between:

(1) forming an LQR around the current nominal trajectory,

(2) computing a new nominal trajectory using the optimal policy of the LQR

23

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Computes a locally optimal (in policy space) solution for a large class of nonlinear control problems

Today

24

• Feedback from last lecture

• Recap

• Locally linearization

• Iterative LQR

Today’s summary:

25

Today’s summary:

Local linearization

•Allows us to approximately optimally control any system near its optimum

25

Today’s summary:

Local linearization

•Allows us to approximately optimally control any system near its optimum

Iterative LQR

•Uses LQR approximation to find locally optimal nonlinear control solution

25

Today’s summary:

Local linearization

•Allows us to approximately optimally control any system near its optimum

Iterative LQR

•Uses LQR approximation to find locally optimal nonlinear control solution

Next time:

•Full RL!

25

1-minute feedback form: https://bit.ly/3RHtlxy

Today’s summary:

Local linearization

•Allows us to approximately optimally control any system near its optimum

Iterative LQR

•Uses LQR approximation to find locally optimal nonlinear control solution

Next time:

•Full RL!

25

https://bit.ly/3RHtlxy

