From LQR to Nonlinear Control

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning
Fall 2022

Today

- Feedback from last lecture
- Recap
- Locally linearization
- Iterative LQR

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!
2.

Today

- Feedback from last lecture
- Recap
- Locally linearization
- Iterative LQR

Recap: LQR

Problem Statement (finite horizon, time homogeneous):

$$
\begin{aligned}
& \arg \min _{\pi_{0}, \ldots, \pi_{T-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}} \mathbb{E}\left[s_{T}^{\top} Q s_{T}+\sum_{t=0}^{T-1}\left(s_{t}^{\top} Q s_{t}+a_{t}^{\top} R a_{t}\right)\right] \\
& \text { such that } \quad s_{t+1}=A s_{t}+B a_{t}+w_{t}, \quad s_{0} \sim \mu_{0}, \quad a_{t}=\pi_{t}\left(s_{t}\right), \quad w_{t} \sim N\left(0, \sigma^{2} I\right)
\end{aligned}
$$

- States $s_{t} \in \mathbb{R}^{d}$
- Actions/controls $a_{t} \in \mathbb{R}^{k}$
- Additive noise $w_{t} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$
- Dynamics linear with state coefficient matrix $A \in \mathbb{R}^{d \times d}$ and action coefficient matrix $B \in \mathbb{R}^{d \times k}$
- Cost function quadratic with positive semidefinite state coefficient matrix $Q \in \mathbb{R}^{d \times d}$ and positive semidefinite action coefficient matrix $R \in \mathbb{R}^{k \times k}$

Recap: LQR Optimal Control

$$
V_{T}^{\star}(s)=s^{\top} Q s, \quad \text { define } P_{T}=Q, p_{T}=0
$$

We showed that $V_{t}^{\star}(s)=s^{\top} P_{t} s+p_{t}$, where:

$$
\begin{aligned}
& P_{t}=Q+A^{\top} P_{t+1} A-A^{\top} P_{t+1} B\left(R+B^{\top} P_{t+1} B\right)^{-1} B^{\top} P_{t+1} A \\
& p_{t}=\operatorname{tr}\left(\sigma^{2} P_{t+1}\right)+p_{t+1}
\end{aligned}
$$

Along the way, we also showed that $\pi_{t}^{\star}(s)=-K_{t} s$, where:

$$
K_{t}=\left(R+B^{\top} P_{t+1} B\right)^{-1} B^{\top} P_{t+1} A
$$

Optimal policy has nothing to do with initial distribution μ_{0} or the noise σ^{2} !

Beyond LQR

We saw a number of extensions to LQR that essentially reduced to the same problem But what about problems with nonlinear dynamics and/or nonquadratic costs?

Today

- Feedback from last lecture
- Recap
- Locally linearization
- Iterative LQR

Setting for Local Linearization Approach:

Goal: stabilizing around the

$$
\operatorname{goal}\left(s=s^{\star}, a=a^{\star}\right)
$$

$$
c\left(s_{t}, a_{t}\right)=d\left(a_{t}, a^{\star}\right)+d\left(s_{t}, s^{\star}\right)
$$

minimize $\mathbb{E}_{\pi}\left[\sum_{t=0}^{T-1} c\left(s_{t}, a_{t}\right)\right]$
s.t. $s_{t+1}=f\left(s_{t}, a_{t}\right), \quad a_{t}=\pi\left(s_{t}\right), \quad s_{0} \sim \mu_{0}$

Assumptions:

1. We have black-box access to $f \& c$:
f and c have unknown analytical form but can be queried at any (s, a) to give s^{\prime}, c, where $s^{\prime}=f(s, a), c=c(s, a)$
2. f is differentiable and c is twice differentiable

$$
\begin{aligned}
& \nabla_{s} f(s, a), \nabla_{a} f(s, a), \nabla_{s} c(s, a), \nabla_{a} c(s, a), \\
& \nabla_{s}^{2} c(s, a), \nabla_{a}^{2} c(s, a), \nabla_{s, a}^{2} c(s, a)
\end{aligned}
$$

Local Linearization of Dynamics

Assume that all possible initial states s_{0} are close to s^{\star} and can be kept there with actions close to a^{\star}

We can approximate $f(s, a)$ locally with a first-order Taylor expansion:

$$
f(s, a) \approx f\left(s^{\star}, a^{\star}\right)+\nabla_{s} f\left(s^{\star}, a^{\star}\right)\left(s-s^{\star}\right)+\nabla_{a} f\left(s^{\star}, a^{\star}\right)\left(a-a^{\star}\right)
$$

where:
$\nabla_{s} f(s, a) \in \mathbb{R}^{d \times d}, \nabla_{s} f(s, a)[i, j]=\frac{\partial f[i]}{\partial s[j]}(s, a), \quad \nabla_{u} f(s, a) \in \mathbb{R}^{d \times k}, \nabla_{a} f(s, a)[i, j]=\frac{\partial f[i]}{\partial a[j]}(s, a)$

Local Linearization of Cost Function

We can approximate $c(s, a)$ locally at $\left(s^{\star}, a^{\star}\right)$ with second-order Taylor expansion:

$$
\begin{gathered}
c(s, a) \approx c\left(s^{\star}, a^{\star}\right)+\nabla_{s} c\left(s^{\star}, a^{\star}\right)^{\top}\left(s-s^{\star}\right)+\nabla_{a} c\left(s^{\star}, a^{\star}\right)^{\top}\left(a-a^{\star}\right) \\
+\frac{1}{2}\left(s-s^{\star}\right)^{\top} \nabla_{s}^{2} c\left(s^{\star}, a^{\star}\right)\left(s-s^{\star}\right)+\frac{1}{2}\left(a-a^{\star}\right)^{\top} \nabla_{a}^{2} c\left(s^{\star}, a^{\star}\right)\left(a-a^{\star}\right)+\left(a-a^{\star}\right)^{\top} \nabla_{a, s}^{2} c(s, a)\left(s-s^{\star}\right) \\
\nabla_{s} c(s, a) \in \mathbb{R}^{d}, \quad \nabla_{s} c(s, a)[i]=\frac{\partial c}{\partial s[i]}(s, a) \\
\nabla_{a} c(s, a) \in \mathbb{R}^{k}, \quad \nabla_{a} c(s, a)[i]=\frac{\partial c}{\partial a[i]}(s, a), \\
\nabla_{s}^{2} c(s, a) \in \mathbb{R}^{d \times d}, \quad \nabla_{s}^{2} c(s, a)[i, j]=\frac{\partial^{2} c}{\partial s[i] \partial s[j]}(s, a) \\
\nabla_{a, s}^{2} c(s, a) \in \mathbb{R}^{k \times d}, \quad \nabla_{a, s}^{2} c(s, a)[i, j]=\frac{\partial^{2} c}{\partial a[i] \partial s[j]}(s, a)
\end{gathered}
$$

Local Linearization: Putting it all Together

$$
\begin{aligned}
c(s, a) \approx & c\left(s^{\star}, a^{\star}\right)+\nabla_{s} c\left(s^{\star}, a^{\star}\right)^{\top}\left(s-s^{\star}\right)+\nabla_{a} c\left(s^{\star}, a^{\star}\right)^{\top}\left(a-a^{\star}\right) \\
& +\frac{1}{2}\left(s-s^{\star}\right)^{\top} \nabla_{s}^{2} c\left(s^{\star}, a^{\star}\right)\left(s-s^{\star}\right)+\frac{1}{2}\left(a-a^{\star}\right)^{\top} \nabla_{a}^{2} c\left(s^{\star}, a^{\star}\right)\left(a-a^{\star}\right)+\left(a-a^{\star}\right)^{\top} \nabla_{a, s}^{2} c(s, a)\left(s-s^{\star}\right) \\
f(s, a) \approx & f\left(s^{\star}, a^{\star}\right)+\nabla_{s} f\left(s^{\star}, a^{\star}\right)\left(s-s^{\star}\right)+\nabla_{a} f\left(s^{\star}, a^{\star}\right)\left(a-a^{\star}\right)
\end{aligned}
$$

Rearranging terms, we get back to the following formulation:

$$
\arg \min _{\pi_{0}, \ldots, \pi_{T-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}} \mathbb{E}\left[\sum_{t=0}^{T-1}\left(s_{t}^{\top} Q s_{t}+a_{t}^{\top} R a_{t}+a_{t}^{\top} M s_{t}+s_{t}^{\top} q+a_{t}^{\top} r+c\right)\right]
$$

such that $\quad s_{t+1}=A s_{t}+B a_{t}+v, \quad s_{0} \sim \mu_{0}, \quad a_{t}=\pi_{t}\left(s_{t}\right)$

Summary So far:

For tasks such as balancing near goal state $\left(s^{\star}, a^{\star}\right)$, we can perform first order Taylor expansion on $f(s, a)$, and second order Taylor expansion on $c(s, a)$ around the balancing point $\left(s^{\star}, a^{\star}\right)$

$$
\begin{aligned}
& \arg \min _{\pi_{0}, \ldots, \pi_{T-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}} \mathbb{E}\left[\sum_{t=0}^{T-1}\left(s_{t}^{\top} Q s_{t}+a_{t}^{\top} R a_{t}+a_{t}^{\top} M s_{t}+s_{t}^{\top} q+a_{t}^{\top} r+c\right)\right] \\
& \text { such that } \quad s_{t+1}=A s_{t}+B a_{t}+v, \quad s_{0} \sim \mu_{0}, \quad a_{t}=\pi_{t}\left(s_{t}\right)
\end{aligned}
$$

Last step: checking some practical issues

Locally Convexifying the Cost Function

Note that $c(s, a)$ might not even be convex;
So, $\nabla_{s}^{2} c\left(s^{\star}, a^{\star}\right) \& \nabla_{a}^{2} c\left(s^{\star}, a^{\star}\right)$ may not be positive definite

In practice, we force them to be positive definite:
Given a symmetric matrix $H \in \mathbb{R}^{d \times d}$,
we compute the eigen-decomposition $H=\sum_{i=1}^{d} \sigma_{i} u_{i} u_{i}^{\top}$, and we approximate H as

$$
H \approx \sum_{i=1}^{d} \mathbf{1}\left(\sigma_{i}>0\right) \sigma_{i} u_{i} u_{i}^{\top}+\lambda I,
$$

for some small $\lambda>0$

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to $f \& c$:
i.e., unknown analytical form, but given any (s, a), the black boxes outputs s^{\prime}, c, where

$$
s^{\prime}=f(s, a), c=c(s, a)
$$

Compute gradient using finite differencing:

$$
\begin{gathered}
\frac{\partial f[i]}{\partial s[j]}(s, a) \approx \frac{f\left(s+\delta_{j}, a\right)[i]-f\left(s-\delta_{j}, a\right)[i]}{2 \delta}, \text { where } \delta_{j}=[0, \ldots, 0, \underbrace{\delta}_{j^{\prime} t h \text { entry }}, 0, \ldots 0]^{\top} \\
\text { To compute second derivative, e.g., } \frac{\partial^{2} c}{\partial a[i] \partial s[j]}(s, a)
\end{gathered}
$$

First implement finite differencing procedure for $\partial c / \partial a[i]$, and then perform another finite differencing with respect to $s[j]$ on top of the first finite differencing procedure for $\partial c / \partial a[i]$

Summary for local linearization approach

1. Perform first order Taylor expansion on $f(s, a)$
and second order Taylor expansion on $c(s, a)$, both around the balancing point $\left(s^{\star}, a^{\star}\right)$
2. Force Hessians $\nabla_{s}^{2} c(s, a) \& \nabla_{a}^{2} c(s, a)$ to be positive definite
3. Leverage finite differences to approximate gradients and Hessians
4. The approximation is an LQR, so we know how to compute the optimal policy

Today

- Feedback from last lecture
- Recap
- Locally linearization
- Iterative LQR

Limits of Local Linearization

Local linearization can work if s_{0} is very close to s^{\star} and stays there with near-optimal (i.e., near- a^{\star}) actions

But when s_{t} is far away from s^{\star} or a_{t} needs to be far from a^{\star} for any t, first/second-order Taylor expansion is not accurate anymore

Idea of Iterative LQR

Instead of linearizing/quadratizing around $\left(s^{\star}, a^{\star}\right)$, linearize/quadratize around some other (\bar{s}, \bar{a})
In fact, we can even linearize/quadratize around different points $\left(\bar{s}_{t}, \bar{a}_{t}\right)$ at each t
After linearization and quadratization at time t around waypoint $\left(\bar{s}_{t}, \bar{a}_{t}\right), \forall t$, re-arranging terms gives:

such that $s_{t+1}=A_{t} s_{t}+B_{t} a_{t}+v_{t}, \quad s_{0} \sim \mu_{0}, \quad a_{t}=\pi_{t}\left(s_{t}\right)$

Time-dependent LQR problem: we know the solution
Question: how to choose the waypoints $\left(\bar{s}_{t}, \bar{a}_{t}\right)$ to get the best approximation/solution?

Iterative LQR

$$
\text { Recall } s_{0} \sim \mu_{0} \text {; denote } \mathbb{E}_{s_{0} \sim \mu_{0}}\left[s_{0}\right]=\bar{s}_{0}
$$

Initialize $\bar{a}_{0}^{0}, \ldots, \bar{a}_{T-1}^{0}$, (e.g., by local linearization)
Generate nominal trajectory: $\bar{s}_{0}^{0}=\bar{s}_{0}, \bar{a}_{0}^{0}, \ldots, \bar{a}_{t}^{0}, \bar{s}_{t+1}^{0}=f\left(\bar{s}_{t}^{0}, \bar{a}_{t}^{0}\right), \ldots, \bar{s}_{T-1}^{0}, \bar{a}_{T-1}^{0}$
For $i=0,1, \ldots$

Note that although true f is stationary,

its approximation f_{t} is not
For each t, linearize $f(s, a)$ at $\left(\bar{s}_{t}^{i}, \bar{a}_{t}^{i}\right): f_{t}(s, a) \approx f\left(\bar{s}_{t}^{i}, \bar{a}_{t}^{i}\right)+\nabla_{s} f\left(\bar{s}_{t}^{i}, \bar{a}_{t}^{i}\right)\left(s-\bar{s}_{t}^{i}\right)+\nabla_{a} f\left(\bar{s}_{t}^{i}, \bar{a}_{t}^{i}\right)\left(a-\bar{a}_{t}^{i}\right)$
For each t, quadratize $c_{t}(s, a)$ at $\left(\bar{s}_{t}^{i}, \bar{a}_{t}^{i}\right)$:
$c_{t}(s, a) \approx \frac{1}{2}\left[\begin{array}{c}s-\bar{s}_{t}^{i} \\ a-\bar{a}_{t}^{i}\end{array}\right]^{\top}\left[\begin{array}{cc}\nabla_{s}^{2} c\left(\bar{s}_{t}^{i}, \bar{a}_{t}^{i}\right) & \nabla_{s, a}^{2} c\left(\bar{s}_{t}^{i}, \bar{a}_{t}^{i}\right) \\ \nabla_{a, s}^{2} c\left(\bar{s}_{t}^{i}, \bar{a}_{t}^{i}\right) & \nabla_{a}^{2} c\left(\bar{s}_{t}^{i}, \bar{a}_{t}^{i}\right)\end{array}\right]\left[\begin{array}{c}s-\bar{s}_{t}^{i} \\ a-\bar{a}_{t}^{i}\end{array}\right]^{\top}+\left[\begin{array}{c}s-\bar{s}_{t}^{i} \\ a-\bar{a}_{t}^{i}\end{array}\right]^{\top}\left[\begin{array}{c}\nabla_{s} c\left(\bar{s}_{t}^{i}, \bar{a}_{t}^{i}\right) \\ \nabla_{a} c\left(\bar{s}_{t}^{i}, \bar{a}_{t}^{i}\right)\end{array}\right]+c\left(\bar{s}_{t}^{i}, \bar{a}_{t}^{i}\right)$
Formulate time-dependent LQR and compute its optimal control $\pi_{0}^{i}, \ldots, \pi_{T-1}^{i}$
Set new nominal trajectory: $\bar{s}_{0}^{i+1}=\bar{s}_{0}, \bar{a}_{t}^{i+1}=\pi_{t}^{i}\left(\bar{s}_{t}^{i+1}\right)$, and $\bar{s}_{t+1}^{i+1}=f\left(\bar{s}_{t}^{i+1}, \bar{a}_{t}^{i+1}\right)$

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
2. Still want to use finite differences to approximate derivatives
3. We want to use line-search to get monotonic improvement:

Given the previous nominal control $\bar{a}_{0}^{i}, \ldots, \bar{a}_{T-1}^{i}$, and the latest computed controls $\bar{a}_{0}, \ldots, \bar{a}_{T-1}$
We want to find $\alpha \in[0,1]$ such that $\bar{a}_{t}^{i+1}:=\alpha \bar{a}_{t}^{i}+(1-\alpha) \bar{a}_{t}$ has the smallest cost,

$$
\min _{\alpha \in[0,1]} \sum_{t=0}^{T-1} c\left(s_{t}, \bar{a}_{t}^{i+1}\right)
$$

s.t. $\quad s_{t+1}=f\left(s_{t}, \bar{a}_{t}^{i+1}\right), \quad \bar{a}_{t}^{i+1}=\alpha \bar{a}_{t}^{i}+(1-\alpha) \bar{a}_{t}, \quad s_{0}=\bar{s}_{0}$

This optimization is tractable because it is 1-dimensional!

Example:

2-d car navigation
Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

Summary:

Local Linearization:

Approximate an LQR at the balance (goal) position (s^{\star}, a^{\star}) and then solve the approximated LQR
Computes an approximately globally optimal solution for a small class of nonlinear control problems

Iterative LQR

Iterate between:
(1) forming an LQR around the current nominal trajectory,
(2) computing a new nominal trajectory using the optimal policy of the LQR

Computes a locally optimal (in policy space) solution for a large class of nonlinear control problems

Today

- Feedback from last lecture
- Recap
- Locally linearization
- Iterative LQR

Today's summary:

Local linearization

- Allows us to approximately optimally control any system near its optimum Iterative LQR
- Uses LQR approximation to find locally optimal nonlinear control solution

Next time:

- Full RL!

1-minute feedback form: https://bit.ly/3RHtlxy

