Exploration: Contextual Bandits

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning
Fall 2022

Today

- Recap
- LinUCB algorithm for contextual bandits

Recap: Bandits + confidence bounds

$$
\text { For } t=0 \rightarrow T-1
$$

Recap: Bandits + confidence bounds

For $t=0 \rightarrow T-1$

1. Learner pulls arm $a_{t} \in\{1, \ldots, K\}$

Recap: Bandits + confidence bounds

For $t=0 \rightarrow T-1$

1. Learner pulls arm $a_{t} \in\{1, \ldots, K\}$ (\# based on historical information)

Recap: Bandits + confidence bounds

For $t=0 \rightarrow T-1$

1. Learner pulls arm $a_{t} \in\{1, \ldots, K\}$ (\# based on historical information)
2. Learner observes an i.i.d reward $r_{t} \sim \nu_{a_{t}}$ of arm a_{t}

Recap: Bandits + confidence bounds

$$
\text { For } t=0 \rightarrow T-1
$$

1. Learner pulls arm $a_{t} \in\{1, \ldots, K\}$ (\# based on historical information)
2. Learner observes an i.i.d reward $r_{t} \sim \nu_{a_{t}}$ of arm a_{t}

Note: there is no state s; rewards from a given arm are i.i.d. (data NOT i.i.d.!)

Recap: Bandits + confidence bounds

$$
\text { For } t=0 \rightarrow T-1
$$

1. Learner pulls arm $a_{t} \in\{1, \ldots, K\}$ (\# based on historical information)
2. Learner observes an i.i.d reward $r_{t} \sim \nu_{a_{t}}$ of arm a_{t}

Note: there is no state s; rewards from a given arm are i.i.d. (data NOT i.i.d.!)

$$
\mu^{(k)}=\mathbb{E}_{r \sim \nu_{k}}[r], \quad N_{t}^{(k)}=\sum_{\tau=0}^{t-1} 1_{\left\{a_{\tau}=k\right\}}, \quad \hat{\mu}_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{\tau=0}^{t-1} 1_{\left\{a_{\tau}=k\right\}} r_{\tau}
$$

Recap: Bandits + confidence bounds

For $t=0 \rightarrow T-1$

1. Learner pulls arm $a_{t} \in\{1, \ldots, K\}$ (\# based on historical information)
2. Learner observes an i.i.d reward $r_{t} \sim \nu_{a_{t}}$ of arm a_{t}

Note: there is no state s; rewards from a given arm are i.i.d. (data NOT i.i.d.!)

$$
\mu^{(k)}=\mathbb{E}_{r \sim \nu_{k}}[r], \quad N_{t}^{(k)}=\sum_{\tau=0}^{t-1} 1_{\left\{a_{\tau}=k\right\}}, \quad \hat{\mu}_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{\tau=0}^{t-1} 1_{\left\{a_{\tau}=k\right\}} r_{\tau}
$$

Uniform confidence bounds via Hoeffding + Union Bound

$$
\mathbb{P}\left(\forall k \leq K, t<T,\left|\hat{\mu}_{t}^{(k)}-\mu^{(k)}\right|_{3} \leq \sqrt{\ln (2 T K / \delta) / 2 N_{t}^{(k)}}\right) \geq 1-\delta
$$

Recap: Upper Confidence Bound (UCB) algorithm

Recap: Upper Confidence Bound (UCB) algorithm

For $t=0, \ldots, T-1$:
Choose the arm with the highest upper confidence bound, i.e.,

$$
a_{t}=\arg \max _{k \in\{1, \ldots, K\}} \hat{\mu}_{t}^{(k)}+\sqrt{\ln (2 T K / \delta) / 2 N_{t}^{(k)}}
$$

Recap: Upper Confidence Bound (UCB) algorithm

For $t=0, \ldots, T-1$:
Choose the arm with the highest upper confidence bound, i.e.,

$$
a_{t}=\arg \max _{k \in\{1, \ldots, K\}} \hat{\mu}_{t}^{(k)}+\sqrt{\ln (2 T K / \delta) / 2 N_{t}^{(k)}}
$$

$$
\hat{\mu}_{t}^{(2)}+\sqrt{\ln (2 T K / \delta) / 2 N_{t}^{(2)}}
$$

Recap: Upper Confidence Bound (UCB) algorithm

For $t=0, \ldots, T-1$:
Choose the arm with the highest upper confidence bound, i.e.,

$$
a_{t}=\arg \max _{k \in\{1, \ldots, K\}} \hat{\mu}_{t}^{(k)}+\sqrt{\ln (2 T K / \delta) / 2 N_{t}^{(k)}}
$$

$$
\hat{\mu}_{t}^{(2)}+\sqrt{\ln (2 T K / \delta) / 2 N_{t}^{(2)}}
$$

$$
\begin{gathered}
\hat{\mu}_{t}^{(1)}+\sqrt{\ln (2 T K / \delta) / 2 N_{t}^{(1)}} \\
\hat{\mu}_{t}^{(1)} \\
\hat{\mu}_{t}^{(1)}-\sqrt{\ln (2 T K / \delta) / 2 N_{t}^{(1)}}
\end{gathered}
$$

Recap: Upper Confidence Bound (UCB) algorithm

For $t=0, \ldots, T-1$:
Choose the arm with the highest upper confidence bound, i.e.,

Recap: optimism in the face of uncertainty

Optimism in the face of uncertainty is an important principle in RL. It basically says to give each arm the benefit of the doubt, and basically act as if that arm is as good as it could plausibly be in choosing an action

Recap: optimism in the face of uncertainty

Optimism in the face of uncertainty is an important principle in RL. It basically says to give each arm the benefit of the doubt, and basically act as if that arm is as good as it could plausibly be in choosing an action
In UCB, this means constructing a CI (i.e., set of plausible values) for each $\mu^{(k)}$, and being greedy with respect to the upper bound of the Cls

Recap: optimism in the face of uncertainty

Optimism in the face of uncertainty is an important principle in RL. It basically says to give each arm the benefit of the doubt, and basically act as if that arm is as good as it could plausibly be in choosing an action
In UCB, this means constructing a CI (i.e., set of plausible values) for each $\mu^{(k)}$, and being greedy with respect to the upper bound of the Cls
Since each upper bound is $\hat{\mu}_{t}^{(k)}+\sqrt{\ln (2 K T / \delta) / 2 N_{t}^{(k)}}$, this means when we select $a_{t}=k$, at least one of the two terms is large, i.e., either

Recap: optimism in the face of uncertainty

Optimism in the face of uncertainty is an important principle in RL. It basically says to give each arm the benefit of the doubt, and basically act as if that arm is as good as it could plausibly be in choosing an action
In UCB, this means constructing a CI (i.e., set of plausible values) for each $\mu^{(k)}$, and being greedy with respect to the upper bound of the Cls
Since each upper bound is $\hat{\mu}_{t}^{(k)}+\sqrt{\ln (2 K T / \delta) / 2 N_{t}^{(k)}}$, this means when we select $a_{t}=k$, at least one of the two terms is large, i.e., either

1. $\sqrt{\ln (2 K T / \delta) / 2 N_{t}^{(k)}}$ large, i.e., we haven't explored arm k much (exploration)

Recap: optimism in the face of uncertainty

Optimism in the face of uncertainty is an important principle in RL. It basically says to give each arm the benefit of the doubt, and basically act as if that arm is as good as it could plausibly be in choosing an action
In UCB, this means constructing a CI (i.e., set of plausible values) for each $\mu^{(k)}$, and being greedy with respect to the upper bound of the Cls
Since each upper bound is $\hat{\mu}_{t}^{(k)}+\sqrt{\ln (2 K T / \delta) / 2 N_{t}^{(k)}}$, this means when we select $a_{t}=k$, at least one of the two terms is large, i.e., either

1. $\sqrt{\ln (2 K T / \delta) / 2 N_{t}^{(k)}}$ large, i.e., we haven't explored arm k much (exploration)
2. $\hat{\mu}_{t}^{(k)}$ large, i.e., based on what we've seen so far, arm k is the best (exploitation)

Recap: optimism in the face of uncertainty

Optimism in the face of uncertainty is an important principle in RL. It basically says to give each arm the benefit of the doubt, and basically act as if that arm is as good as it could plausibly be in choosing an action
In UCB, this means constructing a CI (i.e., set of plausible values) for each $\mu^{(k)}$, and being greedy with respect to the upper bound of the Cls
Since each upper bound is $\hat{\mu}_{t}^{(k)}+\sqrt{\ln (2 K T / \delta) / 2 N_{t}^{(k)}}$, this means when we select $a_{t}=k$, at least one of the two terms is large, i.e., either

1. $\sqrt{\ln (2 K T / \delta) / 2 N_{t}^{(k)}}$ large, i.e., we haven't explored arm k much (exploration)
2. $\hat{\mu}_{t}^{(k)}$ large, i.e., based on what we've seen so far, arm k is the best (exploitation) Note that the exploration here is adaptive, i.e., focused on most promising arms

Recap: Contextual bandit environment

Recap: Contextual bandit environment

For $t=0 \rightarrow T-1$

Recap: Contextual bandit environment

For $t=0 \rightarrow T-1$

1. Learner sees context $x_{t} \sim \nu_{x} ; x_{t} \in \mathbb{R}^{d}$

Recap: Contextual bandit environment

For $t=0 \rightarrow T-1$

1. Learner sees context $x_{t} \sim \nu_{x} ; x_{t} \in \mathbb{R}^{d}$ Independent of any previous data

Recap: Contextual bandit environment

For $t=0 \rightarrow T-1$

1. Learner sees context $x_{t} \sim \nu_{x} ; x_{t} \in \mathbb{R}^{d}$ Independent of any previous data
2. Learner pulls arm $a_{t}=\pi_{t}\left(x_{t}\right) \in\{1, \ldots, K\}$

Recap: Contextual bandit environment

For $t=0 \rightarrow T-1$

1. Learner sees context $x_{t} \sim \nu_{x} ; x_{t} \in \mathbb{R}^{d}$ Independent of any previous data
2. Learner pulls arm $a_{t}=\pi_{t}\left(x_{t}\right) \in\{1, \ldots, K\}$ π_{t} policy learned from all data seen so far

Recap: Contextual bandit environment

For $t=0 \rightarrow T-1$

1. Learner sees context $x_{t} \sim \nu_{x} ; x_{t} \in \mathbb{R}^{d}$ Independent of any previous data
2. Learner pulls arm $a_{t}=\pi_{t}\left(x_{t}\right) \in\{1, \ldots, K\}$ π_{t} policy learned from all data seen so far
3. Learner observes reward $r_{t} \sim \nu^{\left(a_{t}\right)}\left(x_{t}\right)$ from arm a_{t} in context x_{t}

Recap: Contextual bandit environment

For $t=0 \rightarrow T-1$

1. Learner sees context $x_{t} \sim \nu_{x} ; x_{t} \in \mathbb{R}^{d}$ Independent of any previous data
2. Learner pulls arm $a_{t}=\pi_{t}\left(x_{t}\right) \in\{1, \ldots, K\} \quad \pi_{t}$ policy learned from all data seen so far
3. Learner observes reward $r_{t} \sim \nu^{\left(a_{t}\right)}\left(x_{t}\right)$ from arm a_{t} in context x_{t}

Note that if the context distribution ν_{x} always returns the same value (e.g., 0), then the contextual bandit reduces to the original multi-armed bandit

Recap: Contextual bandit environment

For $t=0 \rightarrow T-1$

1. Learner sees context $x_{t} \sim \nu_{x} ; x_{t} \in \mathbb{R}^{d}$ Independent of any previous data
2. Learner pulls arm $a_{t}=\pi_{t}\left(x_{t}\right) \in\{1, \ldots, K\} \quad \pi_{t}$ policy learned from all data seen so far
3. Learner observes reward $r_{t} \sim \nu^{\left(a_{t}\right)}\left(x_{t}\right)$ from arm a_{t} in context x_{t}

Note that if the context distribution ν_{x} always returns the same value (e.g., 0), then the contextual bandit reduces to the original multi-armed bandit

Contextual bandit is exactly a MDP with horizon $H=1$, where x_{t} is the (singular) state in each episode (so $\mu_{0}=\nu_{x}$)

Recap: UCB in tabular contextual bandits

Recap: UCB in tabular contextual bandits

UCB algorithm also conceptually identical as long as $|\mathscr{X}|$ finite:

$$
\pi_{t}\left(x_{t}\right)=\arg \max _{k} \hat{\mu}_{t}^{(k)}\left(x_{t}\right)+\sqrt{\ln (2 T K|\mathscr{X}| / \delta) / 2 N_{t}^{(k)}\left(x_{t}\right)}
$$

Recap: UCB in tabular contextual bandits

UCB algorithm also conceptually identical as long as $|\mathscr{X}|$ finite:

$$
\pi_{t}\left(x_{t}\right)=\arg \max _{k} \hat{\mu}_{t}^{(k)}\left(x_{t}\right)+\sqrt{\ln (2 T K|\mathscr{X}| / \delta) / 2 N_{t}^{(k)}\left(x_{t}\right)}
$$

- Added x_{t} argument to $\hat{\mu}_{t}^{(k)}$ and $N_{t}^{(k)}$ since we now keep track of the sample mean and number of arm pulls separately for each value of the context

Recap: UCB in tabular contextual bandits

UCB algorithm also conceptually identical as long as $|\mathscr{X}|$ finite:

$$
\pi_{t}\left(x_{t}\right)=\arg \max _{k} \hat{\mu}_{t}^{(k)}\left(x_{t}\right)+\sqrt{\ln (2 T K|\mathcal{X}| / \delta) / 2 N_{t}^{(k)}\left(x_{t}\right)}
$$

- Added x_{t} argument to $\hat{\mu}_{t}^{(k)}$ and $N_{t}^{(k)}$ since we now keep track of the sample mean and number of arm pulls separately for each value of the context
- Added $|\mathscr{X}|$ inside the log because our union bound argument is now over all arm mean estimates $\hat{\mu}_{t}^{(k)}(x)$, of which there are $K|\mathscr{X}|$ instead of just K

Recap: UCB in tabular contextual bandits

UCB algorithm also conceptually identical as long as $|\mathscr{X}|$ finite:

$$
\pi_{t}\left(x_{t}\right)=\arg \max _{k} \hat{\mu}_{t}^{(k)}\left(x_{t}\right)+\sqrt{\ln (2 T K|\mathcal{X}| / \delta) / 2 N_{t}^{(k)}\left(x_{t}\right)}
$$

- Added x_{t} argument to $\hat{\mu}_{t}^{(k)}$ and $N_{t}^{(k)}$ since we now keep track of the sample mean and number of arm pulls separately for each value of the context
- Added $|\mathscr{X}|$ inside the log because our union bound argument is now over all arm mean estimates $\hat{\mu}_{t}^{(k)}(x)$, of which there are $K|\mathscr{X}|$ instead of just K

But when $|\mathcal{X}|$ is really big (or even infinite), this will be really bad!

Recap: UCB in tabular contextual bandits

UCB algorithm also conceptually identical as long as $|\mathscr{X}|$ finite:

$$
\pi_{t}\left(x_{t}\right)=\arg \max _{k} \hat{\mu}_{t}^{(k)}\left(x_{t}\right)+\sqrt{\ln (2 T K|\mathscr{X}| / \delta) / 2 N_{t}^{(k)}\left(x_{t}\right)}
$$

- Added x_{t} argument to $\hat{\mu}_{t}^{(k)}$ and $N_{t}^{(k)}$ since we now keep track of the sample mean and number of arm pulls separately for each value of the context
- Added $|\mathscr{X}|$ inside the log because our union bound argument is now over all arm mean estimates $\hat{\mu}_{t}^{(k)}(x)$, of which there are $K|\mathscr{X}|$ instead of just K

But when $|\mathcal{X}|$ is really big (or even infinite), this will be really bad!
Solution: share information across contexts x_{t}, i.e., don't treat $\nu^{(k)}(x)$ and $\nu^{(k)}\left(x^{\prime}\right)$ as completely different distributions which have nothing to do with one another

Recap: UCB in tabular contextual bandits

UCB algorithm also conceptually identical as long as $|\mathscr{X}|$ finite:

$$
\pi_{t}\left(x_{t}\right)=\arg \max _{k} \hat{\mu}_{t}^{(k)}\left(x_{t}\right)+\sqrt{\ln (2 T K|\mathscr{X}| / \delta) / 2 N_{t}^{(k)}\left(x_{t}\right)}
$$

- Added x_{t} argument to $\hat{\mu}_{t}^{(k)}$ and $N_{t}^{(k)}$ since we now keep track of the sample mean and number of arm pulls separately for each value of the context
- Added $|\mathscr{X}|$ inside the log because our union bound argument is now over all arm mean estimates $\hat{\mu}_{t}^{(k)}(x)$, of which there are $K|\mathscr{X}|$ instead of just K

But when $|X|$ is really big (or even infinite), this will be really bad!
Solution: share information across contexts x_{t}, i.e., don't treat $\nu^{(k)}(x)$ and $\nu^{(k)}\left(x^{\prime}\right)$ as completely different distributions which have nothing to do with one another Example: showing an ad on a NYT article on politics vs a NYT article on sports:

Recap: UCB in tabular contextual bandits

UCB algorithm also conceptually identical as long as $|\mathscr{X}|$ finite:

$$
\pi_{t}\left(x_{t}\right)=\arg \max _{k} \hat{\mu}_{t}^{(k)}\left(x_{t}\right)+\sqrt{\ln (2 T K|\mathscr{X}| / \delta) / 2 N_{t}^{(k)}\left(x_{t}\right)}
$$

- Added x_{t} argument to $\hat{\mu}_{t}^{(k)}$ and $N_{t}^{(k)}$ since we now keep track of the sample mean and number of arm pulls separately for each value of the context
- Added $|\mathscr{X}|$ inside the log because our union bound argument is now over all arm mean estimates $\hat{\mu}_{t}^{(k)}(x)$, of which there are $K|\mathscr{X}|$ instead of just K

But when $|X|$ is really big (or even infinite), this will be really bad!
Solution: share information across contexts x_{t}, i.e., don't treat $\nu^{(k)}(x)$ and $\nu^{(k)}\left(x^{\prime}\right)$ as completely different distributions which have nothing to do with one another
Example: showing an ad on a NYT article on politics vs a NYT article on sports: Not identical readership, but still both on NYT, so probably still similar readership!

Recap: Modeling in contextual bandits

Recap: Modeling in contextual bandits

Need a model for $\mu^{(k)}(x)$, e.g., a linear model: $\mu^{(k)}(x)=x^{\top} \theta^{(k)}$

Recap: Modeling in contextual bandits

Need a model for $\mu^{(k)}(x)$, e.g., a linear model: $\mu^{(k)}(x)=x^{\top} \theta^{(k)}$
E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of x), for articles on politics or sports (encoded as 0 or 1 in the second entry of $x) \Rightarrow x \in\{0,1\}^{2}$

Recap: Modeling in contextual bandits

Need a model for $\mu^{(k)}(x)$, e.g., a linear model: $\mu^{(k)}(x)=x^{\top} \theta^{(k)}$
E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of x), for articles on politics or sports (encoded as 0 or 1 in the second entry of $x) \Rightarrow x \in\{0,1\}^{2}$
$|\mathscr{X}|=4 \Rightarrow$ w/o linear model, need to learn 4 different $\mu^{(k)}(x)$ values for each arm k

Recap: Modeling in contextual bandits

Need a model for $\mu^{(k)}(x)$, e.g., a linear model: $\mu^{(k)}(x)=x^{\top} \theta^{(k)}$
E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of x), for articles on politics or sports (encoded as 0 or 1 in the second entry of $x) \Rightarrow x \in\{0,1\}^{2}$
$|\mathscr{X}|=4 \Rightarrow$ w/o linear model, need to learn 4 different $\mu^{(k)}(x)$ values for each arm k
With linear model there are just 2 parameters: the two entries of $\theta^{(k)} \in \mathbb{R}^{2}$

Recap: Modeling in contextual bandits

Need a model for $\mu^{(k)}(x)$, e.g., a linear model: $\mu^{(k)}(x)=x^{\top} \theta^{(k)}$
E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of x), for articles on politics or sports (encoded as 0 or 1 in the second entry of $x) \Rightarrow x \in\{0,1\}^{2}$
$|\mathscr{X}|=4 \Rightarrow$ w/o linear model, need to learn 4 different $\mu^{(k)}(x)$ values for each arm k
With linear model there are just 2 parameters: the two entries of $\theta^{(k)} \in \mathbb{R}^{2}$
Lower dimension makes learning easier, but model could be wrong/biased

Recap: Modeling in contextual bandits

Need a model for $\mu^{(k)}(x)$, e.g., a linear model: $\mu^{(k)}(x)=x^{\top} \theta^{(k)}$
E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of x), for articles on politics or sports (encoded as 0 or 1 in the second entry of $x) \Rightarrow x \in\{0,1\}^{2}$
$|\mathscr{X}|=4 \Rightarrow$ w/o linear model, need to learn 4 different $\mu^{(k)}(x)$ values for each arm k
With linear model there are just 2 parameters: the two entries of $\theta^{(k)} \in \mathbb{R}^{2}$
Lower dimension makes learning easier, but model could be wrong/biased
Choosing the best model, fitting it, and quantifying uncertainty are essentially problems of supervised learning (for another day)

Today

- Recap
- LinUCB algorithm for contextual bandits

Linear model fitting

Linear model for rewards: $\mu^{(k)}(x)=x^{\top} \theta^{(k)}$

Linear model fitting

Linear model for rewards: $\mu^{(k)}(x)=x^{\top} \theta^{(k)}$
How to estimate $\theta^{(k)}$? Linear regression

Linear model fitting

Linear model for rewards: $\mu^{(k)}(x)=x^{\top} \theta^{(k)}$
How to estimate $\theta^{(k)}$? Linear regression
Least squares estimator: $\hat{\theta}_{t}^{(k)}=\arg \min _{\theta \in \mathbb{R}^{d}} \sum_{\tau=0}^{t-1}\left(r_{\tau}-x_{\tau}^{\top} \theta\right)^{2} 1_{\left\{a_{\tau}=k\right\}}$
Minimize squared error over time points when arm k selected

Linear model fitting

Linear model for rewards: $\mu^{(k)}(x)=x^{\top} \theta^{(k)}$
How to estimate $\theta^{(k)}$? Linear regression
Least squares estimator: $\hat{\theta}_{t}^{(k)}=\arg \min _{\theta \in \mathbb{R}^{d}} \sum_{\tau=0}^{t-1}\left(r_{\tau}-x_{\tau}^{\top} \theta\right)^{2} 1_{\left\{a_{\tau}=k\right\}}$
Minimize squared error over time points when arm k selected
Claim: $\hat{\theta}_{t}^{(k)}=\left(\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}}$

Linear model fitting
Linear model for rewards: $\mu^{(k)}(x)=x^{\top} \theta^{(k)}$
How to estimate $\theta^{(k)}$? Linear regression
Least squares estimator: $\hat{\theta}_{t}^{(k)}=\arg \min _{\theta \in \mathbb{R}^{\top}} \sum_{\tau=0}^{T-1}\left(r_{\tau}-x_{\tau}^{\top} \theta\right)^{2} 1_{\left\{a_{\tau}=k\right\}}$
Minimize squared error over time points when arm k selected

$$
\begin{aligned}
& \text { Claim: } \hat{\theta}_{t}^{(k)}=\left(\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}} \sum_{\tau} x_{\tau} r_{\tau} L_{\{\xi}=\theta \underbrace{2 x_{\tau}+\frac{1}{\tau}} \\
& \text { proof: } \nabla_{\theta}\left[\sum_{\tau=0}^{t-1}\left(r_{\tau}-x_{\tau}^{\top} \theta\right)^{2} 1_{\left\{a_{\tau}=k\right\}}\right]=2 \sum_{i=0}^{t-1} x_{\tau}\left(r_{\tau}-x_{\tau}^{\top} \theta\right) 1_{\left\{a_{\tau}=k\right\}}=0
\end{aligned}
$$

Linear model fitting (cont'd)

Linear model fitting (cont'd)

$$
\begin{aligned}
& \text { Recall: } \hat{\theta}_{t}^{(k)}=\left(\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}} \\
& \text { Let } A_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}} \text { and } b_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}}
\end{aligned}
$$

Linear model fitting (cont'd)

$$
\begin{aligned}
& \text { Recall: } \hat{\theta}_{t}^{(k)}=\left(\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}} \\
& \text { Let } A_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}} \text { and } b_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}} \\
& \quad \text { Then } \hat{\theta}_{t}^{(k)}=\left(A_{t}^{(k)}\right)^{-1} b_{t}^{(k)}
\end{aligned}
$$

Linear model fitting (cont'd)

$$
\begin{aligned}
& \text { Recall: } \hat{\theta}_{t}^{(k)}=\left(\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}} \\
& \text { Let } A_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}} \text { and } b_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}} \\
& \quad \text { Then } \hat{\theta}_{t}^{(k)}=\left(A_{t}^{(k)}\right)^{-1} b_{t}^{(k)}
\end{aligned}
$$

$A_{t}^{(k)}$ like empirical covariance matrix of the contexts when arm k was chosen

Linear model fitting (cont'd)

$$
\begin{gathered}
\text { Recall: } \hat{\theta}_{t}^{(k)}=\left(\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}} \\
\text { Let } A_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}} \text { and } b_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}} \\
\text { Then } \hat{\theta}_{t}^{(k)}=\left(A_{t}^{(k)}\right)^{-1} b_{t}^{(k)}
\end{gathered}
$$

$A_{t}^{(k)}$ like empirical covariance matrix of the contexts when arm k was chosen $b_{t}^{(k)}$ like empirical covariance between contexts and rewards when arm k was chosen

Linear model fitting (cont'd)

$$
\begin{gathered}
\text { Recall: } \hat{\theta}_{t}^{(k)}=\left(\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}} \\
\text { Let } A_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}} \text { and } b_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}} \\
\text { Then } \hat{\theta}_{t}^{(k)}=\left(A_{t}^{(k)}\right)^{-1} b_{t}^{(k)}
\end{gathered}
$$

$A_{t}^{(k)}$ like empirical covariance matrix of the contexts when arm k was chosen $b_{t}^{(k)}$ like empirical covariance between contexts and rewards when arm k was chosen

$$
A_{t}^{(k)} \text { must be invertible, which basically requires } N_{t}^{(k)} \geq d
$$

Uncertainty quantification

Uncertainty quantification

For UCB, recall that we need confidence bounds on the expected reward of each arm (given context x_{t})

Uncertainty quantification

For UCB, recall that we need confidence bounds on the expected reward of each arm (given context x_{t})

Hoeffding was the main tool so far, but it used the fact that our estimate for the expected reward was a sample mean of the rewards we'd seen so far in the same setting (action, context)

Uncertainty quantification

For UCB, recall that we need confidence bounds on the expected reward of each arm (given context x_{t})

Hoeffding was the main tool so far, but it used the fact that our estimate for the expected reward was a sample mean of the rewards we'd seen so far in the same setting (action, context)
With a model, we can use rewards we've seen in other settings \rightarrow better estimation

Uncertainty quantification

For UCB, recall that we need confidence bounds on the expected reward of each arm (given context x_{t})

Hoeffding was the main tool so far, but it used the fact that our estimate for the expected reward was a sample mean of the rewards we'd seen so far in the same setting (action, context)

With a model, we can use rewards we've seen in other settings \rightarrow better estimation But not using sample mean as estimator, so need something other than Hoeffding

Uncertainty quantification

For UCB, recall that we need confidence bounds on the expected reward of each arm (given context x_{t})

Hoeffding was the main tool so far, but it used the fact that our estimate for the expected reward was a sample mean of the rewards we'd seen so far in the same setting (action, context)

With a model, we can use rewards we've seen in other settings \rightarrow better estimation But not using sample mean as estimator, so need something other than Hoeffding

Chebyshev's inequality: for a mean-zero random variable Y,

$$
\begin{aligned}
& |Y| \leq \beta \sqrt{\mathbb{E}\left[Y^{2}\right]} \text { with probability } \geq 1-\underbrace{1 / \beta^{2}} \\
& |y| \leq \frac{1}{\sqrt{\delta}} \sqrt{\mathbb{E}\left[y^{2}\right]} \quad \sim \beta_{12} \geqslant 1-\delta \quad \delta=\frac{1}{\beta^{2}} \Rightarrow \beta=\frac{1}{\sqrt{\delta}}
\end{aligned}
$$

Uncertainty quantification (cont’d)

Uncertainty quantification (cont'd)

Want confidence bounds on our estimated mean rewards for each arm: $x_{t}^{\top} \hat{\theta}_{t}^{(k)}$

Uncertainty quantification (cont'd)

Want confidence bounds on our estimated mean rewards for each arm: $x_{t}^{\top} \hat{\theta}_{t}^{(k)}$ Strategy: apply Chebyshev's inequality to $x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}$

Uncertainty quantification (cont'd)

Want confidence bounds on our estimated mean rewards for each arm: $x_{t}^{\top} \hat{\theta}_{t}^{(k)}$ Strategy: apply Chebyshev's inequality to $x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}$
Need: $\mathbb{E}\left[x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right]$ (make sure it's zero) and $\mathbb{E}\left[\left(x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right)^{2}\right]$

Uncertainty quantification (contd)
Want confidence bounds on our estimated mean rewards for each arm: $x_{t}^{\top} \hat{\theta}_{t}^{(k)}$ Strategy: apply Chebyshev's inequality to $x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}$
Need: $\mathbb{E}\left[x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right]$ (make sure it's zero) and $\mathbb{E}\left[\left(x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right)^{2}\right]$
Let $w_{t}=r_{t}-\mathbb{E}_{r \sim \nu^{(k)}\left(x_{t}\right)}[r]=r_{t}-\overline{x_{t}^{\top} \theta^{(k)}}$, and we derive a useful expression for $\hat{\theta}_{t}^{(k)}$:

$$
\begin{aligned}
& \hat{\theta}_{t}^{(k)}=\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t=1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}}=\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t=1} x_{\tau}\left(x_{\tau}^{\tau} \theta^{(k)}+w_{\tau}\right) 1_{\left\{a_{\tau}=k\right\}} \\
& =A_{t}^{(k)} \underbrace{\sum_{\tau=0}^{k-1} x_{\tau} x_{t}^{\tau} I_{\left\{a_{\tau}=k\right\}}}_{A_{t}^{(k)}} \theta^{(k)}+\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t=1} x_{\tau} w_{\tau} 1_{\left\{a_{\tau}=k\right\}}
\end{aligned}
$$

Uncertainty quantification (cont'd)

$$
\text { Recall: } \hat{\theta}_{t}^{(k)}=\theta^{(k)}+\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}
$$

Uncertainty quantification (cont'd)

$$
\text { Recall: } \hat{\theta}_{t}^{(k)}=\theta^{(k)}+\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}
$$

Assume for simplicity that we are doing pure exploration, so the actions at each time step are totally independent of everything else.

Uncertainty quantification (cont'd)

$$
\text { Recall: } \hat{\theta}_{t}^{(k)}=\theta^{(k)}+\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}
$$

Assume for simplicity that we are doing pure exploration, so the actions at each time step are totally independent of everything else.
$\mathbb{E}_{w_{\tau}}\left[x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right]$

Uncertainty quantification (cont'd)

$$
\text { Recall: } \hat{\theta}_{t}^{(k)}=\theta^{(k)}+\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}
$$

Assume for simplicity that we are doing pure exploration, so the actions at each time step are totally independent of everything else.

$$
\mathbb{E}_{w_{\tau}}\left[x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right]=\mathbb{E}_{w_{\tau}}\left[x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}\right]
$$

Uncertainty quantification (cont'd)

$$
\text { Recall: } \hat{\theta}_{t}^{(k)}=\theta^{(k)}+\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}
$$

Assume for simplicity that we are doing pure exploration, so the actions at each time step are totally independent of everything else.

$$
\mathbb{E}_{w_{\tau}}\left[x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right]=\mathbb{E}_{w_{\tau}}\left[x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}\right]=x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau}\right]
$$

Uncertainty quantification (cont'd)

$$
\text { Recall: } \hat{\theta}_{t}^{(k)}=\theta^{(k)}+\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}
$$

Assume for simplicity that we are doing pure exploration, so the actions at each time step are totally independent of everything else.

$$
\mathbb{E}_{w_{\tau}}\left[x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right]=\mathbb{E}_{w_{\tau}}\left[x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}\right]=x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau}\right]=0
$$

Uncertainty quantification (cont'd)

$$
\text { Recall: } \hat{\theta}_{t}^{(k)}=\theta^{(k)}+\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\langle a_{\tau}-k\right\}} w_{\tau}
$$

Assume for simplicity that we are doing pure exploration, so the actions at each time step are totally independent of everything else.

$$
\begin{aligned}
& \mathbb{E}_{w_{\tau}}\left[x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right]=\mathbb{E}_{w_{\tau}}\left[x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}\right]=x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau}\right]=0 \\
& \mathbb{E}_{w_{\tau}}\left[\left(x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right)^{2}\right]=\mathbb{E}_{w_{\tau}}\left[\left(x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}\right)^{2}\right]
\end{aligned}
$$

Uncertainty quantification (cont'd)

$$
\text { Recall: } \hat{\theta}_{t}^{(k)}=\theta^{(k)}+\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\langle a_{\tau}-k\right\}} w_{\tau}
$$

Assume for simplicity that we are doing pure exploration, so the actions at each time step are totally independent of everything else.

$$
\begin{aligned}
& \mathbb{E}_{w_{\tau}}\left[x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right]=\mathbb{E}_{w_{\tau}}\left[x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}\right]=x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau}\right]=0 \\
& \mathbb{E}_{w_{\tau}}\left[\left(x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right)^{2}\right]=\mathbb{E}_{w_{\tau}}\left[\left(x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}\right)^{2}\right] \\
& =x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} \sum_{\tau}^{t}=0
\end{aligned} x_{\tau} x_{\tau^{\prime}}^{\top} 1_{\left\{a_{\tau}=k\right\}} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau} w_{\tau}\right]\left(A_{t}^{(k)}\right)^{-1} x_{t} \quad l
$$

Uncertainty quantification (cont'd)

$$
\text { Recall: } \hat{\theta}_{t}^{(k)}=\theta^{(k)}+\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\langle a_{t}=k\right\}} w_{\tau}
$$

Assume for simplicity that we are doing pure exploration, so the actions at each time step are totally independent of everything else.

$$
\begin{aligned}
& \mathbb{E}_{w_{\tau}}\left[x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right]=\mathbb{E}_{w_{\tau}}\left[x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}\right]=x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau}\right]=0 \\
& \mathbb{E}_{w_{\tau}}\left[\left(x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right)^{2}\right]=\mathbb{E}_{w_{\tau}}\left[\left(x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}\right)^{2}\right] \\
& =x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} \sum_{\tau^{\prime}=0}^{t-1} x_{\tau} x_{\tau^{\prime}}^{\top} 1_{\left\{a_{\tau}=k\right\}} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau} w_{\tau}\right]\left(A_{t}^{(k)}\right)^{-1} x_{t} \\
& =x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau}^{2}\right]\left(A_{t}^{(k)}\right)^{-1} x_{t}
\end{aligned}
$$

Uncertainty quantification (cont'd)

$$
\text { Recall: } \hat{\theta}_{t}^{(k)}=\theta^{(k)}+\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}
$$

Assume for simplicity that we are doing pure exploration, so the actions at each time step are totally independent of everything else.

$$
\begin{aligned}
& \mathbb{E}_{w_{\tau}}\left[x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right]=\mathbb{E}_{w_{\tau}}\left[x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}\right]=x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau}\right]=0 \\
& \mathbb{E}_{w_{\tau}}\left[\left(x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right)^{2}\right]=\mathbb{E}_{w_{\tau}}\left[\left(x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}\right)^{2}\right] \\
& =x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} \sum_{\tau=0}^{t-1} x_{\tau} x_{\tau^{\prime}}^{\top} 1_{\left\{a_{\tau}=k\right\}} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau} w_{\tau}\right]\left(A_{t}^{(k)}\right)^{-1} x_{t} \\
& =x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau}^{2}\right]\left(A_{t}^{(k)}\right)^{-1} x_{t} \leq x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} A_{t}^{(k)}\left(A_{t}^{(k)}\right)^{-1} x_{t}
\end{aligned}
$$

Uncertainty quantification (cont'd)

$$
\text { Recall: } \hat{\theta}_{t}^{(k)}=\theta^{(k)}+\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}
$$

Assume for simplicity that we are doing pure exploration, so the actions at each time step are totally independent of everything else.

$$
\begin{aligned}
& \mathbb{E}_{w_{\tau}}\left[x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right]=\mathbb{E}_{w_{\tau}}\left[x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}\right]=x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau}\right]=0 \\
& \mathbb{E}_{w_{\tau}}\left[\left(x_{t}^{\top} \hat{\theta}_{t}^{(k)}-x_{t}^{\top} \theta^{(k)}\right)^{2}\right]=\mathbb{E}_{w_{\tau}}\left[\left(x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} 1_{\left\{a_{\tau}=k\right\}} w_{\tau}\right)^{2}\right] \\
& =x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} \sum_{t^{\prime}=0}^{t-1} x_{\tau} x_{\tau^{\prime}}^{\top} 1_{\left\{a_{\tau}=k\right\}} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau} w_{\tau}\right]\left(A_{t}^{(k)}\right)^{-1} x_{t} \\
& =x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}} \mathbb{E}_{w_{\tau}}\left[w_{\tau}^{2}\right]\left(A_{t}^{(k)}\right)^{-1} x_{t} \leq x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} A_{t}^{(k)}\left(A_{t}^{(k)}\right)^{-1} x_{t}=x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} x_{t}
\end{aligned}
$$

Chebyshev confidence bounds + intuition

Chebyshev confidence bounds + intuition

Chebyshev: $x_{t}^{\top} \theta^{(k)} \leq x_{t}^{\top} \hat{\theta}_{t}^{(k)}+\beta \sqrt{x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} x_{t}}$ with probabiily $\geq 1-1 / \beta^{2}$

Chebyshev confidence bounds + intuition

Chebyshev: $x_{t}^{\top} \theta^{(k)} \leq x_{t}^{\top} \hat{\theta}_{t}^{(k)}+\beta \sqrt{x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} x_{t}}$ with probability $\geq 1-1 / \beta^{2}$ Intuition:

Chebyshev confidence bounds + intuition

Chebyshev: $x_{t}^{\top} \theta^{(k)} \leq x_{t}^{\top} \hat{\theta}_{t}^{(k)}+\beta \sqrt{x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} x_{t}}$ with probability $\geq 1-1 / \beta^{2}$ Intuition:

UCB term 1: $x_{t}^{\top} \hat{\theta}^{(k)}$ large when context and coefficient estimate aligned

Chebyshev confidence bounds + intuition

Chebyshev: $x_{t}^{\top} \theta^{(k)} \leq x_{t}^{\top} \hat{\theta}_{t}^{(k)}+\beta \sqrt{x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} x_{t}}$ with probability $\geq 1-1 / \beta^{2}$ Intuition:

UCB term 1: $x_{t}^{\top} \hat{\theta}^{(k)}$ large when context and coefficient estimate aligned
UCB term 2: $x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} x_{t}=\frac{1}{N_{t}^{(k)}} x_{t}^{\top}\left(\sum_{t}^{(k)}\right)^{-1} x_{t}$, where
$\Sigma_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} A_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}$ is the empirical covariance
matrix of contexts when arm k chosen

Chebyshev confidence bounds + intuition

Chebyshev: $x_{t}^{\top} \theta^{(k)} \leq x_{t}^{\top} \hat{\theta}_{t}^{(k)}+\beta \sqrt{x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} x_{t}}$ with probability $\geq 1-1 / \beta^{2}$ Intuition:

UCB term 1: $x_{t}^{\top} \hat{\theta}^{(k)}$ large when context and coefficient estimate aligned
UCB term 2: $x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} x_{t}=\frac{1}{N_{t}^{(k)}} x_{t}^{\top}\left(\sum_{t}^{(k)}\right)^{-1} x_{t}$, where
$\Sigma_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} A_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}$ is the empirical covariance
matrix of contexts when arm k chosen
Large when $N_{t}^{(k)}$ small or x_{t} not aligned with historical data

Some issues

Some issues

Issue 1: All this assumed pure exploration!

Some issues

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don't even expect unbiasedness for our arm mean estimates in the simple bandit case, due to adaptivity

Some issues

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don't even expect unbiasedness for our arm mean estimates in the simple bandit case, due to adaptivity

So actually, the bounds we got don't really apply...

Some issues

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don't even expect unbiasedness for our arm mean estimates in the simple bandit case, due to adaptivity

So actually, the bounds we got don't really apply...
Issue 2: $A_{t}^{(k)}$ has to be invertible

Some issues

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don't even expect unbiasedness for our arm mean estimates in the simple bandit case, due to adaptivity

So actually, the bounds we got don't really apply...
Issue 2: $A_{t}^{(k)}$ has to be invertible
Before the d th time that arm k gets pulled, $\hat{\theta}_{t}^{(k)}$ undefined

Some issues

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don't even expect unbiasedness for our arm mean estimates in the simple bandit case, due to adaptivity

So actually, the bounds we got don't really apply...
Issue 2: $A_{t}^{(k)}$ has to be invertible
Before the d th time that arm k gets pulled, $\hat{\theta}_{t}^{(k)}$ undefined
Solution (to both issues): regularize

Some issues

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don't even expect unbiasedness for our arm mean estimates in the simple bandit case, due to adaptivity

So actually, the bounds we got don't really apply...
Issue 2: $A_{t}^{(k)}$ has to be invertible
Before the d th time that arm k gets pulled, $\hat{\theta}_{t}^{(k)}$ undefined
Solution (to both issues): regularize

$$
\text { Replace } A_{t}^{(k)} \leftarrow A_{t}^{(k)}+\lambda I \text { for some } \lambda>0
$$

Some issues

Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don't even expect unbiasedness for our arm mean estimates in the simple bandit case, due to adaptivity

So actually, the bounds we got don't really apply...
Issue 2: $A_{t}^{(k)}$ has to be invertible
Before the d th time that arm k gets pulled, $\hat{\theta}_{t}^{(k)}$ undefined
Solution (to both issues): regularize

$$
\text { Replace } A_{t}^{(k)} \leftarrow A_{t}^{(k)}+\lambda I \text { for some } \lambda>0
$$

Makes $A_{t}^{(k)}$ invertible always, and it turns out a bound just like Chebyshev's applies (with more details and a much more complicated proof, which we won't get into)

LinUCB algorithm

For $t=0 \rightarrow T-1$

LinUCB algorithm

For $t=0 \rightarrow T-1$

1. $\forall k$, define $A_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}+\lambda I$ and $\hat{\theta}_{t}^{(k)}=\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}}$

LinUCB algorithm

For $t=0 \rightarrow T-1$

1. $\forall k$, define $A_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}+\lambda I$ and $\hat{\theta}_{t}^{(k)}=\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}}$
2. Observe context x_{t} and choose $a_{t}=\arg \max _{k}\left\{x_{t}^{\top} \hat{\theta}_{t}^{(k)}+c_{t} \sqrt{x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} x_{t}}\right\}$

LinUCB algorithm

For $t=0 \rightarrow T-1$

1. $\forall k$, define $A_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}+\lambda I$ and $\hat{\theta}_{t}^{(k)}=\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}}$
2. Observe context x_{t} and choose $a_{t}=\arg \max _{k}\left\{x_{t}^{\top} \hat{\theta}_{t}^{(k)}+c_{t} \sqrt{x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} x_{t}}\right\}$
3. Observe reward $r_{t} \sim \nu^{\left(a_{t}\right)}\left(x_{t}\right)$

LinUCB algorithm

For $t=0 \rightarrow T-1$

1. $\forall k$, define $A_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}+\lambda I$ and $\hat{\theta}_{t}^{(k)}=\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}}$
2. Observe context x_{t} and choose $a_{t}=\arg \max _{k}\left\{x_{t}^{\top} \hat{\theta}_{t}^{(k)}+c_{t} \sqrt{x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} x_{t}}\right\}$
3. Observe reward $r_{t} \sim \nu^{\left(a_{t}\right)}\left(x_{t}\right)$
c_{t} similar to log term in (non-lin)UCB, in that it depends logarithmically on
i. $\quad 1 / \delta$ (δ is probability you want the bound to hold with)
ii. t and d implicitly via $\operatorname{det}\left(A_{t}^{(k)}\right)$

LinUCB algorithm

For $t=0 \rightarrow T-1$

1. $\forall k$, define $A_{t}^{(k)}=\sum_{\tau=0}^{t-1} x_{\tau} x_{\tau}^{\top} 1_{\left\{a_{\tau}=k\right\}}+\lambda I$ and $\hat{\theta}_{t}^{(k)}=\left(A_{t}^{(k)}\right)^{-1} \sum_{\tau=0}^{t-1} x_{\tau} r_{\tau} 1_{\left\{a_{\tau}=k\right\}}$
2. Observe context x_{t} and choose $a_{t}=\arg \max _{k}\left\{x_{t}^{\top} \hat{\theta}_{t}^{(k)}+c_{t} \sqrt{x_{t}^{\top}\left(A_{t}^{(k)}\right)^{-1} x_{t}}\right\}$
3. Observe reward $r_{t} \sim \nu^{\left(a_{t}\right)}\left(x_{t}\right)$
c_{t} similar to log term in (non-lin)UCB, in that it depends logarithmically on
i. $\quad 1 / \delta$ (δ is probability you want the bound to hold with)
ii. t and d implicitly via $\operatorname{det}\left(A_{t}^{(k)}\right)$

Can prove $\tilde{O}(\sqrt{T})$ regret bound

Extensions

Extensions

1. Can always replace contexts x_{t} with any fixed (vector-valued) function $\phi\left(x_{t}\right)$

Extensions

1. Can always replace contexts x_{t} with any fixed (vector-valued) function $\phi\left(x_{t}\right)$ E.g., if believe rewards quadratic in scalar x_{t}, could make $\phi\left(x_{t}\right)=\left(x_{t}, x_{t}^{2}\right)$

Extensions

1. Can always replace contexts x_{t} with any fixed (vector-valued) function $\phi\left(x_{t}\right)$ E.g., if believe rewards quadratic in scalar x_{t}, could make $\phi\left(x_{t}\right)=\left(x_{t}, x_{t}^{2}\right)$
2. Instead of fitting different $\theta^{(k)}$ for each arm, we could assume the mean reward is linear in some function of both the context and the action, i.e.,

$$
\mathbb{E}_{r \sim \nu^{a_{t}\left(x_{t}\right)}}[r]=\phi\left(x_{t}, a_{t}\right)^{\top} \theta
$$

Extensions

1. Can always replace contexts x_{t} with any fixed (vector-valued) function $\phi\left(x_{t}\right)$ E.g., if believe rewards quadratic in scalar x_{t}, could make $\phi\left(x_{t}\right)=\left(x_{t}, x_{t}^{2}\right)$
2. Instead of fitting different $\theta^{(k)}$ for each arm, we could assume the mean reward is linear in some function of both the context and the action, i.e.,

$$
\mathbb{E}_{\left.r \sim \nu^{a_{t}\left(x_{t}\right)}\right]}[r]=\phi\left(x_{t}, a_{t}\right)^{\top} \theta
$$

This is what problem 3 of HW 1 (which we cut) was about; it's helpful especially when K is large, since in that case there are a lot of $\theta^{(k)}$ to fit

Extensions

1. Can always replace contexts x_{t} with any fixed (vector-valued) function $\phi\left(x_{t}\right)$ E.g., if believe rewards quadratic in scalar x_{t}, could make $\phi\left(x_{t}\right)=\left(x_{t}, x_{t}^{2}\right)$
2. Instead of fitting different $\theta^{(k)}$ for each arm, we could assume the mean reward is linear in some function of both the context and the action, i.e.,

$$
\mathbb{E}_{\left.r \sim \nu^{a_{t}\left(x_{t}\right)}\right)}[r]=\phi\left(x_{t}, a_{t}\right)^{\top} \theta
$$

This is what problem 3 of HW 1 (which we cut) was about; it's helpful especially when K is large, since in that case there are a lot of $\theta^{(k)}$ to fit

Both cases allow a version of linUCB by extension of the same ideas: fit coefficients via least squares and use Chebyshev-like uncertainty quantification to get UCB

More detail on the combined linear model
For $t=0 \rightarrow T-1$

More detail on the combined linear model
For $t=0 \rightarrow T-1$

1. $\forall k$, define $A_{t}=\sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) \phi\left(x_{\tau}, a_{\tau}\right)^{\top}+\lambda I$ and $\hat{\theta}_{t}=A_{t}^{-1} \sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) r_{\tau}$

More detail on the combined linear model

For $t=0 \rightarrow T-1$

1. $\forall k$, define $A_{t}=\sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) \phi\left(x_{\tau}, a_{\tau}\right)^{\top}+\lambda I$ and $\hat{\theta}_{t}=A_{t}^{-1} \sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) r_{\tau}$
2. Observe $x_{t} \&$ choose $a_{t}=\arg \max _{k}\left\{\phi\left(x_{t}, k\right)^{\top} \hat{\theta}_{t}+c_{t} \sqrt{\phi\left(x_{t}, k\right)^{\top} A_{t}^{-1} \phi\left(x_{t}, k\right)}\right\}$

More detail on the combined linear model

For $t=0 \rightarrow T-1$

1. $\forall k$, define $A_{t}=\sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) \phi\left(x_{\tau}, a_{\tau}\right)^{\top}+\lambda I$ and $\hat{\theta}_{t}=A_{t}^{-1} \sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) r_{\tau}$
2. Observe $x_{t} \&$ choose $a_{t}=\arg \max _{k}\left\{\phi\left(x_{t}, k\right)^{\top} \hat{\theta}_{t}+c_{t} \sqrt{\phi\left(x_{t}, k\right)^{\top} A_{t}^{-1} \phi\left(x_{t}, k\right)}\right\}$
3. Observe reward $r_{t} \sim \nu^{\left(a_{t}\right)}\left(x_{t}\right)$

More detail on the combined linear model

For $t=0 \rightarrow T-1$

1. $\forall k$, define $A_{t}=\sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) \phi\left(x_{\tau}, a_{\tau}\right)^{\top}+\lambda I$ and $\hat{\theta}_{t}=A_{t}^{-1} \sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) r_{\tau}$
2. Observe $x_{t} \&$ choose $a_{t}=\arg \max _{k}\left\{\phi\left(x_{t}, k\right)^{\top} \hat{\theta}_{t}+c_{t} \sqrt{\phi\left(x_{t}, k\right)^{\top} A_{t}^{-1} \phi\left(x_{t}, k\right)}\right\}$
3. Observe reward $r_{t} \sim \nu^{\left(a_{t}\right)}\left(x_{t}\right)$

Comments:

More detail on the combined linear model

For $t=0 \rightarrow T-1$

1. $\forall k$, define $A_{t}=\sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) \phi\left(x_{\tau}, a_{\tau}\right)^{\top}+\lambda I$ and $\hat{\theta}_{t}=A_{t}^{-1} \sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) r_{\tau}$
2. Observe $x_{t} \&$ choose $a_{t}=\arg \max _{k}\left\{\phi\left(x_{t}, k\right)^{\top} \hat{\theta}_{t}+c_{t} \sqrt{\phi\left(x_{t}, k\right)^{\top} A_{t}^{-1} \phi\left(x_{t}, k\right)}\right\}$
3. Observe reward $r_{t} \sim \nu^{\left(a_{t}\right)}\left(x_{t}\right)$

Comments:
i. There is only one A_{t} and $\hat{\theta}_{t}$ (not one per arm), so more info shared across k

More detail on the combined linear model

For $t=0 \rightarrow T-1$

1. $\forall k$, define $A_{t}=\sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) \phi\left(x_{\tau}, a_{\tau}\right)^{\top}+\lambda I$ and $\hat{\theta}_{t}=A_{t}^{-1} \sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) r_{\tau}$
2. Observe $x_{t} \&$ choose $a_{t}=\arg \max _{k}\left\{\phi\left(x_{t}, k\right)^{\top} \hat{\theta}_{t}+c_{t} \sqrt{\phi\left(x_{t}, k\right)^{\top} A_{t}^{-1} \phi\left(x_{t}, k\right)}\right\}$
3. Observe reward $r_{t} \sim \nu^{\left(a_{t}\right)}\left(x_{t}\right)$

Comments:
i. There is only one A_{t} and $\hat{\theta}_{t}$ (not one per arm), so more info shared across k
ii. Good for large K, but step 2's argmax may be hard

More detail on the combined linear model

For $t=0 \rightarrow T-1$

1. $\forall k$, define $A_{t}=\sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) \phi\left(x_{\tau}, a_{\tau}\right)^{\top}+\lambda I$ and $\hat{\theta}_{t}=A_{t}^{-1} \sum_{\tau=0}^{t-1} \phi\left(x_{\tau}, a_{\tau}\right) r_{\tau}$
2. Observe $x_{t} \&$ choose $a_{t}=\arg \max _{k}\left\{\phi\left(x_{t}, k\right)^{\top} \hat{\theta}_{t}+c_{t} \sqrt{\phi\left(x_{t}, k\right)^{\top} A_{t}^{-1} \phi\left(x_{t}, k\right)}\right\}$
3. Observe reward $r_{t} \sim \nu^{\left(a_{t}\right)}\left(x_{t}\right)$

Comments:
i. There is only one A_{t} and $\hat{\theta}_{t}$ (not one per arm), so more info shared across k
ii. Good for large K, but step 2's argmax may be hard
iii. The other formulation, with separate $A_{t}^{(k)}$ and $\hat{\theta}_{t}^{(k)}$, is called disjointed

Continuous bandit action spaces

Continuous bandit action spaces

In bandits / contextual bandits, we have always treated the action space as discrete

Continuous bandit action spaces

In bandits / contextual bandits, we have always treated the action space as discrete This is because we to some extent treated each arm separately, necessitating trying each arm at least a fixed number of times before real learning could begin

Continuous bandit action spaces

In bandits / contextual bandits, we have always treated the action space as discrete
This is because we to some extent treated each arm separately, necessitating trying each arm at least a fixed number of times before real learning could begin

But now with the new combined formulation, there is sufficient sharing across actions that we can learn $\hat{\theta}_{t}$ and its UCB without sampling all arms

Continuous bandit action spaces

In bandits / contextual bandits, we have always treated the action space as discrete
This is because we to some extent treated each arm separately, necessitating trying each arm at least a fixed number of times before real learning could begin

But now with the new combined formulation, there is sufficient sharing across actions that we can learn $\hat{\theta}_{t}$ and its UCB without sampling all arms

This means that in principle, we can now consider continuous action spaces!

Continuous bandit action spaces

In bandits / contextual bandits, we have always treated the action space as discrete
This is because we to some extent treated each arm separately, necessitating trying each arm at least a fixed number of times before real learning could begin

But now with the new combined formulation, there is sufficient sharing across actions that we can learn $\hat{\theta}_{t}$ and its UCB without sampling all arms
This means that in principle, we can now consider continuous action spaces!
This is the power of having a strong model for $\mathbb{E}_{\left.r \sim \nu^{(a)}\right)\left(x_{1}\right)}[r]$, and a neural network would serve a similar purpose in place of the combined linear model (UQ less clear)

Continuous bandit action spaces

In bandits / contextual bandits, we have always treated the action space as discrete
This is because we to some extent treated each arm separately, necessitating trying each arm at least a fixed number of times before real learning could begin
But now with the new combined formulation, there is sufficient sharing across actions that we can learn $\hat{\theta}_{t}$ and its UCB without sampling all arms
This means that in principle, we can now consider continuous action spaces!
This is the power of having a strong model for $\mathbb{E}_{r \sim \nu^{(a)}\left(x_{t}\right)}[r]$, and a neural network would serve a similar purpose in place of the combined linear model (UQ less clear)

But in principle, there is no "free lunch", i.e., the hardness of the problem now transfers over to choosing a good model (a bad model will lead to bad performance)

Today

- Recap
- LinUCB algorithm for contextual bandits

Today's summary:

Today's summary:

LinUCB algorithm for contextual bandits

- Uses UCB idea, but requires modeling reward distribution
-Uses Chebyshev's inequality for uncertainty quantification

Today's summary:

LinUCB algorithm for contextual bandits

- Uses UCB idea, but requires modeling reward distribution
- Uses Chebyshev's inequality for uncertainty quantification

Next time:

- UCB-VI: apply UCB idea to full (tabular) RL (essentially a contextual bandit with continuous and highly structured action space)

Today's summary:

LinUCB algorithm for contextual bandits

- Uses UCB idea, but requires modeling reward distribution
- Uses Chebyshev's inequality for uncertainty quantification

Next time:

- UCB-VI: apply UCB idea to full (tabular) RL (essentially a contextual bandit with continuous and highly structured action space)

1-minute feedback form: https://bit.ly/3RHt|xy

