Exploration: UCB-VI

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning
Fall 2022

Today

- Recap
- Why we don't want to treat MDPs as big contextual bandits
- UCB-VI for tabular MDPs
- UCB-VI for linear MDPs

Recap: UCB

Without context:

$$
\text { For } t=0, \ldots, T-1 \text { : }
$$

Choose the arm with the highest upper confidence bound, i.e.,

$$
a_{t}=\arg \max _{k \in\{1, \ldots, K\}} \hat{\mu}_{t}^{(k)}+\sqrt{\ln (2 T K / \delta) / 2 N_{t}^{(k)}}
$$

With tabular context ($|\mathscr{X}|$ distinct contexts):

$$
\pi_{t}\left(x_{t}\right)=\arg \max _{k} \hat{\mu}_{t}^{(k)}\left(x_{t}\right)+\sqrt{\ln (2 T K|\mathscr{X}| / \delta) / 2 N_{t}^{(k)}\left(x_{t}\right)}
$$

V/Q functions in Finite horizon MDP

$$
\begin{gathered}
V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid s_{h}=s\right] \\
Q_{h}^{\pi}(s, a)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid\left(s_{h}, a_{h}\right)=(s, a)\right]
\end{gathered}
$$

Recall: $\quad V_{h}^{\pi}(s) \leq H, \quad Q_{h}^{\pi}(s, a) \leq H$

Bellman Consistency Equation:

$$
Q_{h}^{\pi}(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P(s, a)}\left[V_{h+1}^{\pi}\left(s^{\prime}\right)\right]
$$

Compute Optimal Policy via VI/DP

$\mathrm{VI}=\mathrm{DP}$ is a backwards in time approach for computing the optimal policy:

$$
\pi^{\star}=\left\{\pi_{0}^{\star}, \pi_{1}^{\star}, \ldots, \pi_{H-1}^{\star}\right\}
$$

1. Start at $H-1$,

$$
\begin{aligned}
& Q_{H-1}^{\star}(s, a)=r(s, a) \quad \pi_{H-1}^{\star}(s)=\arg \max _{a} Q_{H-1}^{\star}(s, a) \\
& V_{H-1}^{\star}=\max _{a} Q_{H-1}^{\star}(s, a)=Q_{H-1}^{\star}\left(s, \pi_{H-1}^{\star}(s)\right)
\end{aligned}
$$

2. Assuming we have computed $V_{h+1}^{\star}, h \leq H-2$, i.e., assuming we know how to perform optimally starting at $h+1$, then:

$$
\begin{gathered}
Q_{h}^{\star}(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P(s, a)} V_{h+1}^{\star}\left(s^{\prime}\right) \\
\pi_{h}^{\star}(s)=\arg \max _{a} Q_{h}^{\star}(s, a), \quad V_{h}^{\star}=\max _{a} Q_{h}^{\star}(s, a)
\end{gathered}
$$

Summary on Finite horizon MDP

$$
\begin{gathered}
\mathscr{M}=\{S, A, r, P, H\}, \\
r: S \times A \mapsto[0,1], H \in \mathbb{N}, P: S \times A \mapsto \Delta(S)
\end{gathered}
$$

Comparing to the infinite horizon, discounted MDP:

1. Policy will be time dependent
2. DP takes H steps to compute π^{\star}

- total computation time is $O\left(H|S|^{2}|A|\right)$
- no need to use contraction argument and no discount factor

3. Extension to non-stationary setting works immediately:
(i.e. with a non-stationary transition model: $\left.P_{0}\left(s^{\prime} \mid s, a\right), P_{1}\left(s^{\prime} \mid s, a\right), \ldots P_{H-1}\left(s^{\prime} \mid s, a\right)\right)$

Today

- Recap
- Why we don't want to treat MDPs as big contextual bandits
- UCB-VI for tabular MDPs
- UCB-VI for linear MDPs

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?

$$
\left(|A|^{|S|}\right)^{H}
$$

So treating each policy as an "arm" and running UCB gives us regret $\tilde{O}\left(\sqrt{|A|^{|S| H} N}\right)$

This seems bad, so are MDPs just super hard or can we do better?

An example of MDP as contextual bandit

$$
S=\{a, b\}, \quad A=\{1,2\}, \quad H=2
$$

$$
|A|^{|S| H}=2^{4}=16
$$

All state transitions happen with probability $1 / 2$ for all actions

$$
\text { Reward function: } \begin{aligned}
& r(a, 1)=r(b, 1)=0 \\
& r(a, 2)=r(b, 2)=1
\end{aligned}
$$

Suppose we have a lot of data already on a policy $\pi^{(1)}$ that always takes action 1 and a policy $\pi^{(2)}$ that always takes action 2 (note $\pi^{(2)}=\pi^{\star}$)

What do we know about a policy $\pi^{(3)}$ which always takes action 1 in the first time step, and always takes action 2 at the second time step?

Everything: we have a lot of data on every state-action reward and transition!
If we treat the MDP as a contextual bandit, we treat $\pi^{(3)}$ as a new "arm" about which we know nothing...

Today

- Recap
- Why we don't want to treat MDPs as big contextual bandits
- UCB-VI for tabular MDPs
- UCB-VI for linear MDPs

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions $\widehat{P}_{1}^{n}, \ldots, \widehat{P}_{H-1}^{n}$
Design reward bonus $b_{h}^{n}(s, a), \forall s, a, h$
Optimistic planning with learned model: $\pi^{n}=$ Value-Iter $\left(\left\{\widehat{P}_{h}^{n}, r_{h}+b_{h}^{n}\right\}_{h=1}^{H-1}\right)$
Collect a new trajectory by executing π^{n} in the real world $\left\{P_{h}\right\}_{h=0}^{H-1}$ starting from s_{0}

Model Estimation

Let us consider the very beginning of episode n :

$$
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \forall h
$$

Let's also maintain some statistics using these datasets:

$$
N_{h}^{n}(s, a)=\sum_{i=1}^{n-1} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right\}, \forall s, a, h, \quad N_{h}^{n}\left(s, a, s^{\prime}\right)=\sum_{i=1}^{n-1} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right)=\left(s, a, s^{\prime}\right)\right\}, \forall s, a, h
$$

$$
\text { Estimate model } \widehat{P}_{h}^{n}\left(s^{\prime} \mid s, a\right), \forall s, a, s^{\prime}, h:
$$

$$
\widehat{P}_{h}^{n}\left(s^{\prime} \mid s, a\right)=\frac{N_{h}^{n}\left(s, a, s^{\prime}\right)}{N_{h}^{n}(s, a)}
$$

Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode n :

$$
\begin{array}{r}
\mathscr{D}_{h}^{n}=\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=1}^{n-1}, \forall h, \quad N_{h}^{n}(s, a)=\sum_{i=1}^{n-1} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}\right)=(s, a)\right\}, \forall s, a, h, \\
b_{h}^{n}(s, a)=c H \sqrt{\frac{\log (S A H N / \delta)}{N_{h}^{n}(s, a)}} \quad \begin{array}{c}
\text { Encourage to explore } \\
\text { new state-actions }
\end{array}
\end{array}
$$

Value Iteration (aka DP) at episode \mathbf{n} using $\left\{\widehat{P}_{h}^{n}\right\}_{h}$ and $\left\{r_{h}+b_{h}^{n}\right\}_{h}$

$$
\begin{aligned}
& \widehat{V}_{H}^{n}(s)=0, \forall s \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, \quad H\right\}, \forall s, a \\
& \widehat{V}_{h}^{n}(s)=\max _{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\arg \max _{a} \widehat{Q}_{h}^{n}(s, a), \forall s \quad\left\|\widehat{V}_{h}^{n}\right\|_{\infty} \leq H, \forall h, n
\end{aligned}
$$

UCBVI: Put All Together

For $n=1 \rightarrow N$:

1. Set $N_{h}^{n}(s, a)=\sum_{i=1}^{n-1} \mathbf{1}\left\{\left(s_{h-1}^{i}, a_{h}^{i}\right)=(s, a)\right\}, \forall s, a, h$
2. Set $N_{h}^{n}\left(s, a, s^{\prime}\right)=\sum_{i=1}^{i=1_{n-1}} \mathbf{1}\left\{\left(s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right)=\left(s, a, s^{\prime}\right)\right\}, \forall s, a, a^{\prime}, h$
3. Estimate $\widehat{P}^{n}: \widehat{P}_{h}^{n}\left(s^{\prime} \mid s, a\right)=\frac{N_{h}^{n}\left(s, a, s^{\prime}\right)}{N_{h}^{n}(s, a)}, \forall s, a, s^{\prime}, h$
4. Plan: $\pi^{n}=V I\left(\left\{\widehat{P}_{h}^{n}, r_{h}+b_{h}^{n}\right\}_{h}\right)$, with $b_{h}^{n}(s, a)=c H \sqrt{\frac{\log (\text { SAHN/ } \delta)}{N_{h}^{n}(s, a)}}$
5. Execute $\pi^{n}:\left\{s_{0}^{n}, a_{0}^{n}, r_{0}^{n}, \ldots, s_{H-1}^{n}, a_{H-1}^{n}, r_{H-1}^{n}, s_{H}^{n}\right\}$

High-level Idea: Exploration Exploitation Tradeoff

Upper bound per-episode regret: $V_{0}^{\star}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \leq \widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)$

1. What if $\widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)$ is small?

$$
\text { Then } \pi^{n} \text { is close to } \pi^{\star} \text {, i.e., we are doing exploitation }
$$

We collect data at steps where bonus is large or model is wrong, i.e., exploration

$$
\mathbb{E}\left[\text { Regret }_{N}\right]:=\mathbb{E}\left[\sum_{n=1}^{N}\left(V^{\star}-V^{\pi^{n}}\right)\right] \leq \widetilde{O}\left(H^{2} \sqrt{S A N}\right)
$$

Today

- Recap
- Why we don't want to treat MDPs as big contextual bandits
- UCB-VI for tabular MDPs
- UCB-VI for linear MDPs

Linear MDP Definition

Finite horizon time-dependent episodic MDP $\mathscr{M}=\left\{S, A, H,\{r\}_{h},\{P\}_{h}, s_{0}\right\}$
$S \& A$ could be large or even continuous, hence poly (S, A) is not acceptable

$$
\begin{gathered}
P_{h}\left(s^{\prime} \mid s, a\right)=\mu_{h}^{\star}\left(s^{\prime}\right) \cdot \phi(s, a), \quad \mu_{h}^{\star} \in S \mapsto \mathbb{R}^{d}, \phi \in S \times A \mapsto \mathbb{R}^{d} \\
r(s, a)=\theta_{h}^{\star} \cdot \phi(s, a), \quad \theta_{h}^{\star} \in \mathbb{R}^{d}
\end{gathered}
$$

Feature map ϕ is known to the learner!
(We assume reward is known, i.e., θ^{\star} is known)

Planning in Linear MDP: Value Iteration

$$
\begin{gathered}
P_{h}(\cdot \mid s, a)=\mu_{h}^{\star} \phi(s, a), \quad \mu_{h}^{\star} \in \mathbb{R}^{S \times d}, \phi(s, a) \in \mathbb{R}^{d} \\
r_{h}(s, a)=\left(\theta_{h}^{\star}\right)^{\top} \phi(s, a), \quad \theta_{h}^{\star} \in \mathbb{R}^{d}
\end{gathered}
$$

$$
\begin{aligned}
V_{H}^{\star}(s)= & 0, \forall s, \\
Q_{h}^{\star}(s, a) & =r_{h}(s, a)+\mathbb{E}_{s^{\prime} \sim P_{h}(\cdot \mid s, a)} V_{h+1}^{\star}\left(s^{\prime}\right) \\
& =\theta_{h}^{\star} \cdot \phi(s, a)+\left(\mu_{h}^{\star} \phi(s, a)\right)^{\top} V_{h+1}^{\star} \\
& =\phi(s, a)^{\top}\left(\theta_{h}^{\star}+\left(\mu_{h}^{\star}\right)^{\top} V_{h+1}^{\star}\right) \\
& =\phi(s, a)^{\top} w_{h}
\end{aligned}
$$

Indeed we can show that $Q_{h}^{\pi}(\cdot, \cdot)$ Is linear with respect to ϕ as well, for any π, h

$$
V_{h}^{\star}(s)=\max _{a} \phi(s, a)^{\top} w_{h}, \quad \pi_{h}^{\star}(s)=\arg \max _{a} \phi(s, a)^{\top} w_{h}
$$

UCBVI in Linear MDPs

At the beginning of iteration n :

1. Learn transition model $\left\{\widehat{P}_{h}^{n}\right\}_{h=0}^{H-1}$ from all previous data $\left\{s_{h}^{i}, a_{h}^{i}, s_{h+1}^{i}\right\}_{i=0}^{n-1}$
2. Design reward bonus $b_{h}^{n}(s, a), \forall s, a$
3. Plan: $\pi^{n+1}=$ Value-Iter $\left(\left\{\widehat{P}^{n}\right\}_{h},\left\{r_{h}+b_{h}^{n}\right\}\right)$

How to estimate $\left\{\widehat{P}_{h}^{n}\right\}_{h=0}^{H-1}$?

Denote $\delta(s) \in \mathbb{R}^{|S|}$ with zero everywhere except the entry corresponding to s

$$
\text { Given } s, a \text {, note that } \mathbb{E}_{s^{\prime} \sim P_{h}(\cdot \mid s, a)}\left[\delta\left(s^{\prime}\right)\right]=P_{h}(\cdot \mid s, a)=\mu_{h}^{\star} \phi(s, a)
$$

Penalized Linear Regression:

$$
\begin{gathered}
\min _{\mu} \sum_{i=1}^{n-1}\left\|\mu \phi\left(s_{h}^{i}, a_{h}^{i}\right)-\delta\left(s_{h+1}^{i}\right)\right\|_{2}^{2}+\lambda\|\mu\|_{F}^{2} \\
A_{h}^{n}=\sum_{i=1}^{n-1} \phi\left(s_{h}^{i}, a_{h}^{i}\right) \phi\left(s_{h}^{i}, a_{h}^{i}\right)^{\top}+\lambda I \quad \hat{\mu}_{h}^{n}=\left(A_{h}^{n}\right)^{-1} \sum_{i=1}^{n-1} \delta\left(s_{h+1}^{i}\right) \phi\left(s_{h}^{i}, a_{h}^{i}\right)^{\top} \\
\widehat{P}_{h}^{n}(\cdot \mid s, a)=\widehat{\mu}_{h}^{n} \phi(s, a)
\end{gathered}
$$

How to choose $b_{h}^{n}(s, a)$?

Chebyshev-like approach, similar to in linUCB:

$$
b_{h}^{n}(s, a)=\beta \sqrt{\phi(s, a)^{\top}\left(A_{h}^{n}\right)^{-1} \phi(s, a)}, \quad \beta=\widetilde{O}(d H)
$$

linUCB-VI: Put All Together

For $n=1 \rightarrow N$:

1. Set $A_{h}^{n}=\sum_{i=1}^{n-1} \phi\left(s_{h}^{i}, a_{h}^{i}\right) \phi\left(s_{h}^{i}, a_{h}^{i}\right)^{\top}+\lambda I$
2. Set $\widehat{\mu}_{h}^{n}=\left(A_{h}^{n}\right)^{-1} \sum_{i=1}^{n-1} \delta\left(s_{h+1}^{i}\right) \phi\left(s_{h}^{i}, a_{h}^{i}\right)^{\top}$
3. Estimate $\widehat{P}^{n}: \widehat{P}_{h}^{n}(\cdot \mid s, a)=\widehat{\mu}_{h}^{n} \phi(s, a)$
4. Plan: $\pi^{n}=V I\left(\left\{\widehat{P}_{h}^{n}, r_{h}+b_{h}^{n}\right\}_{h}\right)$, with $b_{h}^{n}(s, a)=c d H \sqrt{\phi(s, a)^{\top}\left(A_{h}^{n}\right)^{-1} \phi(s, a)}$
5. Execute $\pi^{n}:\left\{s_{0}^{n}, a_{0}^{n}, r_{0}^{n}, \ldots, s_{H-1}^{n}, a_{H-1}^{n}, r_{H-1}^{n}, s_{H}^{n}\right\}$

$$
\mathbb{E}\left[\operatorname{Regret}_{N}\right]:=\mathbb{E}\left[\sum_{n=1}^{N}\left(V^{\star}-V^{\pi^{n}}\right)\right] \leq \widetilde{O}\left(H^{2} d^{1.5} \sqrt{N}\right)
$$

Today

- Recap
- Why we don't want to treat MDPs as big contextual bandits
- UCB-VI for tabular MDPs
- UCB-VI for linear MDPs

Today's summary:

UCB-VI algorithm for tabular MDPs

- Uses UCB idea, but leverages MDP structure

1-minute feedback form: https://bit.ly/3RHtlxy

Simulation Lemma

$$
\begin{gathered}
\widehat{V}_{H}^{n}(s)=0, \quad \widehat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, H\right\} \\
\widehat{V}_{h}^{n}(s)=\underset{a}{\max } \widehat{Q}_{h}^{n}(s, a), \pi_{h}^{n}(s)=\underset{a}{\arg \max } \widehat{Q}_{h}^{n}(s, a), \forall s \\
\text { Lemma }[\text { Simulation lemma]: } \\
\widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right) \leq \sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim d_{h}^{n}}\left[b_{h}^{n}(s, a)+\left(\widehat{P}_{h}^{n}(\cdot \mid s, a)-P_{h}(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n}\right] \\
\widehat{V}_{0}^{n}\left(s_{0}\right)-V_{0}^{\pi^{n}}\left(s_{0}\right)=\widehat{Q}_{0}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)-Q_{0}^{\pi^{n}}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right) \\
\leq r_{0}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+b_{h}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+\widehat{P}_{0}^{n}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot \widehat{V}_{1}^{n}-r_{0}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)-P_{0}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot V_{1}^{\pi^{n}} \\
=b_{h}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+\widehat{P}_{0}^{n}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot \widehat{V}_{1}^{n}-P_{0}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot V_{1}^{\pi^{n}} \\
=b_{h}^{n}\left(s_{0}, \pi^{n}\left(s_{0}\right)\right)+\left(\widehat{P}_{0}^{n}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right)-P_{0}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right)\right) \cdot \widehat{V}_{1}^{n}+P_{0}\left(\cdot \mid s_{0}, \pi^{n}\left(s_{0}\right)\right) \cdot\left(\widehat{V}_{1}^{n}-V_{1}^{n^{n}}\right) \\
=\sum_{h=0}^{H-1} \mathbb{E}_{s, a \sim \pi_{h}^{n}}\left[b_{h}^{n}(s, a)+\left(\widehat{P}_{h}^{n}(\cdot \mid s, a)-P_{h}(\cdot \mid s, a)\right) \cdot \widehat{V}_{h+1}^{n}\right]
\end{gathered}
$$

