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Today

• Recap


• LinUCB algorithm for contextual bandits
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Recap: Bandits + confidence bounds

For t = 0 → T − 1
1. Learner pulls arm at ∈ {1,…, K}
2. Learner observes an i.i.d reward  of arm rt ∼ νat

at

(# based on historical information)

Note: there is no state ; rewards from a given arm are i.i.d. (data NOT i.i.d.!)s

Uniform confidence bounds via Hoeffding + Union Bound


ℙ (∀k ≤ K, t < T, | ̂μ(k)
t − μ(k) | ≤ ln(2TK/δ)/2N(k)

t ) ≥ 1 − δ

μ(k) = 𝔼r∼νk
[r], N(k)

t =
t−1

∑
τ=0

1{aτ=k}, ̂μ(k)
t =

1
N(k)

t

t−1

∑
τ=0

1{aτ=k}rτ
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Recap: Upper Confidence Bound (UCB) algorithm
For :t = 0,…, T − 1

Choose the arm with the highest upper confidence bound, i.e.,


at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t

̂μ(2)
t

̂μ(2)
t + ln(2TK/δ)/2N(2)

t

̂μ(2)
t − ln(2TK/δ)/2N(2)

t

μ(2)
̂μ(1)
t

̂μ(1)
t + ln(2TK/δ)/2N(1)

t

̂μ(1)
t − ln(2TK/δ)/2N(1)

t

μ(1)

̂μ(3)
t

̂μ(3)
t + ln(2TK/δ)/2N(3)

t

̂μ(3)
t − ln(2TK/δ)/2N(3)

t

μ(3)

at = 2

(we can’t see the )μ(k)
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Recap: optimism in the face of uncertainty
Optimism in the face of uncertainty is an important principle in RL.


It basically says to give each arm the benefit of the doubt, and basically act as if that 
arm is as good as it could plausibly be in choosing an action

In UCB, this means constructing a CI (i.e., set of plausible values) for each , and 
being greedy with respect to the upper bound of the CIs

μ(k)

Since each upper bound is , this means when we select 

, at least one of the two terms is large, i.e., either


1.  large, i.e., we haven’t explored arm  much (exploration)


2.  large, i.e., based on what we’ve seen so far, arm  is the best (exploitation)

̂μ(k)
t + ln(2KT/δ)/2N(k)

t

at = k
ln(2KT/δ)/2N(k)

t k

̂μ(k)
t k

Note that the exploration here is adaptive, i.e., focused on most promising arms
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Recap: Contextual bandit environment
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For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}

3. Learner observes reward  from arm  in context rt ∼ ν(at)(xt) at xt

1. Learner sees context ; xt ∼ νx xt ∈ ℝd

 policy learned from 

all data seen so far

πt

Note that if the context distribution  always returns the same value (e.g., 0), then 
the contextual bandit reduces to the original multi-armed bandit

νx

Independent of any previous data

Contextual bandit is exactly a MDP with horizon , where  is the (singular) 
state in each episode (so )

H = 1 xt
μ0 = νx



Recap: UCB in tabular contextual bandits
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UCB algorithm also conceptually identical as long as  finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added  argument to  and  since we now keep track of the sample 
mean and number of arm pulls separately for each value of the context


• Added  inside the log because our union bound argument is now over 
all arm mean estimates , of which there are  instead of just 

xt ̂μ(k)
t N(k)

t

|𝒳|
̂μ(k)
t (x) K |𝒳| K

But when  is really big (or even infinite), this will be really bad!|𝒳|
Solution: share information across contexts , i.e., don’t treat  and  as 

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′ )

Example: showing an ad on a NYT article on politics vs a NYT article on sports: 

Not identical readership, but still both on NYT, so probably still similar readership!



Recap: Modeling in contextual bandits
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Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = x⊤θ(k)

   w/o linear model, need to learn 4 different  values for each arm |𝒳| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of ), for articles 
on politics or sports (encoded as 0 or 1 in the second entry of ) 

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θ(k) ∈ ℝ2

Lower dimension makes learning easier, but model could be wrong/biased

Choosing the best model, fitting it, and quantifying uncertainty are essentially 
problems of supervised learning (for another day)



Today
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• Recap


• LinUCB algorithm for contextual bandits



Linear model fitting
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Linear model for rewards: μ(k)(x) = x⊤θ(k)

How to estimate ? Linear regressionθ(k)

Least squares estimator:  ̂θ(k)
t = arg min

θ∈ℝd

t−1

∑
τ=0

(rτ − x⊤
τ θ)21{aτ=k}

Minimize squared error over time points when arm  selectedk

Claim: ̂θ(k)
t = (

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k})

−1 t−1

∑
τ=0

xτrτ1{aτ=k}

proof: 



Linear model fitting (cont’d)
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Recall: ̂θ(k)
t = (

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k})

−1 t−1

∑
τ=0

xτrτ1{aτ=k}

Let  and A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} b(k)

t =
t−1

∑
τ=0

xτrτ1{aτ=k}

Then ̂θ(k)
t = (A(k)

t )
−1

b(k)
t

 like empirical covariance matrix of the contexts when arm  was chosenA(k)
t k

 like empirical covariance between contexts and rewards when arm  was chosenb(k)
t k

 must be invertible, which basically requires A(k)
t N(k)

t ≥ d



Uncertainty quantification
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For UCB, recall that we need confidence bounds on 

the expected reward of each arm (given context )xt

Hoeffding was the main tool so far, but it used the fact that our estimate for the 
expected reward was a sample mean of the rewards we’d seen so far in the same 

setting (action, context)

Chebyshev’s inequality: for a mean-zero random variable ,


   with probability 

Y
|Y | ≤ β 𝔼[Y2] ≥ 1 − 1/β2

With a model, we can use rewards we’ve seen in other settings  better estimation→
But not using sample mean as estimator, so need something other than Hoeffding



Uncertainty quantification (cont’d)
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Want confidence bounds on our estimated mean rewards for each arm: x⊤
t

̂θ(k)
t

Strategy: apply Chebyshev’s inequality to x⊤
t

̂θ(k)
t − x⊤

t θ(k)

Need:  (make sure it’s zero) and 𝔼[x⊤
t

̂θ(k)
t − x⊤

t θ(k)] 𝔼 [(x⊤
t

̂θ(k)
t − x⊤

t θ(k))2]
Let , and we derive a useful expression for :wt = rt − 𝔼r∼ν(k)(xt)[r] = rt − x⊤

t θ(k) ̂θ(k)
t



Uncertainty quantification (cont’d)
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𝔼wτ
[x⊤

t
̂θ(k)
t − x⊤

t θ(k)]

Recall: ̂θ(k)
t = θ(k) + (A(k)

t )−1
t−1

∑
τ=0

xτ1{aτ=k}wτ

𝔼wτ
[(x⊤

t
̂θ(k)
t − x⊤

t θ(k))2] = 𝔼wτ (x⊤
t (A(k)

t )−1
t−1

∑
τ=0

xτ1{aτ=k}wτ)
2

= x⊤
t (A(k)

t )−1
t−1

∑
τ=0

t−1

∑
τ′ =0

xτx⊤
τ′ 

1{aτ=k}1{aτ′ =k}𝔼wτ [wτwτ′ ](A(k)
t )−1xt

Assume for simplicity that we are doing pure exploration, so the actions at each time 
step are totally independent of everything else.

= x⊤
t (A(k)

t )−1
t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}𝔼wτ

[w2
τ ](A(k)

t )−1xt

= 𝔼wτ
[x⊤

t (A(k)
t )−1

t−1

∑
τ=0

xτ1{aτ=k}wτ] = x⊤
t (A(k)

t )−1
t−1

∑
τ=0

xτ1{aτ=k}𝔼wτ
[wτ] = 0

≤ x⊤
t (A(k)

t )−1A(k)
t (A(k)

t )−1xt = x⊤
t (A(k)

t )−1xt



Chebyshev confidence bounds + intuition

Chebyshev:  with probability x⊤
t θ(k) ≤ x⊤

t
̂θ(k)
t + β x⊤

t (A(k)
t )−1xt ≥ 1 − 1/β2

Intuition:

UCB term 1:  large when context and coefficient estimate alignedx⊤
t

̂θ(k)

UCB term 2: , where 


 is the empirical covariance 

matrix of contexts when arm  chosen

x⊤
t (A(k)

t )−1xt =
1

N(k)
t

x⊤
t (Σ(k)

t )−1xt

Σ(k)
t =

1
N(k)

t
A(k)

t =
1

N(k)
t

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}

k
Large when  small or  not aligned with historical dataN(k)

t xt
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Some issues
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Issue 1: All this assumed pure exploration!
Recall from HW 1 that we don’t even expect unbiasedness for our arm


mean estimates in the simple bandit case, due to adaptivity

Issue 2:  has to be invertibleA(k)
t

So actually, the bounds we got don’t really apply…

Before the th time that arm  gets pulled,  undefinedd k ̂θ(k)
t

Solution (to both issues): regularize

Replace  for some A(k)
t ← A(k)

t + λI λ > 0
Makes  invertible always, and it turns out a bound just like Chebyshev’s applies 

(with more details and a much more complicated proof, which we won’t get into)
A(k)

t



LinUCB algorithm
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For t = 0 → T − 1

2. Observe context  and choose xt at = arg max
k {x⊤

t
̂θ(k)
t + ct x⊤

t (A(k)
t )−1xt}

3. Observe reward rt ∼ ν(at)(xt)

1. , define      and   ∀ k A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} + λI ̂θ(k)

t = (A(k)
t )−1

t−1

∑
τ=0

xτrτ1{aτ=k}

 similar to log term in (non-lin)UCB, in that it depends logarithmically on

i.  (  is probability you want the bound to hold with) 

ii.  and  implicitly via 

ct
1/δ δ
t d det(A(k)

t )
Can prove  regret boundÕ( T)



Extensions
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1. Can always replace contexts  with any fixed (vector-valued) function xt ϕ(xt)
E.g., if believe rewards quadratic in scalar , could make xt ϕ(xt) = (xt, x2

t )
2. Instead of fitting different  for each arm, we could assume the mean reward 

is linear in some function of both the context and the action, i.e.,

θ(k)

𝔼r∼νat(xt)[r] = ϕ(xt, at)⊤θ
This is what problem 3 of HW 1 (which we cut) was about; it’s helpful 
especially when  is large, since in that case there are a lot of  to fitK θ(k)

Both cases allow a version of linUCB by extension of the same ideas: fit coefficients 
via least squares and use Chebyshev-like uncertainty quantification to get UCB



More detail on the combined linear model
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For t = 0 → T − 1

2. Observe  & choose xt at = arg max
k {ϕ(xt, k)⊤ ̂θt + ct ϕ(xt, k)⊤A−1

t ϕ(xt, k)}
3. Observe reward rt ∼ ν(at)(xt)

1. , define      and   ∀ k At =
t−1

∑
τ=0

ϕ(xτ, aτ)ϕ(xτ, aτ)⊤ + λI ̂θt = A−1
t

t−1

∑
τ=0

ϕ(xτ, aτ)rτ

Comments:

i. There is only one  and  (not one per arm), so more info shared across 

ii. Good for large , but step 2’s argmax may be hard

iii. The other formulation, with separate  and , is called disjointed

At
̂θt k

K
A(k)

t
̂θ(k)
t



Continuous bandit action spaces
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In bandits / contextual bandits, we have always treated the action space as discrete

But now with the new combined formulation, there is sufficient sharing across actions 
that we can learn  and its UCB without sampling all armŝθt

This is because we to some extent treated each arm separately, necessitating trying 
each arm at least a fixed number of times before real learning could begin

This means that in principle, we can now consider continuous action spaces!

This is the power of having a strong model for , and a neural network 
would serve a similar purpose in place of the combined linear model (UQ less clear)

𝔼r∼ν(at)(xt)[r]

But in principle, there is no “free lunch”, i.e., the hardness of the problem now 
transfers over to choosing a good model (a bad model will lead to bad performance)



Today
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• Recap


• LinUCB algorithm for contextual bandits



1-minute feedback form: https://bit.ly/3RHtlxy 

Today’s summary:

LinUCB algorithm for contextual bandits

•Uses UCB idea, but requires modeling reward distribution

•Uses Chebyshev’s inequality for uncertainty quantification


Next time:

•UCB-VI: apply UCB idea to full (tabular) RL (essentially

a contextual bandit with continuous and highly

structured action space)

22

https://bit.ly/3RHtlxy

