
Exploration: UCB-VI
 

Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning 

Fall 2022

1

Today

• Recap

• Why we don’t want to treat MDPs as big contextual bandits

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

2

Recap: UCB

3

Without context:

Recap: UCB

3

For :t = 0,…, T − 1
Choose the arm with the highest upper confidence bound, i.e.,

at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t

Without context:

Recap: UCB

3

For :t = 0,…, T − 1
Choose the arm with the highest upper confidence bound, i.e.,

at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t

Without context:

With tabular context (distinct contexts):|𝒳|

Recap: UCB

3

πt(xt) = arg max
k

̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

For :t = 0,…, T − 1
Choose the arm with the highest upper confidence bound, i.e.,

at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t

Without context:

With tabular context (distinct contexts):|𝒳|

V/Q functions in Finite horizon MDP

Vπ
h (s) = 𝔼 [

H−1

∑
τ=h

r(sτ, aτ) sh = s]
Qπ

h (s, a) = 𝔼 [
H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]

4

V/Q functions in Finite horizon MDP

Vπ
h (s) = 𝔼 [

H−1

∑
τ=h

r(sτ, aτ) sh = s]
Qπ

h (s, a) = 𝔼 [
H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]

4

Recall: , Vπ
h (s) ≤ H Qπ

h (s, a) ≤ H

V/Q functions in Finite horizon MDP

Vπ
h (s) = 𝔼 [

H−1

∑
τ=h

r(sτ, aτ) sh = s]
Qπ

h (s, a) = 𝔼 [
H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]

Qπ
h (s, a) = r(s, a) + 𝔼s′ ∼P(s,a) [Vπ

h+1(s′)]

Bellman Consistency Equation:

4

Recall: , Vπ
h (s) ≤ H Qπ

h (s, a) ≤ H

Compute Optimal Policy via VI/DP
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

5

Compute Optimal Policy via VI/DP
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

5

Compute Optimal Policy via VI/DP
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a)

5

Compute Optimal Policy via VI/DP
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

5

Compute Optimal Policy via VI/DP
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

5

Compute Optimal Policy via VI/DP
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

5

Compute Optimal Policy via VI/DP
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + 𝔼s′ ∼P(s,a)V⋆

h+1(s′)

5

Compute Optimal Policy via VI/DP
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + 𝔼s′ ∼P(s,a)V⋆

h+1(s′)

π⋆
h (s) = arg max

a
Q⋆

h (s, a),

5

Compute Optimal Policy via VI/DP
VI = DP is a backwards in time approach for computing the optimal policy: 

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + 𝔼s′ ∼P(s,a)V⋆

h+1(s′)

π⋆
h (s) = arg max

a
Q⋆

h (s, a), V⋆
h = max

a
Q⋆

h (s, a)

5

Summary on Finite horizon MDP
,
ℳ = {S, A, r, P, H}

r : S × A ↦ [0,1], H ∈ ℕ, P : S × A ↦ Δ(S)

Comparing to the infinite horizon, discounted MDP:

1. Policy will be time dependent

2. DP takes steps to compute  

- total computation time is  
- no need to use contraction argument and no discount factor

3. Extension to non-stationary setting works immediately: 
(i.e. with a non-stationary transition model:) 

H π⋆

O(H |S |2 |A |)

P0(s′ |s, a), P1(s′ |s, a), …PH−1(s′ |s, a)

6

Today

7

• Recap

• Why we don’t want to treat MDPs as big contextual bandits

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?

8

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?

(|A ||S|)
H

8

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?

(|A ||S|)
H

So treating each policy as an “arm” and running UCB gives us regret Õ(|A ||S|H N)

8

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?

(|A ||S|)
H

So treating each policy as an “arm” and running UCB gives us regret Õ(|A ||S|H N)

This seems bad, so are MDPs just super hard or can we do better?

8

An example of MDP as contextual bandit

9

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

An example of MDP as contextual bandit

9

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

An example of MDP as contextual bandit

9

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

What do we know about a policy which always takes action 1 in the first time step, and

always takes action 2 at the second time step?

π(3)

An example of MDP as contextual bandit

9

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

What do we know about a policy which always takes action 1 in the first time step, and

always takes action 2 at the second time step?

π(3)

Everything: we have a lot of data on every state-action reward and transition!

An example of MDP as contextual bandit

9

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

What do we know about a policy which always takes action 1 in the first time step, and

always takes action 2 at the second time step?

π(3)

Everything: we have a lot of data on every state-action reward and transition!

If we treat the MDP as a contextual bandit, we treat as a new “arm” about which we know nothing…π(3)

An example of MDP as contextual bandit

9

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

What do we know about a policy which always takes action 1 in the first time step, and

always takes action 2 at the second time step?

π(3)

Everything: we have a lot of data on every state-action reward and transition!

If we treat the MDP as a contextual bandit, we treat as a new “arm” about which we know nothing…π(3)

|A ||S|H = 24 = 16

Today

10

• Recap

• Why we don’t want to treat MDPs as big contextual bandits

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

11

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions ̂P n
1, …, ̂P n

H−1

11

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions ̂P n
1, …, ̂P n

H−1

Design reward bonus bn
h(s, a), ∀s, a, h

11

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions ̂P n
1, …, ̂P n

H−1

Optimistic planning with learned model: πn = Value-Iter ({ ̂P n
h, rh + bn

h}H−1
h=1)

Design reward bonus bn
h(s, a), ∀s, a, h

11

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions ̂P n
1, …, ̂P n

H−1

Optimistic planning with learned model: πn = Value-Iter ({ ̂P n
h, rh + bn

h}H−1
h=1)

Collect a new trajectory by executing in the real world starting from πn {Ph}H−1
h=0 s0

Design reward bonus bn
h(s, a), ∀s, a, h

11

Model Estimation
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

12

Model Estimation
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

12

Model Estimation
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h, Nn
h(s, a, s′) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′)}, ∀s, a, h

12

Model Estimation
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h, Nn
h(s, a, s′) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′)}, ∀s, a, h

Estimate model :̂P n
h(s′ |s, a), ∀s, a, s′ , h

̂P n
h(s′ |s, a) =

Nn
h(s, a, s′)
Nn

h(s, a)
12

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

13

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)

13

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

13

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

13

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

13

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}, ∀s, a

13

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h(⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a

13

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s ̂V n

h ∞
≤ H, ∀h, n

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h(⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a

13

UCBVI: Put All Together
For n = 1 → N :

3. Estimate ̂P n : ̂P n
h(s′ |s, a) =

Nn
h(s, a, s′)
Nn

h(s, a)
, ∀s, a, s′ , h

1. Set Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h

2. Set Nn
h(s, a, s′) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′)}, ∀s, a, a′ , h

4. Plan: πn = VI ({ ̂P n
h, rh + bn

h}h), with bn
h(s, a) = cH

log(SAHN/δ)
Nn

h(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

14

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

15

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

15

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

15

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

2. What if is large? ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

15

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

2. What if is large? ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

 must be largêV n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]

15

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

2. What if is large? ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

 must be largêV n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]

15

Not obvious

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

2. What if is large? ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

 must be largêV n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]
We collect data at steps where bonus is large or model is wrong, i.e., exploration

15

Not obvious

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

2. What if is large? ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

 must be largêV n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]
We collect data at steps where bonus is large or model is wrong, i.e., exploration

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2 SAN)
15

Not obvious

Today

16

• Recap

• Why we don’t want to treat MDPs as big contextual bandits

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly(S,A) is not acceptableS & A

17

Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly(S,A) is not acceptableS & A

Ph(s′ |s, a) = μ⋆
h (s′) ⋅ ϕ(s, a), μ⋆

h ∈ S ↦ ℝd, ϕ ∈ S × A ↦ ℝd

17

Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly(S,A) is not acceptableS & A

Ph(s′ |s, a) = μ⋆
h (s′) ⋅ ϕ(s, a), μ⋆

h ∈ S ↦ ℝd, ϕ ∈ S × A ↦ ℝd

r(s, a) = θ⋆
h ⋅ ϕ(s, a), θ⋆

h ∈ ℝd

17

Linear MDP Definition

Feature map is known to the learner!
(We assume reward is known, i.e., is known)

ϕ
θ⋆

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly(S,A) is not acceptableS & A

Ph(s′ |s, a) = μ⋆
h (s′) ⋅ ϕ(s, a), μ⋆

h ∈ S ↦ ℝd, ϕ ∈ S × A ↦ ℝd

r(s, a) = θ⋆
h ⋅ ϕ(s, a), θ⋆

h ∈ ℝd

17

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝS×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

18

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝS×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

18

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝS×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

18

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝS×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

18

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝS×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

18

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝS×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

= ϕ(s, a)⊤wh

18

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝS×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

= ϕ(s, a)⊤wh

V⋆
h (s) = max

a
ϕ(s, a)⊤wh, π⋆

h (s) = arg max
a

ϕ(s, a)⊤wh

18

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝS×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + 𝔼s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

= ϕ(s, a)⊤wh

V⋆
h (s) = max

a
ϕ(s, a)⊤wh, π⋆

h (s) = arg max
a

ϕ(s, a)⊤wh

Indeed we can show that

Is linear with respect to as well, for any

Qπ
h (⋅ , ⋅)

ϕ π, h

18

UCBVI in Linear MDPs

At the beginning of iteration n:

19

UCBVI in Linear MDPs

1. Learn transition model from all previous data { ̂P n
h}

H−1
h=0 {si

h, ai
h, si

h+1}
n−1
i=0

At the beginning of iteration n:

19

UCBVI in Linear MDPs

1. Learn transition model from all previous data { ̂P n
h}

H−1
h=0 {si

h, ai
h, si

h+1}
n−1
i=0

2. Design reward bonus bn
h(s, a), ∀s, a

At the beginning of iteration n:

19

UCBVI in Linear MDPs

1. Learn transition model from all previous data { ̂P n
h}

H−1
h=0 {si

h, ai
h, si

h+1}
n−1
i=0

2. Design reward bonus bn
h(s, a), ∀s, a

3. Plan: πn+1 = Value-Iter ({ ̂P n}h, {rh + bn
h})

At the beginning of iteration n:

19

How to estimate ?{ ̂P n
h}

H−1
h=0

20

How to estimate ?{ ̂P n
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

20

How to estimate ?{ ̂P n
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Given , note that s, a 𝔼s′ ∼Ph(⋅|s,a) [δ(s′)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

20

How to estimate ?{ ̂P n
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Penalized Linear Regression:

min
μ

n−1

∑
i=1

∥μϕ(si
h, ai

h) − δ(si
h+1)∥

2
2 + λ∥μ∥2

F

Given , note that s, a 𝔼s′ ∼Ph(⋅|s,a) [δ(s′)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

20

How to estimate ?{ ̂P n
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Penalized Linear Regression:

min
μ

n−1

∑
i=1

∥μϕ(si
h, ai

h) − δ(si
h+1)∥

2
2 + λ∥μ∥2

F

Given , note that s, a 𝔼s′ ∼Ph(⋅|s,a) [δ(s′)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

20

How to estimate ?{ ̂P n
h}

H−1
h=0

Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Penalized Linear Regression:

min
μ

n−1

∑
i=1

∥μϕ(si
h, ai

h) − δ(si
h+1)∥

2
2 + λ∥μ∥2

F

Given , note that s, a 𝔼s′ ∼Ph(⋅|s,a) [δ(s′)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

̂P n
h(⋅ |s, a) = ̂μn

hϕ(s, a)

20

How to choose ?bn
h(s, a)

Chebyshev-like approach, similar to in linUCB:

bn
h(s, a) = β ϕ(s, a)⊤(An

h)−1ϕ(s, a), β = Õ (dH)

21

linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate ̂P n : ̂P n
h(⋅ |s, a) = ̂μn

hϕ(s, a)

1. Set An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

2. Set ̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤

4. Plan: πn = VI ({ ̂P n
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

22

linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate ̂P n : ̂P n
h(⋅ |s, a) = ̂μn

hϕ(s, a)

1. Set An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

2. Set ̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤

4. Plan: πn = VI ({ ̂P n
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

22

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2d1.5 N)

linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate ̂P n : ̂P n
h(⋅ |s, a) = ̂μn

hϕ(s, a)

1. Set An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)
⊤ + λI

2. Set ̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)

⊤

4. Plan: πn = VI ({ ̂P n
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

22

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2d1.5 N)
No dependence!S, A

Today

23

• Recap

• Why we don’t want to treat MDPs as big contextual bandits

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

Today’s summary:

24

Today’s summary:

UCB-VI algorithm for tabular MDPs

•Uses UCB idea, but leverages MDP structure

24

1-minute feedback form: https://bit.ly/3RHtlxy

Today’s summary:

UCB-VI algorithm for tabular MDPs

•Uses UCB idea, but leverages MDP structure

24

https://bit.ly/3RHtlxy

Simulation Lemma
̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

Lemma [Simulation lemma]:

 ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]

Simulation Lemma
̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂V n
0(s0) − Vπn

0 (s0) = ̂Q n
0(s0, πn(s0)) − Qπn

0 (s0, πn(s0))

Lemma [Simulation lemma]:

 ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]

Simulation Lemma
̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂V n
0(s0) − Vπn

0 (s0) = ̂Q n
0(s0, πn(s0)) − Qπn

0 (s0, πn(s0))

≤ r0(s0, πn(s0)) + bn
h(s0, πn(s0)) + ̂P n

0(⋅ |s0, πn(s0)) ⋅ ̂V n
1 − r0(s0, πn(s0)) − P0(⋅ |s0, πn(s0)) ⋅ Vπn

1

Lemma [Simulation lemma]:

 ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]

Simulation Lemma
̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂V n
0(s0) − Vπn

0 (s0) = ̂Q n
0(s0, πn(s0)) − Qπn

0 (s0, πn(s0))

≤ r0(s0, πn(s0)) + bn
h(s0, πn(s0)) + ̂P n

0(⋅ |s0, πn(s0)) ⋅ ̂V n
1 − r0(s0, πn(s0)) − P0(⋅ |s0, πn(s0)) ⋅ Vπn

1

= bn
h(s0, πn(s0)) + ̂P n

0(⋅ |s0, πn(s0)) ⋅ ̂V n
1 − P0(⋅ |s0, πn(s0)) ⋅ Vπn

1

Lemma [Simulation lemma]:

 ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]

Simulation Lemma
̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂V n
0(s0) − Vπn

0 (s0) = ̂Q n
0(s0, πn(s0)) − Qπn

0 (s0, πn(s0))

≤ r0(s0, πn(s0)) + bn
h(s0, πn(s0)) + ̂P n

0(⋅ |s0, πn(s0)) ⋅ ̂V n
1 − r0(s0, πn(s0)) − P0(⋅ |s0, πn(s0)) ⋅ Vπn

1

= bn
h(s0, πn(s0)) + ̂P n

0(⋅ |s0, πn(s0)) ⋅ ̂V n
1 − P0(⋅ |s0, πn(s0)) ⋅ Vπn

1

= bn
h(s0, πn(s0)) + (̂P n

0(⋅ |s0, πn(s0)) − P0(⋅ |s0, πn(s0))) ⋅ ̂V n
1 + P0(⋅ |s0, πn(s0)) ⋅ (̂V n

1 − Vπn

1)

Lemma [Simulation lemma]:

 ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]

Simulation Lemma
̂V n
H(s) = 0, ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂V n
0(s0) − Vπn

0 (s0) = ̂Q n
0(s0, πn(s0)) − Qπn

0 (s0, πn(s0))

≤ r0(s0, πn(s0)) + bn
h(s0, πn(s0)) + ̂P n

0(⋅ |s0, πn(s0)) ⋅ ̂V n
1 − r0(s0, πn(s0)) − P0(⋅ |s0, πn(s0)) ⋅ Vπn

1

= bn
h(s0, πn(s0)) + ̂P n

0(⋅ |s0, πn(s0)) ⋅ ̂V n
1 − P0(⋅ |s0, πn(s0)) ⋅ Vπn

1

= bn
h(s0, πn(s0)) + (̂P n

0(⋅ |s0, πn(s0)) − P0(⋅ |s0, πn(s0))) ⋅ ̂V n
1 + P0(⋅ |s0, πn(s0)) ⋅ (̂V n

1 − Vπn

1)
=

H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]

Lemma [Simulation lemma]:

 ̂V n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]

