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•Applicable whenever you want to learn to do something better

•One component is learning while acting: exploration vs exploitation

•Other component is optimization

•Multi-armed bandits (or MAB or just bandits)

•Exemplify first component (exploration vs exploitation)

•Pure greedy not much better than pure exploration (linear regret)

•Today: let’s do better than linear regret!
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3. Why is linear regret bad?   average regret ⇒ :=
RegretT

T
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What we learned last lecture:

Lesson from pure greedy: exploring each arm once is not enough

Let’s allow both, and see how best to trade them off

Plan: (1) try each arm multiple times, (2) compute the empirical mean of each arm, (3) 
commit to the one that has the highest empirical mean

Lesson from pure exploration: exploring each arm too much is bad too
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Explore-Then-Commit (ETC)
Algorithm hyper parameter  (we assume  >> )Ne < T/K T K

Pull arm    times to observe  k Ne {r(k)
i }Ne

i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk = 1
Ne

Ne
∑
i=1

r(k)
i

For : k = 1,…, K (# Exploration phase)

For : t = NeK, …, (T − 1) (# Exploitation phase)

Pull the best empirical arm at = arg max
i∈[K]

̂μi

Q: how to set ?Ne

Number of explorationsNe =
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1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage
3. Using step 2, calculate regret during exploitation stage

(Actually, will only be able to upper-bound total regret in steps 1-3)

4. Minimize our upper-bound over Ne
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•Why is this useful? Quantify error of arm mean estimates at end of exploration 
stage (if all estimates are close, arm we commit to must be close to best)

•Why is this true? Full proof beyond course scope, but intuition easier…
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Intuition Behind Hoeffding
Hoeffding inequality: sample mean of  i.i.d. samples on  satisfies


 w/p 

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):
•CLT  Gaussian w/ mean 0 and standard deviation⇒ ̂μ − μ ≈ ∝ 1/N
•CLT standard deviation explains the Hoeffding denominator
•Numerator is because Gaussian has double-exponential tails, i.e., probability of 
a deviation from the mean by  scales roughly like , which, when inverted 
(i.e., set  and solve for ) gives 

x e−x2

δ = e−x2 x x = ln(1/δ)
•Don’t worry too much about the extra ’s… CLT is only approximate!2
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3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by  and actual best arm by ̂k k⋆
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Regret Analysis of ETC (cont’d)
4. From steps 1-3: with probability ,1 − δ

RegretT ≤ NeK + T 2 ln(2K/δ)/Ne

Minimize over : (won’t bore you with algebra)Ne

optimal Ne = (
T ln(2K/δ)/2

K )
2/3

⇒ RegretT ≤ 3T2/3(K ln(2K/δ)/2)1/3

(A bit more algebra to plug optimal  into Regret  equation above)Ne T

Take any  so that  and  (e.g.,  ): sublinear regret!Ne Ne → ∞ Ne/T → 0 Ne = T
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-greedyε
ETC very abrupt (huge difference between exploration and exploitation stages)
-greedy like a smoother version of ETC: ε

at every step, do pure greedy w/p , and do pure exploration w/p 1 − ε ε

For :t = 0,…, T − 1
Sample Et ∼ Bernoulli(ε)

Initialize ̂μ0 = ⋯ = ̂μK = 1

(pure explore)If , choose Et = 0 at ∼ Uniform(1,…, K)
If , choose Et = 1 at = arg max

k∈{1,…,K}
̂μk (pure exploit)

Update ̂μat
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t = Õ(t2/3K1/3)
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Can also allow  to depend on , usually so that it decreases: ε t
the more learned by time , the less exploration needed at/after time t t

It turns out that -greedy with  also achieves 


Regret ,

where  hides logarithmic factors

ε εt = ( K ln(t)
t )

1/3

t = Õ(t2/3K1/3)
Õ( ⋅ )

• Regret rate (ignoring log factors) is the same as ETC, but holds for all , 
not just the full time horizon 

t
T

• Nothing in -greedy (including  above) depends on , so don’t need to 
know horizon!

ε εt T



Today

• Recap

• Explore-then-commit (ETC)


• -greedyε



Today’s summary:



Today’s summary:

Explore-then-commit and -greedy:

•balance exploration with exploitation

•Achieve sublinear regret of 

•Exploration is non-adaptive (bad)

ε
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Today’s summary:

Explore-then-commit and -greedy:

•balance exploration with exploitation

•Achieve sublinear regret of 

•Exploration is non-adaptive (bad)

ε

Õ(T2/3K1/3)

Next time:

•Upper Confidence Bound (UCB) explores adaptively

•Achieves regret Õ( TK)

1-minute feedback form: https://forms.gle/2mKHGRMCpFTRMQqd8  

https://forms.gle/2mKHGRMCpFTRMQqd8
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Intuition: maintain confidence intervals for mean of each arm 

and use them to focus exploration on most promising arms

First: how to construct confidence intervals?
Recall Hoeffding inequality: 


Sample mean of  i.i.d. samples on  satisfies


  w/p 

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Worked for ETC b/c exploration phase was i.i.d., but in general the 

rewards from a given arm are not i.i.d. due to adaptivity of action selections
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Constructing confidence intervals

Let  be the number of times arm  is pulled before time N(k)
t =

t−1

∑
τ=0

1{aτ=k} k t

Let   be the sample mean reward of arm  up to time ̂μ(k)
t = 1

N(k)
t

t−1

∑
τ=0

1{aτ=k}rτ k t

Notation:

So want Hoeffding to give us something like


  w/p ̂μ(k)
t − μ ≤ ln(2/δ)

2N(k)
t

1 − δ

But this is generally FALSE 

(unless  chosen very simply, like exploration phase of ETC)at
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 is the sample mean of a random number  of returnŝμ(k)
t N(k)

t
in general  will depend on those returns themselvesN(k)

t
(i.e., how often we select arm  depends on the historical returns of arm )k k

Solution: First, imagine an infinite sequence of hypothetical i.i.d. draws from :
ν(k)

r̃(k)
0 , r̃(k)

1 , r̃(k)
2 , r̃(k)

3 , …

(all arm indexing  now in superscripts;

subscripts reserved for time index )

(k)
tThe problem: Although  is an i.i.d. draw from , rτ ∣ aτ = k ν(k)

Then we can think of every time we pull arm , just pulling the next  off this list,k r̃(k)
i

i.e.,  to simply equal to , and hence r(k)
τ ∣ aτ = k r̃(k)

Nkτ
̂μ(k)
t = 1

N(k)
t

N(k)
t −1

∑
i=0

r̃(k)
i
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Constructing confidence intervals (cont’d)

Recall union bound in ETC analysis made Hoeffding hold simultaneously over k ≤ K

Recall:    ̂μ(k)
t = 1

N(k)
t

N(k)
t −1

∑
i=0

r̃(k)
i Now define:       (  )μ̃(k)

n = 1
n

n−1

∑
i=0

r̃(k)
i ⇒ ̂μ(k)

t = μ̃(k)
N(k)

t

Now Hoeffding applies to  because  fixed/nonrandomμ̃(k)
n n

and we know  for some  (but which one is random)̂μ(k)
t = μ̃(k)

n n ≤ t

Hoeffding + union bound over :
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Constructing confidence intervals (cont’d)
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Constructing confidence intervals (cont’d)

And then since , we immediately get the kind of result we want:
μ̃(k)
N(k)

t
= ̂μ(k)

t

ℙ ( | ̂μ(k)
t −μ(k) | ≤ ln(2t/δ)/2N(k)

t ) ≥ 1 − δ

Summary: to deal with problem of non-i.i.d. rewards that enter into , we used 
rewards’ conditional i.i.d. property along with a union bound to get Hoeffding bound 

that is wider by just a factor of  in the log term

̂μ(k)
t

t

Hoeffding + union bound over :
n ≤ t
⇒ ℙ (∀n ≤ t, | μ̃(k)

n − μ(k) | ≤ ln(2t/δ)/2n) ≥ 1 − δ
But since in particular , this immediately implies
N(k)

t ≤ t

ℙ ( | μ̃(k)
N(k)

t
− μ(k) | ≤ ln(2t/δ)/2N(k)

t ) ≥ 1 − δ


