
 
Bandits: Explore-Then-Commit

and -greedy 
 

Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning  

Fall 2022

ε

Today

• Recap

• Explore-then-commit (ETC)

• -greedyε

Recap

Recap
•Reinforcement learning is an interactive form of machine learning

•Applicable whenever you want to learn to do something better

•One component is learning while acting: exploration vs exploitation

•Other component is optimization

Recap
•Reinforcement learning is an interactive form of machine learning

•Applicable whenever you want to learn to do something better

•One component is learning while acting: exploration vs exploitation

•Other component is optimization

•Multi-armed bandits (or MAB or just bandits)

•Exemplify first component (exploration vs exploitation)

•Pure greedy not much better than pure exploration (linear regret)

Recap
•Reinforcement learning is an interactive form of machine learning

•Applicable whenever you want to learn to do something better

•One component is learning while acting: exploration vs exploitation

•Other component is optimization

•Multi-armed bandits (or MAB or just bandits)

•Exemplify first component (exploration vs exploitation)

•Pure greedy not much better than pure exploration (linear regret)

•Today: let’s do better than linear regret!

Notes from yesterday

Notes from yesterday

RegretT = Tμ⋆ −
T−1

∑
t=0

μat
=

T−1

∑
t=0

(μ⋆ − μat
)

Expected regret at time

given that you chose arm

t
at

1.

Notes from yesterday

RegretT = Tμ⋆ −
T−1

∑
t=0

μat
=

T−1

∑
t=0

(μ⋆ − μat
)

Expected regret at time

given that you chose arm

t
at

1.

2. Recall , i.e., linear regretRegretT = Ω(T)
⇒ for some c > 0 and T0, RegretT ≥ cT ∀T ≥ T0

Notes from yesterday

RegretT = Tμ⋆ −
T−1

∑
t=0

μat
=

T−1

∑
t=0

(μ⋆ − μat
)

Expected regret at time

given that you chose arm

t
at

1.

2. Recall , i.e., linear regretRegretT = Ω(T)
⇒ for some c > 0 and T0, RegretT ≥ cT ∀T ≥ T0

(and means same except with)RegretT = O(T) ≤ cT

Notes from yesterday

RegretT = Tμ⋆ −
T−1

∑
t=0

μat
=

T−1

∑
t=0

(μ⋆ − μat
)

Expected regret at time

given that you chose arm

t
at

1.

3. Why is linear regret bad? average regret ⇒ :=
RegretT

T
↛ 0

2. Recall , i.e., linear regretRegretT = Ω(T)
⇒ for some c > 0 and T0, RegretT ≥ cT ∀T ≥ T0

(and means same except with)RegretT = O(T) ≤ cT

Today

• Recap

• Explore-then-commit (ETC)

• -greedyε

What we learned last lecture:

What we learned last lecture:

Lesson from pure greedy: exploring each arm once is not enough

What we learned last lecture:

Lesson from pure greedy: exploring each arm once is not enough
Lesson from pure exploration: exploring each arm too much is bad too

What we learned last lecture:

Lesson from pure greedy: exploring each arm once is not enough

Let’s allow both, and see how best to trade them off

Lesson from pure exploration: exploring each arm too much is bad too

What we learned last lecture:

Lesson from pure greedy: exploring each arm once is not enough

Let’s allow both, and see how best to trade them off

Plan: (1) try each arm multiple times, (2) compute the empirical mean of each arm, (3)
commit to the one that has the highest empirical mean

Lesson from pure exploration: exploring each arm too much is bad too

Explore-Then-Commit (ETC)

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

Number of explorationsNe =

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

For : k = 1,…, K (# Exploration phase)

Number of explorationsNe =

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

Pull arm times to observe k Ne {r(k)
i }Ne

i=1 ∼ νk

For : k = 1,…, K (# Exploration phase)

Number of explorationsNe =

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

Pull arm times to observe k Ne {r(k)
i }Ne

i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk = 1
Ne

Ne
∑
i=1

r(k)
i

For : k = 1,…, K (# Exploration phase)

Number of explorationsNe =

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

Pull arm times to observe k Ne {r(k)
i }Ne

i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk = 1
Ne

Ne
∑
i=1

r(k)
i

For : k = 1,…, K (# Exploration phase)

For : t = NeK, …, (T − 1) (# Exploitation phase)

Number of explorationsNe =

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

Pull arm times to observe k Ne {r(k)
i }Ne

i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk = 1
Ne

Ne
∑
i=1

r(k)
i

For : k = 1,…, K (# Exploration phase)

For : t = NeK, …, (T − 1) (# Exploitation phase)

Pull the best empirical arm at = arg max
i∈[K]

̂μi

Number of explorationsNe =

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

Pull arm times to observe k Ne {r(k)
i }Ne

i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk = 1
Ne

Ne
∑
i=1

r(k)
i

For : k = 1,…, K (# Exploration phase)

For : t = NeK, …, (T − 1) (# Exploitation phase)

Pull the best empirical arm at = arg max
i∈[K]

̂μi

Q: how to set ?Ne

Number of explorationsNe =

Regret Analysis Strategy

Regret Analysis Strategy

1. Calculate regret during exploration stage

Regret Analysis Strategy

1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage

Regret Analysis Strategy

1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage
3. Using step 2, calculate regret during exploitation stage

Regret Analysis Strategy

1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage
3. Using step 2, calculate regret during exploitation stage

(Actually, will only be able to upper-bound total regret in steps 1-3)

Regret Analysis Strategy

1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage
3. Using step 2, calculate regret during exploitation stage

(Actually, will only be able to upper-bound total regret in steps 1-3)

4. Minimize our upper-bound over Ne

But First… An Important Inequality
Hoeffding inequality

But First… An Important Inequality
Hoeffding inequality

Given N i.i.d samples with mean , let

Then with probability at least ,

{ri}N
i=1 ∼ ν ∈ Δ([0,1]) μ ̂μ := 1

N

N

∑
i=1

ri .

1 − δ

̂μ − μ ≤ ln(2/δ)
2N

But First… An Important Inequality
Hoeffding inequality

Given N i.i.d samples with mean , let

Then with probability at least ,

{ri}N
i=1 ∼ ν ∈ Δ([0,1]) μ ̂μ := 1

N

N

∑
i=1

ri .

1 − δ

̂μ − μ ≤ ln(2/δ)
2N

•Why is this useful? Quantify error of arm mean estimates at end of exploration
stage (if all estimates are close, arm we commit to must be close to best)

But First… An Important Inequality
Hoeffding inequality

Given N i.i.d samples with mean , let

Then with probability at least ,

{ri}N
i=1 ∼ ν ∈ Δ([0,1]) μ ̂μ := 1

N

N

∑
i=1

ri .

1 − δ

̂μ − μ ≤ ln(2/δ)
2N

•Why is this useful? Quantify error of arm mean estimates at end of exploration
stage (if all estimates are close, arm we commit to must be close to best)

•Why is this true? Full proof beyond course scope, but intuition easier…

Intuition Behind Hoeffding
Hoeffding inequality: sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Intuition Behind Hoeffding
Hoeffding inequality: sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):

Intuition Behind Hoeffding
Hoeffding inequality: sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):
•CLT Gaussian w/ mean 0 and standard deviation⇒ ̂μ − μ ≈ ∝ 1/N

Intuition Behind Hoeffding
Hoeffding inequality: sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):
•CLT Gaussian w/ mean 0 and standard deviation⇒ ̂μ − μ ≈ ∝ 1/N
•CLT standard deviation explains the Hoeffding denominator

Intuition Behind Hoeffding
Hoeffding inequality: sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):
•CLT Gaussian w/ mean 0 and standard deviation⇒ ̂μ − μ ≈ ∝ 1/N
•CLT standard deviation explains the Hoeffding denominator
•Numerator is because Gaussian has double-exponential tails, i.e., probability of
a deviation from the mean by scales roughly like , which, when inverted
(i.e., set and solve for) gives

x e−x2

δ = e−x2 x x = ln(1/δ)

Intuition Behind Hoeffding
Hoeffding inequality: sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):
•CLT Gaussian w/ mean 0 and standard deviation⇒ ̂μ − μ ≈ ∝ 1/N
•CLT standard deviation explains the Hoeffding denominator
•Numerator is because Gaussian has double-exponential tails, i.e., probability of
a deviation from the mean by scales roughly like , which, when inverted
(i.e., set and solve for) gives

x e−x2

δ = e−x2 x x = ln(1/δ)
•Don’t worry too much about the extra ’s… CLT is only approximate!2

Back to Regret Analysis of ETC

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

2. Quantify error of arm mean estimates at end of exploration stage

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

2. Quantify error of arm mean estimates at end of exploration stage

a) Hoeffding ⇒ ℙ (| ̂μk − μk | ≤ ln(2/δ)/2Ne) ≥ 1 − δ

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

2. Quantify error of arm mean estimates at end of exploration stage

a) Hoeffding ⇒ ℙ (| ̂μk − μk | ≤ ln(2/δ)/2Ne) ≥ 1 − δ

b) Recall Union/Boole/Bonferroni bound: ℙ(any of A1, …, AK) ≤
K

∑
k=1

ℙ(Ak)

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

2. Quantify error of arm mean estimates at end of exploration stage

a) Hoeffding ⇒ ℙ (| ̂μk − μk | ≤ ln(2/δ)/2Ne) ≥ 1 − δ

b) Recall Union/Boole/Bonferroni bound: ℙ(any of A1, …, AK) ≤
K

∑
k=1

ℙ(Ak)
ℙ(∀k, Ac

1, …, Ac
K) ≥ 1 −

K

∑
k=1

ℙ(Ac
k)

⇔

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

2. Quantify error of arm mean estimates at end of exploration stage

a) Hoeffding ⇒ ℙ (| ̂μk − μk | ≤ ln(2/δ)/2Ne) ≥ 1 − δ

b) Recall Union/Boole/Bonferroni bound: ℙ(any of A1, …, AK) ≤
K

∑
k=1

ℙ(Ak)

c) , Union bound with , and Hoeffding:δ → δ/K Ak = { | ̂μk − μk | > ln(2K/δ)/2Ne}

ℙ(∀k, Ac
1, …, Ac

K) ≥ 1 −
K

∑
k=1

ℙ(Ac
k)

⇔

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

2. Quantify error of arm mean estimates at end of exploration stage

a) Hoeffding ⇒ ℙ (| ̂μk − μk | ≤ ln(2/δ)/2Ne) ≥ 1 − δ

b) Recall Union/Boole/Bonferroni bound: ℙ(any of A1, …, AK) ≤
K

∑
k=1

ℙ(Ak)

c) , Union bound with , and Hoeffding:δ → δ/K Ak = { | ̂μk − μk | > ln(2K/δ)/2Ne}
⇒ ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

ℙ(∀k, Ac
1, …, Ac

K) ≥ 1 −
K

∑
k=1

ℙ(Ac
k)

⇔

Regret Analysis of ETC (cont’d)

= μk⋆ + (̂μk⋆ − ̂μk⋆) − μ ̂k + (̂μ ̂k − ̂μ ̂k)
= (μk⋆ − ̂μk⋆) + (̂μ ̂k − μ ̂k) + (̂μk⋆ − ̂μ ̂k)
≤ ln(2K/δ)/2Ne + ln(2K/δ)/2Ne + 0 w/p 1 − δ
= 2 ln(2K/δ)/Ne

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage

= μk⋆ + (̂μk⋆ − ̂μk⋆) − μ ̂k + (̂μ ̂k − ̂μ ̂k)
= (μk⋆ − ̂μk⋆) + (̂μ ̂k − μ ̂k) + (̂μk⋆ − ̂μ ̂k)
≤ ln(2K/δ)/2Ne + ln(2K/δ)/2Ne + 0 w/p 1 − δ
= 2 ln(2K/δ)/Ne

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage

 ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

= μk⋆ + (̂μk⋆ − ̂μk⋆) − μ ̂k + (̂μ ̂k − ̂μ ̂k)
= (μk⋆ − ̂μk⋆) + (̂μ ̂k − μ ̂k) + (̂μk⋆ − ̂μ ̂k)
≤ ln(2K/δ)/2Ne + ln(2K/δ)/2Ne + 0 w/p 1 − δ
= 2 ln(2K/δ)/Ne

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage

 ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

3. Using step 2, calculate regret during exploitation stage:

= μk⋆ + (̂μk⋆ − ̂μk⋆) − μ ̂k + (̂μ ̂k − ̂μ ̂k)
= (μk⋆ − ̂μk⋆) + (̂μ ̂k − μ ̂k) + (̂μk⋆ − ̂μ ̂k)
≤ ln(2K/δ)/2Ne + ln(2K/δ)/2Ne + 0 w/p 1 − δ
= 2 ln(2K/δ)/Ne

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage

 ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by and actual best arm by ̂k k⋆

= μk⋆ + (̂μk⋆ − ̂μk⋆) − μ ̂k + (̂μ ̂k − ̂μ ̂k)
= (μk⋆ − ̂μk⋆) + (̂μ ̂k − μ ̂k) + (̂μk⋆ − ̂μ ̂k)
≤ ln(2K/δ)/2Ne + ln(2K/δ)/2Ne + 0 w/p 1 − δ
= 2 ln(2K/δ)/Ne

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage

 ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by and actual best arm by ̂k k⋆

regret at each step of exploitation phase = μk⋆ − μ ̂k
= μk⋆ + (̂μk⋆ − ̂μk⋆) − μ ̂k + (̂μ ̂k − ̂μ ̂k)
= (μk⋆ − ̂μk⋆) + (̂μ ̂k − μ ̂k) + (̂μk⋆ − ̂μ ̂k)
≤ ln(2K/δ)/2Ne + ln(2K/δ)/2Ne + 0 w/p 1 − δ
= 2 ln(2K/δ)/Ne

Regret Analysis of ETC (cont’d)

Regret Analysis of ETC (cont’d)
4. From steps 1-3: with probability ,1 − δ

RegretT ≤ NeK + T 2 ln(2K/δ)/Ne

Regret Analysis of ETC (cont’d)
4. From steps 1-3: with probability ,1 − δ

RegretT ≤ NeK + T 2 ln(2K/δ)/Ne

Take any so that and (e.g.,): sublinear regret!Ne Ne → ∞ Ne/T → 0 Ne = T

Regret Analysis of ETC (cont’d)
4. From steps 1-3: with probability ,1 − δ

RegretT ≤ NeK + T 2 ln(2K/δ)/Ne

Minimize over : (won’t bore you with algebra)Ne

optimal Ne = (
T ln(2K/δ)/2

K)
2/3

Take any so that and (e.g.,): sublinear regret!Ne Ne → ∞ Ne/T → 0 Ne = T

Regret Analysis of ETC (cont’d)
4. From steps 1-3: with probability ,1 − δ

RegretT ≤ NeK + T 2 ln(2K/δ)/Ne

Minimize over : (won’t bore you with algebra)Ne

optimal Ne = (
T ln(2K/δ)/2

K)
2/3

⇒ RegretT ≤ 3T2/3(K ln(2K/δ)/2)1/3

(A bit more algebra to plug optimal into Regret equation above)Ne T

Take any so that and (e.g.,): sublinear regret!Ne Ne → ∞ Ne/T → 0 Ne = T

Today

• Recap

• Explore-then-commit (ETC)

• -greedyε

-greedyε

-greedyε
ETC very abrupt (huge difference between exploration and exploitation stages)

-greedyε
ETC very abrupt (huge difference between exploration and exploitation stages)
-greedy like a smoother version of ETC: ε

-greedyε
ETC very abrupt (huge difference between exploration and exploitation stages)
-greedy like a smoother version of ETC: ε

at every step, do pure greedy w/p , and do pure exploration w/p 1 − ε ε

-greedyε
ETC very abrupt (huge difference between exploration and exploitation stages)
-greedy like a smoother version of ETC: ε

at every step, do pure greedy w/p , and do pure exploration w/p 1 − ε ε

Initialize ̂μ0 = ⋯ = ̂μK = 1

-greedyε
ETC very abrupt (huge difference between exploration and exploitation stages)
-greedy like a smoother version of ETC: ε

at every step, do pure greedy w/p , and do pure exploration w/p 1 − ε ε

For :t = 0,…, T − 1
Sample Et ∼ Bernoulli(ε)

Initialize ̂μ0 = ⋯ = ̂μK = 1

-greedyε
ETC very abrupt (huge difference between exploration and exploitation stages)
-greedy like a smoother version of ETC: ε

at every step, do pure greedy w/p , and do pure exploration w/p 1 − ε ε

For :t = 0,…, T − 1
Sample Et ∼ Bernoulli(ε)

Initialize ̂μ0 = ⋯ = ̂μK = 1

(pure explore)If , choose Et = 0 at ∼ Uniform(1,…, K)

-greedyε
ETC very abrupt (huge difference between exploration and exploitation stages)
-greedy like a smoother version of ETC: ε

at every step, do pure greedy w/p , and do pure exploration w/p 1 − ε ε

For :t = 0,…, T − 1
Sample Et ∼ Bernoulli(ε)

Initialize ̂μ0 = ⋯ = ̂μK = 1

(pure explore)If , choose Et = 0 at ∼ Uniform(1,…, K)
If , choose Et = 1 at = arg max

k∈{1,…,K}
̂μk (pure exploit)

-greedyε
ETC very abrupt (huge difference between exploration and exploitation stages)
-greedy like a smoother version of ETC: ε

at every step, do pure greedy w/p , and do pure exploration w/p 1 − ε ε

For :t = 0,…, T − 1
Sample Et ∼ Bernoulli(ε)

Initialize ̂μ0 = ⋯ = ̂μK = 1

(pure explore)If , choose Et = 0 at ∼ Uniform(1,…, K)
If , choose Et = 1 at = arg max

k∈{1,…,K}
̂μk (pure exploit)

Update ̂μat

-greedy (cont’d)ε

-greedy (cont’d)ε
Can also allow to depend on , usually so that it decreases: ε t

-greedy (cont’d)ε
Can also allow to depend on , usually so that it decreases: ε t
the more learned by time , the less exploration needed at/after time t t

-greedy (cont’d)ε
Can also allow to depend on , usually so that it decreases: ε t
the more learned by time , the less exploration needed at/after time t t

It turns out that -greedy with also achieves

Regret ,

where hides logarithmic factors

ε εt = (K ln(t)
t)

1/3

t = Õ(t2/3K1/3)
Õ(⋅)

-greedy (cont’d)ε
Can also allow to depend on , usually so that it decreases: ε t
the more learned by time , the less exploration needed at/after time t t

It turns out that -greedy with also achieves

Regret ,

where hides logarithmic factors

ε εt = (K ln(t)
t)

1/3

t = Õ(t2/3K1/3)
Õ(⋅)

• Regret rate (ignoring log factors) is the same as ETC, but holds for all ,
not just the full time horizon

t
T

-greedy (cont’d)ε
Can also allow to depend on , usually so that it decreases: ε t
the more learned by time , the less exploration needed at/after time t t

It turns out that -greedy with also achieves

Regret ,

where hides logarithmic factors

ε εt = (K ln(t)
t)

1/3

t = Õ(t2/3K1/3)
Õ(⋅)

• Regret rate (ignoring log factors) is the same as ETC, but holds for all ,
not just the full time horizon

t
T

• Nothing in -greedy (including above) depends on , so don’t need to
know horizon!

ε εt T

Today

• Recap

• Explore-then-commit (ETC)

• -greedyε

Today’s summary:

Today’s summary:

Explore-then-commit and -greedy:

•balance exploration with exploitation

•Achieve sublinear regret of

•Exploration is non-adaptive (bad)

ε

Õ(T2/3K1/3)

Today’s summary:

Explore-then-commit and -greedy:

•balance exploration with exploitation

•Achieve sublinear regret of

•Exploration is non-adaptive (bad)

ε

Õ(T2/3K1/3)

Next time:

•Upper Confidence Bound (UCB) explores adaptively

•Achieves regret Õ(TK)

Today’s summary:

Explore-then-commit and -greedy:

•balance exploration with exploitation

•Achieve sublinear regret of

•Exploration is non-adaptive (bad)

ε

Õ(T2/3K1/3)

Next time:

•Upper Confidence Bound (UCB) explores adaptively

•Achieves regret Õ(TK)

1-minute feedback form: https://forms.gle/2mKHGRMCpFTRMQqd8

https://forms.gle/2mKHGRMCpFTRMQqd8

Upper Confidence Bound (UCB)

Upper Confidence Bound (UCB)
Intuition: maintain confidence intervals for mean of each arm

and use them to focus exploration on most promising arms

Upper Confidence Bound (UCB)
Intuition: maintain confidence intervals for mean of each arm

and use them to focus exploration on most promising arms

First: how to construct confidence intervals?

Upper Confidence Bound (UCB)
Intuition: maintain confidence intervals for mean of each arm

and use them to focus exploration on most promising arms

First: how to construct confidence intervals?
Recall Hoeffding inequality:

Sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Upper Confidence Bound (UCB)
Intuition: maintain confidence intervals for mean of each arm

and use them to focus exploration on most promising arms

First: how to construct confidence intervals?
Recall Hoeffding inequality:

Sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Worked for ETC b/c exploration phase was i.i.d., but in general the

rewards from a given arm are not i.i.d. due to adaptivity of action selections

Constructing confidence intervals

Constructing confidence intervals
Notation:

Constructing confidence intervals

Let be the number of times arm is pulled before time N(k)
t =

t−1

∑
τ=0

1{aτ=k} k t

Notation:

Constructing confidence intervals

Let be the number of times arm is pulled before time N(k)
t =

t−1

∑
τ=0

1{aτ=k} k t

Let be the sample mean reward of arm up to time ̂μ(k)
t = 1

N(k)
t

t−1

∑
τ=0

1{aτ=k}rτ k t

Notation:

Constructing confidence intervals

Let be the number of times arm is pulled before time N(k)
t =

t−1

∑
τ=0

1{aτ=k} k t

Let be the sample mean reward of arm up to time ̂μ(k)
t = 1

N(k)
t

t−1

∑
τ=0

1{aτ=k}rτ k t

Notation:

So want Hoeffding to give us something like

 w/p ̂μ(k)
t − μ ≤ ln(2/δ)

2N(k)
t

1 − δ

Constructing confidence intervals

Let be the number of times arm is pulled before time N(k)
t =

t−1

∑
τ=0

1{aτ=k} k t

Let be the sample mean reward of arm up to time ̂μ(k)
t = 1

N(k)
t

t−1

∑
τ=0

1{aτ=k}rτ k t

Notation:

So want Hoeffding to give us something like

 w/p ̂μ(k)
t − μ ≤ ln(2/δ)

2N(k)
t

1 − δ

But this is generally FALSE

(unless chosen very simply, like exploration phase of ETC)at

Constructing confidence intervals (cont’d)
The problem: Although is an i.i.d. draw from , rτ ∣ aτ = k ν(k)

Constructing confidence intervals (cont’d)
(all arm indexing now in superscripts;

subscripts reserved for time index)
(k)

tThe problem: Although is an i.i.d. draw from , rτ ∣ aτ = k ν(k)

Constructing confidence intervals (cont’d)

 is the sample mean of a random number of returnŝμ(k)
t N(k)

t

(all arm indexing now in superscripts;

subscripts reserved for time index)

(k)
tThe problem: Although is an i.i.d. draw from , rτ ∣ aτ = k ν(k)

Constructing confidence intervals (cont’d)

 is the sample mean of a random number of returnŝμ(k)
t N(k)

t
in general will depend on those returns themselvesN(k)

t

(all arm indexing now in superscripts;

subscripts reserved for time index)

(k)
tThe problem: Although is an i.i.d. draw from , rτ ∣ aτ = k ν(k)

Constructing confidence intervals (cont’d)

 is the sample mean of a random number of returnŝμ(k)
t N(k)

t
in general will depend on those returns themselvesN(k)

t
(i.e., how often we select arm depends on the historical returns of arm)k k

(all arm indexing now in superscripts;

subscripts reserved for time index)

(k)
tThe problem: Although is an i.i.d. draw from , rτ ∣ aτ = k ν(k)

Constructing confidence intervals (cont’d)

 is the sample mean of a random number of returnŝμ(k)
t N(k)

t
in general will depend on those returns themselvesN(k)

t
(i.e., how often we select arm depends on the historical returns of arm)k k

Solution: First, imagine an infinite sequence of hypothetical i.i.d. draws from :
ν(k)

r̃(k)
0 , r̃(k)

1 , r̃(k)
2 , r̃(k)

3 , …

(all arm indexing now in superscripts;

subscripts reserved for time index)

(k)
tThe problem: Although is an i.i.d. draw from , rτ ∣ aτ = k ν(k)

Constructing confidence intervals (cont’d)

 is the sample mean of a random number of returnŝμ(k)
t N(k)

t
in general will depend on those returns themselvesN(k)

t
(i.e., how often we select arm depends on the historical returns of arm)k k

Solution: First, imagine an infinite sequence of hypothetical i.i.d. draws from :
ν(k)

r̃(k)
0 , r̃(k)

1 , r̃(k)
2 , r̃(k)

3 , …

(all arm indexing now in superscripts;

subscripts reserved for time index)

(k)
tThe problem: Although is an i.i.d. draw from , rτ ∣ aτ = k ν(k)

Then we can think of every time we pull arm , just pulling the next off this list,k r̃(k)
i

Constructing confidence intervals (cont’d)

 is the sample mean of a random number of returnŝμ(k)
t N(k)

t
in general will depend on those returns themselvesN(k)

t
(i.e., how often we select arm depends on the historical returns of arm)k k

Solution: First, imagine an infinite sequence of hypothetical i.i.d. draws from :
ν(k)

r̃(k)
0 , r̃(k)

1 , r̃(k)
2 , r̃(k)

3 , …

(all arm indexing now in superscripts;

subscripts reserved for time index)

(k)
tThe problem: Although is an i.i.d. draw from , rτ ∣ aτ = k ν(k)

Then we can think of every time we pull arm , just pulling the next off this list,k r̃(k)
i

i.e., to simply equal to , and hence r(k)
τ ∣ aτ = k r̃(k)

Nkτ
̂μ(k)
t = 1

N(k)
t

N(k)
t −1

∑
i=0

r̃(k)
i

Constructing confidence intervals (cont’d)

Recall: ̂μ(k)
t = 1

N(k)
t

N(k)
t −1

∑
i=0

r̃(k)
i

Constructing confidence intervals (cont’d)

Recall: ̂μ(k)
t = 1

N(k)
t

N(k)
t −1

∑
i=0

r̃(k)
i Now define: ()μ̃(k)

n = 1
n

n−1

∑
i=0

r̃(k)
i ⇒ ̂μ(k)

t = μ̃(k)
N(k)

t

Constructing confidence intervals (cont’d)

Recall: ̂μ(k)
t = 1

N(k)
t

N(k)
t −1

∑
i=0

r̃(k)
i Now define: ()μ̃(k)

n = 1
n

n−1

∑
i=0

r̃(k)
i ⇒ ̂μ(k)

t = μ̃(k)
N(k)

t

Now Hoeffding applies to because fixed/nonrandomμ̃(k)
n n

Constructing confidence intervals (cont’d)

Recall: ̂μ(k)
t = 1

N(k)
t

N(k)
t −1

∑
i=0

r̃(k)
i Now define: ()μ̃(k)

n = 1
n

n−1

∑
i=0

r̃(k)
i ⇒ ̂μ(k)

t = μ̃(k)
N(k)

t

Now Hoeffding applies to because fixed/nonrandomμ̃(k)
n n

and we know for some (but which one is random)̂μ(k)
t = μ̃(k)

n n ≤ t

Constructing confidence intervals (cont’d)

Recall union bound in ETC analysis made Hoeffding hold simultaneously over k ≤ K

Recall: ̂μ(k)
t = 1

N(k)
t

N(k)
t −1

∑
i=0

r̃(k)
i Now define: ()μ̃(k)

n = 1
n

n−1

∑
i=0

r̃(k)
i ⇒ ̂μ(k)

t = μ̃(k)
N(k)

t

Now Hoeffding applies to because fixed/nonrandomμ̃(k)
n n

and we know for some (but which one is random)̂μ(k)
t = μ̃(k)

n n ≤ t

Constructing confidence intervals (cont’d)

Recall union bound in ETC analysis made Hoeffding hold simultaneously over k ≤ K

Recall: ̂μ(k)
t = 1

N(k)
t

N(k)
t −1

∑
i=0

r̃(k)
i Now define: ()μ̃(k)

n = 1
n

n−1

∑
i=0

r̃(k)
i ⇒ ̂μ(k)

t = μ̃(k)
N(k)

t

Now Hoeffding applies to because fixed/nonrandomμ̃(k)
n n

and we know for some (but which one is random)̂μ(k)
t = μ̃(k)

n n ≤ t

Hoeffding + union bound over :

n ≤ t
⇒ ℙ (∀n ≤ t, | μ̃(k)

n − μ(k) | ≤ ln(2t/δ)/2n) ≥ 1 − δ

Constructing confidence intervals (cont’d)
Hoeffding + union bound over :
n ≤ t

⇒ ℙ (∀n ≤ t, | μ̃(k)
n − μ(k) | ≤ ln(2t/δ)/2n) ≥ 1 − δ

Constructing confidence intervals (cont’d)
Hoeffding + union bound over :
n ≤ t

⇒ ℙ (∀n ≤ t, | μ̃(k)
n − μ(k) | ≤ ln(2t/δ)/2n) ≥ 1 − δ

But since in particular , this immediately implies
N(k)
t ≤ t

ℙ (| μ̃(k)
N(k)

t
− μ(k) | ≤ ln(2t/δ)/2N(k)

t) ≥ 1 − δ

Constructing confidence intervals (cont’d)

And then since , we immediately get the kind of result we want:
μ̃(k)
N(k)

t
= ̂μ(k)

t

ℙ (| ̂μ(k)
t −μ(k) | ≤ ln(2t/δ)/2N(k)

t) ≥ 1 − δ

Hoeffding + union bound over :
n ≤ t
⇒ ℙ (∀n ≤ t, | μ̃(k)

n − μ(k) | ≤ ln(2t/δ)/2n) ≥ 1 − δ
But since in particular , this immediately implies
N(k)

t ≤ t

ℙ (| μ̃(k)
N(k)

t
− μ(k) | ≤ ln(2t/δ)/2N(k)

t) ≥ 1 − δ

Constructing confidence intervals (cont’d)

And then since , we immediately get the kind of result we want:
μ̃(k)
N(k)

t
= ̂μ(k)

t

ℙ (| ̂μ(k)
t −μ(k) | ≤ ln(2t/δ)/2N(k)

t) ≥ 1 − δ

Summary: to deal with problem of non-i.i.d. rewards that enter into , we used
rewards’ conditional i.i.d. property along with a union bound to get Hoeffding bound

that is wider by just a factor of in the log term

̂μ(k)
t

t

Hoeffding + union bound over :
n ≤ t
⇒ ℙ (∀n ≤ t, | μ̃(k)

n − μ(k) | ≤ ln(2t/δ)/2n) ≥ 1 − δ
But since in particular , this immediately implies
N(k)

t ≤ t

ℙ (| μ̃(k)
N(k)

t
− μ(k) | ≤ ln(2t/δ)/2N(k)

t) ≥ 1 − δ

