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V/Q functions in Finite horizon MDP

Vπ
h (s) = 𝔼 [

H−1

∑
τ=h

r(sτ, aτ) sh = s]
Qπ

h (s, a) = 𝔼 [
H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
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Qπ

h (s, a) = 𝔼 [
H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]

Qπ
h (s, a) = r(s, a) + 𝔼s′ ∼P(s,a) [Vπ

h+1(s′ )]

Bellman Consistency Equation:
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Compute Optimal Policy via VI/DP
VI = DP is a backwards in time approach for computing the optimal policy: 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Summary on Finite horizon MDP
, 
ℳ = {S, A, r, P, H}

r : S × A ↦ [0,1], H ∈ ℕ, P : S × A ↦ Δ(S)

Comparing to the infinite horizon, discounted MDP: 

1. Policy will be time dependent

2. DP takes  steps to compute  

- total computation time is  
- no need to use contraction argument and no discount factor


3. Extension to non-stationary setting works immediately: 
(i.e. with a non-stationary transition model: ) 

H π⋆

O(H |S |2 |A | )

P0(s′ |s, a), P1(s′ |s, a), …PH−1(s′ |s, a)
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Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?
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Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?

( |A ||S| )
H

So treating each policy as an “arm” and running UCB gives us regret Õ( |A ||S|H N)

This seems bad, so are MDPs just super hard or can we do better?
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Everything: we have a lot of data on every state-action reward and transition!

If we treat the MDP as a contextual bandit, we treat  as a new “arm” about which we know nothing…π(3)
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UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions  ̂P n
1, …, ̂P n

H−1

Optimistic planning with learned model: πn = Value-Iter ({ ̂P n
h, rh + bn

h}H−1
h=1 )

Collect a new trajectory by executing  in the real world  starting from πn {Ph}H−1
h=0 s0

Design reward bonus bn
h(s, a), ∀s, a, h
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h(s, a)
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UCBVI: Put All Together
For n = 1 → N :

3. Estimate  ̂P n : ̂P n
h(s′ |s, a) =

Nn
h(s, a, s′ )
Nn

h(s, a)
, ∀s, a, s′ , h

1. Set Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h

2. Set Nn
h(s, a, s′ ) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′ )}, ∀s, a, a′ , h

4. Plan: πn = VI ({ ̂P n
h, rh + bn

h}h), with bn
h(s, a) = cH

log(SAHN/δ)
Nn

h(s, a)

5. Execute  πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}
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0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + ( ̂P n
h( ⋅ |s, a) − Ph( ⋅ |s, a)) ⋅ ̂V n

h+1]

15



High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

2. What if  is large? ̂V n
0(s0) − Vπn

0 (s0)

1. What if  is small? ̂V n
0(s0) − Vπn

0 (s0)

Then  is close to , i.e., we are doing exploitationπn π⋆

 must be largêV n
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H−1
h=0 {si

h, ai
h, si

h+1}
n−1
i=0

2. Design reward bonus bn
h(s, a), ∀s, a

3. Plan: πn+1 = Value-Iter  ({ ̂P n}h, {rh + bn
h})

At the beginning of iteration n:
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How to choose ?bn
h(s, a)

Chebyshev-like approach, similar to in linUCB:

bn
h(s, a) = β ϕ(s, a)⊤(An

h)−1ϕ(s, a), β = Õ (dH)
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h(s, a), ∀s

̂V n
0(s0) − Vπn

0 (s0) = ̂Q n
0(s0, πn(s0)) − Qπn

0 (s0, πn(s0))

≤ r0(s0, πn(s0)) + bn
h(s0, πn(s0)) + ̂P n

0( ⋅ |s0, πn(s0)) ⋅ ̂V n
1 − r0(s0, πn(s0)) − P0( ⋅ |s0, πn(s0)) ⋅ Vπn

1

= bn
h(s0, πn(s0)) + ̂P n

0( ⋅ |s0, πn(s0)) ⋅ ̂V n
1 − P0( ⋅ |s0, πn(s0)) ⋅ Vπn

1

= bn
h(s0, πn(s0)) + ( ̂P n

0( ⋅ |s0, πn(s0)) − P0( ⋅ |s0, πn(s0))) ⋅ ̂V n
1 + P0( ⋅ |s0, πn(s0)) ⋅ ( ̂V n

1 − Vπn

1 )
=

H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + ( ̂P n
h( ⋅ |s, a) − Ph( ⋅ |s, a)) ⋅ ̂V n

h+1]

Lemma [Simulation lemma]: 

 ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + ( ̂P n
h( ⋅ |s, a) − Ph( ⋅ |s, a)) ⋅ ̂V n

h+1]


