Bandits: Explore-Then-Commit and ε-greedy

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2022

Today

- Recap
- Explore-then-commit (ETC)
- ε-greedy

Recap

Recap

- Reinforcement learning is an interactive form of machine learning
- Applicable whenever you want to learn to do something better
- One component is learning while acting: exploration vs exploitation
- Other component is optimization

Recap

- Reinforcement learning is an interactive form of machine learning
- Applicable whenever you want to learn to do something better
- One component is learning while acting: exploration vs exploitation
- Other component is optimization
- Multi-armed bandits (or MAB or just bandits)
- Exemplify first component (exploration vs exploitation)
- Pure greedy not much better than pure exploration (linear regret)

Recap

- Reinforcement learning is an interactive form of machine learning
- Applicable whenever you want to learn to do something better
- One component is learning while acting: exploration vs exploitation
- Other component is optimization
- Multi-armed bandits (or MAB or just bandits)
- Exemplify first component (exploration vs exploitation)
- Pure greedy not much better than pure exploration (linear regret)
- Today: let's do better than linear regret!

Notes from yesterday

Notes from yesterday

Notes from yesterday

1. $\operatorname{Regret}_{T}=T \mu^{\star}-\sum_{t=0}^{T-1} \mu_{a_{t}}=\sum_{t=0}^{T-1}\left(\mu^{\star}-\mu_{a_{t}}\right)$
2. Recall Regret $_{T}=\Omega(T)$, i.e., linear regret

$$
\Rightarrow \text { for some } c>0 \text { and } T_{0}, \text { Regret }_{T} \geq c T \forall T \geq T_{0}
$$

Notes from yesterday

1. $\operatorname{Regret}_{T}=T \mu^{\star}-\sum_{t=0}^{T-1} \mu_{a_{t}}=\sum_{t=0}^{T-1}\left(\mu^{\star}-\mu_{a_{t}}\right)$
2. Recall Regret ${ }_{T}=\Omega(T)$, i.e., linear regret
\Rightarrow for some $c>0$ and T_{0}, \quad Regret $_{T} \geq c T \quad \forall T \geq T_{0}$
(and Regret ${ }_{T}=O(T)$ means same except with $\leq c T$)

Notes from yesterday

1. $\operatorname{Regret}_{T}=T \mu^{\star}-\sum_{t=0}^{T-1} \mu_{a_{t}}=\sum_{t=0}^{T-1}\left(\mu^{\star}-\mu_{a_{t}}\right) \underbrace{\text { gind }}_{\substack{\text { Expected regret at time } t \\ \text { given that you chose arm } a_{t}}}$
2. Recall Regret ${ }_{T}=\Omega(T)$, i.e., linear regret

$$
\Rightarrow \quad \text { for some } c>0 \text { and } T_{0}, \quad \text { Regret }_{T} \geq c T \quad \forall T \geq T_{0}
$$

(and Regret ${ }_{T}=O(T)$ means same except with $\leq c T$)
3. Why is linear regret bad? \Rightarrow average regret $:=\frac{\operatorname{Regret~}_{T}}{T} \nrightarrow 0$

Today

- Recap
- Explore-then-commit (ETC)
- ε-greedy

What we learned last lecture:

What we learned last lecture:

Lesson from pure greedy: exploring each arm once is not enough

What we learned last lecture:

Lesson from pure greedy: exploring each arm once is not enough Lesson from pure exploration: exploring each arm too much is bad too

What we learned last lecture:

Lesson from pure greedy: exploring each arm once is not enough Lesson from pure exploration: exploring each arm too much is bad too

Let's allow both, and see how best to trade them off

What we learned last lecture:

Lesson from pure greedy: exploring each arm once is not enough Lesson from pure exploration: exploring each arm too much is bad too

Let's allow both, and see how best to trade them off

Plan: (1) try each arm multiple times, (2) compute the empirical mean of each arm, (3) commit to the one that has the highest empirical mean

Explore-Then-Commit (ETC)

Explore-Then-Commit (ETC)

Algorithm hyper parameter $N_{\mathrm{e}}<T / K$ (we assume $T \gg K$)

Explore-Then-Commit (ETC)

$N_{\mathrm{e}}=$ Number of explorations
Algorithm hyper parameter $N_{\mathrm{e}}<T / K$ (we assume $T \gg K$)

Explore-Then-Commit (ETC)

$N_{\mathrm{e}}=$ Number of explorations
Algorithm hyper parameter $N_{\mathrm{e}}<T / K$ (we assume $T \gg K$)
For $k=1, \ldots, K: \quad$ (\# Exploration phase)

Explore-Then-Commit (ETC)

$N_{\mathrm{e}}=$ Number of explorations
Algorithm hyper parameter $N_{\mathrm{e}}<T / K$ (we assume $T \gg K$)
For $k=1, \ldots, K$: (\# Exploration phase)
Pull arm $k N_{\mathrm{e}}$ times to observe $\left\{r_{i}^{(k)}\right\}_{i=1}^{N_{\mathrm{e}}} \sim \nu_{k}$

Explore-Then-Commit (ETC)

$N_{\mathrm{e}}=$ Number of explorations

Algorithm hyper parameter $N_{\mathrm{e}}<T / K$ (we assume $T \gg K$)
For $k=1, \ldots, K: \quad$ (\# Exploration phase)
Pull arm $k N_{\mathrm{e}}$ times to observe $\left\{r_{i}^{(k)}\right\}_{i=1}^{N_{\mathrm{e}}} \sim \nu_{k}$
Calculate arm k's empirical mean: $\hat{\mu_{k}}=\frac{1}{N_{\mathrm{e}}} \sum_{i=1}^{N \mathrm{e}} r_{i}^{(k)}$

Explore-Then-Commit (ETC)

$N_{\mathrm{e}}=$ Number of explorations

Algorithm hyper parameter $N_{\mathrm{e}}<T / K$ (we assume $T \gg K$)
For $k=1, \ldots, K$: (\# Exploration phase)
Pull arm $k N_{\mathrm{e}}$ times to observe $\left\{r_{i}^{(k)}\right\}_{i=1}^{N_{\mathrm{e}}} \sim \nu_{k}$
Calculate arm k's empirical mean: $\hat{\mu_{k}}=\frac{1}{N_{\mathrm{e}}} \sum_{i=1}^{N_{\mathrm{e}}} r_{i}^{(k)}$
For $t=N_{\mathrm{e}} K, \ldots,(T-1)$: (\# Exploitation phase)

Explore-Then-Commit (ETC)

$N_{\mathrm{e}}=$ Number of explorations

Algorithm hyper parameter $N_{\mathrm{e}}<T / K$ (we assume $T \gg K$)
For $k=1, \ldots, K$: (\# Exploration phase)
Pull arm $k N_{\mathrm{e}}$ times to observe $\left\{r_{i}^{(k)}\right\}_{i=1}^{N_{\mathrm{e}}} \sim \nu_{k}$
Calculate arm k's empirical mean: $\hat{\mu}_{k}=\frac{1}{N_{\mathrm{e}}} \sum_{i=1}^{N_{\mathrm{e}}} r_{i}^{(k)}$
For $t=N_{\mathrm{e}} K, \ldots,(T-1)$: (\# Exploitation phase)
Pull the best empirical arm $a_{t}=\arg \max \hat{\mu}_{i \in[}$

$$
i \in[K]
$$

Explore-Then-Commit (ETC)

$N_{\mathrm{e}}=$ Number of explorations

Algorithm hyper parameter $N_{\mathrm{e}}<T / K$ (we assume $T \gg K$)
For $k=1, \ldots, K$: (\# Exploration phase)
Pull arm $k N_{\mathrm{e}}$ times to observe $\left\{r_{i}^{(k)}\right\}_{i=1}^{N_{\mathrm{e}}} \sim \nu_{k}$
Calculate arm k's empirical mean: $\hat{\mu_{k}}=\frac{1}{N_{\mathrm{e}}} \sum_{i=1}^{N \mathrm{e}} r_{i}^{(k)}$
For $t=N_{\mathrm{e}} K, \ldots,(T-1)$: (\# Exploitation phase)
Pull the best empirical arm $a_{t}=\arg \max \hat{\mu}_{i \in[}$

$$
i \in[K]
$$

Regret Analysis Strategy

Regret Analysis Strategy

1. Calculate regret during exploration stage

Regret Analysis Strategy

1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage

Regret Analysis Strategy

1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage
3. Using step 2, calculate regret during exploitation stage

Regret Analysis Strategy

1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage
3. Using step 2, calculate regret during exploitation stage (Actually, will only be able to upper-bound total regret in steps 1-3)

Regret Analysis Strategy

1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage
3. Using step 2, calculate regret during exploitation stage (Actually, will only be able to upper-bound total regret in steps 1-3)
4. Minimize our upper-bound over N_{e}

But First... An Important Inequality

Hoeffding inequality

But First... An Important Inequality

Hoeffding inequality

Given N i.i.d samples $\left\{r_{i}\right\}_{i=1}^{N} \sim \nu \in \Delta([0,1])$ with mean μ, let $\hat{\mu}:=\frac{1}{N} \sum_{i=1}^{N} r_{i}$.
Then with probability at least $1-\delta$,

$$
|\hat{\mu}-\mu| \leq \sqrt{\frac{\ln (2 / \delta)}{2 N}}
$$

But First... An Important Inequality

Hoeffding inequality

Given N i.i.d samples $\left\{r_{i}\right\}_{i=1}^{N} \sim \nu \in \Delta([0,1])$ with mean μ, let $\hat{\mu}:=\frac{1}{N} \sum_{i=1}^{N} r_{i}$.
Then with probability at least $1-\delta$,

$$
|\hat{\mu}-\mu| \leq \sqrt{\frac{\ln (2 / \delta)}{2 N}}
$$

-Why is this useful? Quantify error of arm mean estimates at end of exploration stage (if all estimates are close, arm we commit to must be close to best)

But First... An Important Inequality

Hoeffding inequality

Given N i.i.d samples $\left\{r_{i}\right\}_{i=1}^{N} \sim \nu \in \Delta([0,1])$ with mean μ, let $\hat{\mu}:=\frac{1}{N} \sum_{i=1}^{N} r_{i}$.
Then with probability at least $1-\delta$,

$$
|\hat{\mu}-\mu| \leq \sqrt{\frac{\ln (2 / \delta)}{2 N}}
$$

-Why is this useful? Quantify error of arm mean estimates at end of exploration stage (if all estimates are close, arm we commit to must be close to best)
-Why is this true? Full proof beyond course scope, but intuition easier...

Intuition Behind Hoeffding

Hoeffding inequality: sample mean of N i.i.d. samples on $[0,1]$ satisfies

$$
|\hat{\mu}-\mu| \leq \sqrt{\frac{\ln (2 / \delta)}{2 N}} \mathrm{w} / \mathrm{p} 1-\delta
$$

Intuition Behind Hoeffding

Hoeffding inequality: sample mean of N i.i.d. samples on $[0,1]$ satisfies

$$
|\hat{\mu}-\mu| \leq \sqrt{\frac{\ln (2 / \delta)}{2 N}} \mathrm{w} / \mathrm{p} 1-\delta
$$

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):

Intuition Behind Hoeffding

Hoeffding inequality: sample mean of N i.i.d. samples on $[0,1]$ satisfies

$$
|\hat{\mu}-\mu| \leq \sqrt{\frac{\ln (2 / \delta)}{2 N}} \mathrm{w} / \mathrm{p} 1-\delta
$$

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):

- $\mathrm{CLT} \Rightarrow \hat{\mu}-\mu \approx$ Gaussian $\mathrm{w} /$ mean 0 and standard deviation $\propto \sqrt{1 / N}$

Intuition Behind Hoeffding

Hoeffding inequality: sample mean of N i.i.d. samples on $[0,1]$ satisfies

$$
|\hat{\mu}-\mu| \leq \sqrt{\frac{\ln (2 / \delta)}{2 N}} \mathrm{w} / \mathrm{p} 1-\delta
$$

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):

- $\mathrm{CLT} \Rightarrow \hat{\mu}-\mu \approx$ Gaussian $\mathrm{w} /$ mean 0 and standard deviation $\propto \sqrt{1 / N}$
-CLT standard deviation explains the Hoeffding denominator

Intuition Behind Hoeffding

Hoeffding inequality: sample mean of N i.i.d. samples on $[0,1]$ satisfies

$$
|\hat{\mu}-\mu| \leq \sqrt{\frac{\ln (2 / \delta)}{2 N}} \mathrm{w} / \mathrm{p} 1-\delta
$$

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):

- $\mathrm{CLT} \Rightarrow \hat{\mu}-\mu \approx$ Gaussian $\mathrm{w} /$ mean 0 and standard deviation $\propto \sqrt{1 / N}$
- CLT standard deviation explains the Hoeffding denominator
- Numerator is because Gaussian has double-exponential tails, i.e., probability of a deviation from the mean by x scales roughly like $e^{-x^{2}}$, which, when inverted (i.e., set $\delta=e^{-x^{2}}$ and solve for x) gives $x=\sqrt{\ln (1 / \delta)}$

Intuition Behind Hoeffding

Hoeffding inequality: sample mean of N i.i.d. samples on $[0,1]$ satisfies

$$
|\hat{\mu}-\mu| \leq \sqrt{\frac{\ln (2 / \delta)}{2 N}} \text { w/p } 1-\delta
$$

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):

- $\mathrm{CLT} \Rightarrow \hat{\mu}-\mu \approx$ Gaussian $\mathrm{w} /$ mean 0 and standard deviation $\propto \sqrt{1 / N}$
- CLT standard deviation explains the Hoeffding denominator
- Numerator is because Gaussian has double-exponential tails, i.e., probability of a deviation from the mean by x scales roughly like $e^{-x^{2}}$, which, when inverted (i.e., set $\delta=e^{-x^{2}}$ and solve for x) gives $x=\sqrt{\ln (1 / \delta)}$
-Don't worry too much about the extra 2's... CLT is only approximate!

Back to Regret Analysis of ETC

Back to Regret Analysis of ETC

1. Calculate regret during exploration stage

Back to Regret Analysis of ETC

1. Calculate regret during exploration stage

$$
\operatorname{Regret}_{\mathrm{e}_{\mathrm{e}} K} \leq N_{\mathrm{e}} K \text { with probability } 1
$$

Back to Regret Analysis of ETC

1. Calculate regret during exploration stage

$$
\operatorname{Regret}_{N_{\mathrm{e}} K} \leq N_{\mathrm{e}} K \text { with probability } 1
$$

2. Quantify error of arm mean estimates at end of exploration stage

Back to Regret Analysis of ETC

1. Calculate regret during exploration stage

$$
\operatorname{Regret}_{N_{\mathrm{e}} K} \leq N_{\mathrm{e}} K \text { with probability } 1
$$

2. Quantify error of arm mean estimates at end of exploration stage
a) Hoeffding $\Rightarrow \mathbb{P}\left(\left|\hat{\mu}_{k}-\mu_{k}\right| \leq \sqrt{\ln (2 / \delta) / 2 N_{\mathrm{e}}}\right) \geq 1-\delta$

Back to Regret Analysis of ETC

1. Calculate regret during exploration stage

$$
\operatorname{Regret}_{N_{\mathrm{e}} K} \leq N_{\mathrm{e}} K \text { with probability } 1
$$

2. Quantify error of arm mean estimates at end of exploration stage
a) Hoeffding $\Rightarrow \mathbb{P}\left(\left|\hat{\mu}_{k}-\mu_{k}\right| \leq \sqrt{\ln (2 / \delta) / 2 N_{\mathrm{e}}}\right) \geq 1-\delta$
b) Recall Union/Boole/Bonferroni bound: $\mathbb{P}\left(\right.$ any of $\left.A_{1}, \ldots, A_{K}\right) \leq \sum_{k=1}^{K} \mathbb{P}\left(A_{k}\right)$

Back to Regret Analysis of ETC

1. Calculate regret during exploration stage

$$
\operatorname{Regret}_{N_{\mathrm{e}} K} \leq N_{\mathrm{e}} K \text { with probability } 1
$$

2. Quantify error of arm mean estimates at end of exploration stage
a) Hoeffding $\Rightarrow \mathbb{P}\left(\left|\hat{\mu}_{k}-\mu_{k}\right| \leq \sqrt{\ln (2 / \delta) / 2 N_{\mathrm{e}}}\right) \geq 1-\delta_{\mathbb{P}\left(\forall k, A_{1}^{c}, \ldots, A_{S}^{\rho}\right) \geq 1} \sum_{k=1}^{K} \mathbb{P}^{\mathbb{P}}\left(A_{\mathrm{k}}\right)$
b) Recall Union/Boole/Bonferroni bound: $\mathbb{P}\left(\right.$ any of $\left.A_{1}, \ldots, A_{K}\right) \leq \sum_{k=1}^{\mathbb{Z}} \mathbb{P}\left(A_{k}\right)$

Back to Regret Analysis of ETC

1. Calculate regret during exploration stage

$$
\text { Regret }_{N_{\mathrm{e}} K} \leq N_{\mathrm{e}} K \text { with probability } 1
$$

2. Quantify error of arm mean estimates at end of exploration stage
a) Hoeffding $\Rightarrow \mathbb{P}\left(\left|\hat{\mu}_{k}-\mu_{k}\right| \leq \sqrt{\ln (2 / \delta) / 2 N_{\mathrm{e}}}\right) \geq 1 \underset{\mathbb{P}\left(\forall k, A_{1}^{e}, \ldots, A_{\mathrm{S}}^{\mathrm{e}}\right) \geq 1}{ } \sum_{k=1}^{K} \mathbb{P}\left(A_{A}\right)$
b) Recall Union/Boole/Bonferroni bound: $\mathbb{P}\left(\right.$ any of $\left.A_{1}, \ldots, A_{K}\right) \leq \sum_{k=1}^{\mathbb{2}} \mathbb{P}\left(A_{k}\right)$
c) $\delta \rightarrow \delta / K$, Union bound with $A_{k}=\left\{\left|\hat{\mu}_{k}-\mu_{k}\right|>\sqrt{\ln (2 K / \delta) / 2 N_{\mathrm{e}}}\right\}$, and Hoeffding:

Back to Regret Analysis of ETC

1. Calculate regret during exploration stage

$$
\text { Regret }_{N_{\mathrm{e}} K} \leq N_{\mathrm{e}} K \text { with probability } 1
$$

2. Quantify error of arm mean estimates at end of exploration stage
a) Hoeffding $\Rightarrow \mathbb{P}\left(\left|\hat{\mu}_{k}-\mu_{k}\right| \leq \sqrt{\ln (2 / \delta) / 2 N_{\mathrm{e}}}\right) \geq 1 \underset{\mathbb{P}\left(\forall k, A_{1}^{c}, \ldots, A_{k}^{c}\right) \geq 1-\sum_{k=1}^{K} \mathbb{P}\left(A_{k}^{c}\right)}{ }$
b) Recall Union/Boole/Bonferroni bound: $\mathbb{P}\left(\right.$ any of $\left.A_{1}, \ldots, A_{K}\right) \leq \sum_{k=1}^{K} \mathbb{P}\left(A_{k}\right)$
c) $\delta \rightarrow \delta / K$, Union bound with $A_{k}=\left\{\left|\hat{\mu}_{k}-\mu_{k}\right|>\sqrt{\ln (2 K / \delta) / 2 N_{\mathrm{e}}}\right\}$, and Hoeffding:

$$
\Rightarrow \mathbb{P}\left(\forall k,\left|\hat{\mu}_{k}-\mu_{k}\right| \leq \sqrt{\ln (2 K / \delta) / 2 N_{\mathrm{e}}}\right) \geq 1-\delta
$$

Regret Analysis of ETC (cont’d)

Regret Analysis of ETC (cont'd)

2. Quantify error of arm mean estimates at end of exploration stage

Regret Analysis of ETC (cont'd)

2. Quantify error of arm mean estimates at end of exploration stage

$$
\mathbb{P}\left(\forall k,\left|\hat{\mu}_{k}-\mu_{k}\right| \leq \sqrt{\ln (2 K / \delta) / 2 N_{\mathrm{e}}}\right) \geq 1-\delta
$$

Regret Analysis of ETC (cont'd)

2. Quantify error of arm mean estimates at end of exploration stage

$$
\mathbb{P}\left(\forall k,\left|\hat{\mu}_{k}-\mu_{k}\right| \leq \sqrt{\ln (2 K / \delta) / 2 N_{\mathrm{e}}}\right) \geq 1-\delta
$$

3. Using step 2, calculate regret during exploitation stage:

Regret Analysis of ETC (cont'd)

2. Quantify error of arm mean estimates at end of exploration stage

$$
\mathbb{P}\left(\forall k,\left|\hat{\mu}_{k}-\mu_{k}\right| \leq \sqrt{\ln (2 K / \delta) / 2 N_{\mathrm{e}}}\right) \geq 1-\delta
$$

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by \hat{k} and actual best arm by k^{\star}

Regret Analysis of ETC (cont'd)

2. Quantify error of arm mean estimates at end of exploration stage

$$
\mathbb{P}\left(\forall k,\left|\hat{\mu}_{k}-\mu_{k}\right| \leq \sqrt{\ln (2 K / \delta) / 2 N_{\mathrm{e}}}\right) \geq 1-\delta
$$

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by \hat{k} and actual best arm by k^{\star} regret at each step of exploitation phase $=\mu_{k^{\star}}-\mu_{\hat{k}}$

Regret Analysis of ETC (cont’d)

Regret Analysis of ETC (cont'd)

4. From steps 1-3: with probability $1-\delta$,

$$
\text { Regret }_{T} \leq N_{\mathrm{e}} K+T \sqrt{2 \ln (2 K / \delta) / N_{\mathrm{e}}}
$$

Regret Analysis of ETC (cont'd)

4. From steps 1-3: with probability $1-\delta$,

$$
\text { Regret }_{T} \leq N_{\mathrm{e}} K+T \sqrt{2 \ln (2 K / \delta) / N_{\mathrm{e}}}
$$

Take any N_{e} so that $N_{\mathrm{e}} \rightarrow \infty$ and $N_{\mathrm{e}} / T \rightarrow 0$ (e.g., $N_{\mathrm{e}}=\sqrt{T}$): sublinear regret!

Regret Analysis of ETC (cont'd)

4. From steps 1-3: with probability $1-\delta$,

$$
\text { Regret }_{T} \leq N_{\mathrm{e}} K+T \sqrt{2 \ln (2 K / \delta) / N_{\mathrm{e}}}
$$

Take any N_{e} so that $N_{\mathrm{e}} \rightarrow \infty$ and $N_{\mathrm{e}} / T \rightarrow 0$ (e.g., $N_{\mathrm{e}}=\sqrt{T}$): sublinear regret!

Minimize over N_{e} : (won't bore you with algebra)

$$
\text { optimal } N_{\mathrm{e}}=\left(\frac{T \sqrt{\ln (2 K / \delta) / 2}}{K}\right)^{2 / 3}
$$

Regret Analysis of ETC (cont'd)

4. From steps 1-3: with probability $1-\delta$,

$$
\operatorname{Regret}_{T} \leq N_{\mathrm{e}} K+\mathbb{T} \sqrt{2 \ln (2 K / \delta) / N_{\mathrm{e}}}
$$

Take any N_{e} so that $N_{\mathrm{e}} \rightarrow \infty$ and $N_{\mathrm{e}} / T \rightarrow 0$ (e.g., $N_{\mathrm{e}}=\sqrt{T}$): sublinear regret!

Minimize over N_{e} : (won't bore you with algebra)

$$
\text { optimal } N_{\mathrm{e}}=\left(\frac{T \sqrt{\ln (2 K / \delta) / 2}}{K}\right)^{2 / 3}
$$

(A bit more algebra to plug optimal N_{e} into $\operatorname{Regret}_{T}$ equation above)

$$
\Rightarrow \text { Regret }_{T} \leq 3 T^{2 / 3}(K \ln (2 K / \delta) / 2)^{1 / 3}
$$

$$
\omega / p \geq 1-\delta
$$

Today

- Recap
- Explore-then-commit (ETC)
- ε-greedy

ε-greedy

ε-greedy

ETC very abrupt (huge difference between exploration and exploitation stages)

ε-greedy

ETC very abrupt (huge difference between exploration and exploitation stages) ε-greedy like a smoother version of ETC:

ε-greedy

ETC very abrupt (huge difference between exploration and exploitation stages)
ε-greedy like a smoother version of ETC:
at every step, do pure greedy w/p $1-\varepsilon$, and do pure exploration $\mathrm{w} / \mathrm{p} \varepsilon$

ε-greedy

ETC very abrupt (huge difference between exploration and exploitation stages)
ε-greedy like a smoother version of ETC:
at every step, do pure greedy w/p $1-\varepsilon$, and do pure exploration $\mathrm{w} / \mathrm{p} \varepsilon$
Initialize $\hat{\mu}_{0}=\cdots=\hat{\mu}_{K}=1$

ε-greedy

ETC very abrupt (huge difference between exploration and exploitation stages)
ε-greedy like a smoother version of ETC:
at every step, do pure greedy w/p $1-\varepsilon$, and do pure exploration $\mathrm{w} / \mathrm{p} \varepsilon$
Initialize $\hat{\mu}_{0}=\cdots=\hat{\mu}_{K}=1$
For $t=0, \ldots, T-1$:
Sample $E_{t} \sim \operatorname{Bernoulli}(\varepsilon)$

ε-greedy

ETC very abrupt (huge difference between exploration and exploitation stages)
ε-greedy like a smoother version of ETC:
at every step, do pure greedy w/p $1-\varepsilon$, and do pure exploration $\mathrm{w} / \mathrm{p} \varepsilon$
Initialize $\hat{\mu}_{0}=\cdots=\hat{\mu}_{K}=1$
For $t=0, \ldots, T-1$:
Sample $E_{t} \sim \operatorname{Bernoulli}(\varepsilon)$
If $E_{t}=0$, choose $a_{t} \sim \operatorname{Uniform}(1, \ldots, K) \quad$ (pure explore)

ε-greedy

ETC very abrupt (huge difference between exploration and exploitation stages)
ε-greedy like a smoother version of ETC:
at every step, do pure greedy w/p $1-\varepsilon$, and do pure exploration $\mathrm{w} / \mathrm{p} \varepsilon$
Initialize $\hat{\mu}_{0}=\cdots=\hat{\mu}_{K}=1$
For $t=0, \ldots, T-1$:
Sample $E_{t} \sim \operatorname{Bernoulli}(\varepsilon)$
If $E_{t}=0$, choose $a_{t} \sim \operatorname{Uniform}(1, \ldots, K) \quad$ (pure explore)
If $E_{t}=1$, choose $a_{t}=\arg \max _{k \in\{1, \ldots, K\}} \hat{\mu}_{k}$
(pure exploit)

ε-greedy

ETC very abrupt (huge difference between exploration and exploitation stages)
ε-greedy like a smoother version of ETC:
at every step, do pure greedy w/p $1-\varepsilon$, and do pure exploration $\mathrm{w} / \mathrm{p} \varepsilon$
Initialize $\hat{\mu}_{0}=\cdots=\hat{\mu}_{K}=1$
For $t=0, \ldots, T-1$:
Sample $E_{t} \sim \operatorname{Bernoulli}(\varepsilon)$
If $E_{t}=1$, choose $a_{t} \sim \operatorname{Uniform}(1, \ldots, K) \quad$ (pure explore)
If $E_{t}=0$, choose $a_{t}=\arg \max _{k \in\{1, \ldots K\}} \hat{\mu}_{k} \quad$ (pure exploit)
Update $\hat{\mu}_{a_{t}}$

ε-greedy (cont'd)

ε-greedy (cont'd)

Can also allow ε to depend on t, usually so that it decreases:

ε-greedy (cont'd)

Can also allow ε to depend on t, usually so that it decreases: the more learned by time t, the less exploration needed at/after time t

ε-greedy (cont'd)

Can also allow ε to depend on t, usually so that it decreases: the more learned by time t, the less exploration needed at/after time t It turns out that ε-greedy with $\varepsilon_{t}=\left(\frac{K \ln (t)}{t}\right)^{1 / 3}$ also achieves

$$
\operatorname{Regret}_{t}=\tilde{O}\left(t^{2 / 3} K^{1 / 3}\right),
$$

where $\tilde{O}(\cdot)$ hides logarithmic factors

ε-greedy (cont'd)

Can also allow ε to depend on t, usually so that it decreases: the more learned by time t, the less exploration needed at/after time t
It turns out that ε-greedy with $\varepsilon_{t}=\left(\frac{K \ln (t)}{t}\right)^{1 / 3}$ also achieves

$$
\operatorname{Regret}_{t}=\tilde{O}\left(t^{2 / 3} K^{1 / 3}\right),
$$

where $\tilde{O}(\cdot)$ hides logarithmic factors

- Regret rate (ignoring log factors) is the same as ETC, but holds for all t, not just the full time horizon T

ε-greedy (cont'd)

Can also allow ε to depend on t, usually so that it decreases: the more learned by time t, the less exploration needed at/after time t
It turns out that ε-greedy with $\varepsilon_{t}=\left(\frac{K \ln (t)}{t}\right)^{1 / 3}$ also achieves

$$
\operatorname{Regret}_{t}=\tilde{O}\left(t^{2 / 3} K^{1 / 3}\right),
$$

where $\tilde{O}(\cdot)$ hides logarithmic factors

- Regret rate (ignoring log factors) is the same as ETC, but holds for all t, not just the full time horizon T
- Nothing in ε-greedy (including ε_{t} above) depends on T, so don't need to know horizon!

Today

- Recap
- Explore-then-commit (ETC)
- ε-greedy

Today's summary:

Today's summary:

Explore-then-commit and ε-greedy:

- balance exploration with exploitation
- Achieve sublinear regret of $\tilde{O}\left(T^{2 / 3} K^{1 / 3}\right)$
- Exploration is non-adaptive (bad)

Today's summary:

Explore-then-commit and ε-greedy:

- balance exploration with exploitation
- Achieve sublinear regret of $\tilde{O}\left(T^{2 / 3} K^{1 / 3}\right)$
- Exploration is non-adaptive (bad)

Next time:

- Upper Confidence Bound (UCB) explores adaptively
- Achieves regret $\tilde{O}(\sqrt{T K})$

Today's summary:

Explore-then-commit and ε-greedy:

- balance exploration with exploitation
- Achieve sublinear regret of $\tilde{O}\left(T^{2 / 3} K^{1 / 3}\right)$
- Exploration is non-adaptive (bad)

Next time:

- Upper Confidence Bound (UCB) explores adaptively
- Achieves regret $\tilde{O}(\sqrt{T K})$

1-minute feedback form: https://forms.gle/2mKHGRMCpFTRMQqd8

Upper Confidence Bound (UCB)

Upper Confidence Bound (UCB)

Intuition: maintain confidence intervals for mean of each arm and use them to focus exploration on most promising arms

Upper Confidence Bound (UCB)

Intuition: maintain confidence intervals for mean of each arm and use them to focus exploration on most promising arms

First: how to construct confidence intervals?

Upper Confidence Bound (UCB)

Intuition: maintain confidence intervals for mean of each arm and use them to focus exploration on most promising arms

First: how to construct confidence intervals?
Recall Hoeffding inequality:
Sample mean of N i.i.d. samples on [0,1] satisfies

$$
|\hat{\mu}-\mu| \leq \sqrt{\frac{\ln (2 / \delta)}{2 N}} \mathrm{w} / \mathrm{p} 1-\delta
$$

Upper Confidence Bound (UCB)

Intuition: maintain confidence intervals for mean of each arm and use them to focus exploration on most promising arms

First: how to construct confidence intervals?
Recall Hoeffding inequality:
Sample mean of N i.i.d. samples on [0,1] satisfies

$$
|\hat{\mu}-\mu| \leq \sqrt{\frac{\ln (2 / \delta)}{2 N}} \mathrm{w} / \mathrm{p} 1-\delta
$$

Worked for ETC b/c exploration phase was i.i.d., but in general the rewards from a given arm are not i.i.d. due to adaptivity of action selections

Constructing confidence intervals

Constructing confidence intervals

Notation:

Constructing confidence intervals

Notation:

Let $N_{t}^{(k)}=\sum_{\tau=0}^{t-1} 1_{\left\{a_{\tau}=k\right\}}$ be the number of times arm k is pulled before time t

Constructing confidence intervals

Notation:

Let $N_{t}^{(k)}=\sum_{\tau=0}^{t-1} 1_{\left\{a_{\tau}=k\right\}}$ be the number of times arm k is pulled before time t
Let $\hat{\mu}_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{\tau=0}^{t-1} 1_{\left\{a_{\tau}=k\right\}} r_{\tau}$ be the sample mean reward of arm k up to time t

Constructing confidence intervals

Notation:

Let $N_{t}^{(k)}=\sum_{\tau=0}^{t-1} 1_{\left\{a_{\tau}=k\right\}}$ be the number of times arm k is pulled before time t
Let $\hat{\mu}_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{\tau=0}^{t-1} 1_{\left\{a_{\tau}=k\right\}} r_{\tau}$ be the sample mean reward of arm k up to time t
So want Hoeffding to give us something like

$$
\left|\hat{\mu}_{t}^{(k)}-\mu\right| \leq \sqrt{\frac{\ln (2 / \delta)}{2 N_{t}^{(k)}}} \mathrm{w} / \mathrm{p} 1-\delta
$$

Constructing confidence intervals

Notation:

Let $N_{t}^{(k)}=\sum_{\tau=0}^{t-1} 1_{\left\{a_{\tau}=k\right\}}$ be the number of times arm k is pulled before time t
Let $\hat{\mu}_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{\tau=0}^{t-1} 1_{\left\{a_{\tau}=k\right\}} r_{\tau}$ be the sample mean reward of arm k up to time t
So want Hoeffding to give us something like

(unless a_{t} chosen very simply, like exploration phase of ETC)

Constructing confidence intervals (cont'd)

The problem: Although $r_{\tau} \mid a_{\tau}=k$ is an i.i.d. draw from $\nu^{(k)}$,

Constructing confidence intervals (cont'd)

The problem: Although $r_{\tau} \mid a_{\tau}=k$ is an i.i.d. draw from $\nu^{(k)} \underset{\substack{\text { (all arm indexing }(k) \text { now in superscripts } \\ \text { subscripts reserved for time index }}}{(1)}$

Constructing confidence intervals (cont'd)

The problem: Although $r_{\tau} \mid a_{\tau}=k$ is an i.i.d. draw from $\nu^{(k)}$, $\underset{\substack{\text { all arm indexing }(k) \text { now in superscripts } \\ \text { subscripts reserved for time index } t)}}{ }$
$\hat{\mu}_{t}^{(k)}$ is the sample mean of a random number $N_{t}^{(k)}$ of returns

Constructing confidence intervals (cont'd)

The problem: Although $r_{\tau} \mid a_{\tau}=k$ is an i.i.d. draw from $\nu^{(k)}$, (all arm indexing (k) now in superscripts subsipts reserved for time index $)$ $\hat{\mu}_{t}^{(k)}$ is the sample mean of a random number $N_{t}^{(k)}$ of returns in general $N_{t}^{(k)}$ will depend on those returns themselves

Constructing confidence intervals (cont'd)

The problem: Although $r_{\tau} \mid a_{\tau}=k$ is an i.i.d. draw from $\nu^{(k)}$, (all arm indexing (k) now in superscriptsts reserved for time index $)$ $\hat{\mu}_{t}^{(k)}$ is the sample mean of a random number $N_{t}^{(k)}$ of returns in general $N_{t}^{(k)}$ will depend on those returns themselves (i.e., how often we select arm k depends on the historical returns of arm k)

Constructing confidence intervals (cont'd)

The problem: Although $r_{\tau} \mid a_{\tau}=k$ is an i.i.d. draw from $\nu^{(k)}$, (all arm indexing (k) now in superscriptsts reserved for time index $)$ $\hat{\mu}_{t}^{(k)}$ is the sample mean of a random number $N_{t}^{(k)}$ of returns in general $N_{t}^{(k)}$ will depend on those returns themselves (i.e., how often we select arm k depends on the historical returns of arm k)

Solution: First, imagine an infinite sequence of hypothetical i.i.d. draws from $\nu^{(k)}$:

$$
\tilde{r}_{0}^{(k)}, \tilde{r}_{1}^{(k)}, \tilde{r}_{2}^{(k)}, \tilde{r}_{3}^{(k)}, \ldots
$$

Constructing confidence intervals (cont'd)

The problem: Although $r_{\tau} \mid a_{\tau}=k$ is an i.i.d. draw from $\nu^{(k)}$, $\underset{\substack{\text { all arm indexing }(k) \text { now in superscripts } \\ \text { subscripts reserved for time index } t)}}{ }$ $\hat{\mu}_{t}^{(k)}$ is the sample mean of a random number $N_{t}^{(k)}$ of returns in general $N_{t}^{(k)}$ will depend on those returns themselves (i.e., how often we select arm k depends on the historical returns of arm k)

Solution: First, imagine an infinite sequence of hypothetical i.i.d. draws from $\nu^{(k)}$:

$$
\tilde{r}_{0}^{(k)}, \tilde{r}_{1}^{(k)}, \tilde{r}_{2}^{(k)}, \tilde{r}_{3}^{(k)}, \ldots
$$

Then we can think of every time we pull arm k, just pulling the next $\tilde{r}_{i}^{(k)}$ off this list,

Constructing confidence intervals (cont'd)

The problem: Although $r_{\tau} \mid a_{\tau}=k$ is an i.i.d. draw from $\nu^{(k)}$, $\begin{gathered}\text { (all arm indexing }(k) \text { now in superscripts } \\ \text { subscripts reserved for time index } f)\end{gathered}$ $\hat{\mu}_{t}^{(k)}$ is the sample mean of a random number $N_{t}^{(k)}$ of returns in general $N_{t}^{(k)}$ will depend on those returns themselves (i.e., how often we select arm k depends on the historical returns of arm k)

Solution: First, imagine an infinite sequence of hypothetical i.i.d. draws from $\nu^{(k)}$:

$$
\tilde{r}_{0}^{(k)}, \tilde{r}_{1}^{(k)}, \tilde{r}_{2}^{(k)}, \tilde{r}_{3}^{(k)}, \ldots
$$

Then we can think of every time we pull arm k, just pulling the next $\tilde{r}_{i}^{(k)}$ off this list,

$$
\text { i.e., } r_{\tau}^{(k)} \mid a_{\tau}=k \text { to simply equal to } \tilde{r}_{N_{\tau}^{k}}^{(k)} \text {, and hence } \hat{\mu}_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{i=0}^{N_{t}^{(k)}-1} \tilde{r}_{i}^{(k)}
$$

Constructing confidence intervals (cont'd)

Recall: $\hat{\mu}_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{i=0}^{N_{1(k)}-1} \tilde{r}_{i}^{(k)}$

Constructing confidence intervals (cont'd)

Recall: $\hat{\mu}_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{i=0}^{N^{(k)}-1} \tilde{r}_{i}^{(k)} \quad$ Now define: $\tilde{\mu}_{n}^{(k)}=\frac{1}{n} \sum_{i=0}^{n-1} \tilde{r}_{i}^{(k)} \quad\left(\Rightarrow \hat{\mu}_{t}^{(k)}=\tilde{\mu}_{N_{t}^{(k)}}^{(k)}\right)$

Constructing confidence intervals (cont'd)

Recall: $\hat{\mu}_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{i=0}^{N(k)-1} r_{i}^{(k)} \quad$ Now define: $\tilde{\mu}_{n}^{(k)}=\frac{1}{n} \sum_{i=0}^{n-1} \tilde{r}_{i}^{(k)}\left(\Rightarrow \hat{\mu}_{t}^{(k)}=\tilde{\mu}_{N(k)}^{(k)}\right)$
Now Hoeffding applies to $\tilde{\mu}_{n}^{(k)}$ because n fixed/nonrandom

Constructing confidence intervals (cont'd)

Recall: $\quad \hat{\mu}_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{i=0}^{N_{t}^{(k)}-1} \tilde{r}_{i}^{(k)} \quad$ Now define: $\quad \tilde{\mu}_{n}^{(k)}=\frac{1}{n} \sum_{i=0}^{n-1} \tilde{r}_{i}^{(k)} \quad\left(\Rightarrow \hat{\mu}_{t}^{(k)}=\tilde{\mu}_{N_{t}^{(k)}}^{(k)}\right)$
Now Hoeffding applies to $\tilde{\mu}_{n}^{(k)}$ because n fixed/nonrandom and we know $\hat{\mu}_{t}^{(k)}=\tilde{\mu}_{n}^{(k)}$ for some $n \leq t$ (but which one is random)

Constructing confidence intervals (cont'd)

Recall: $\hat{\mu}_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{i=0}^{N(k)-1} \tilde{r}_{i}^{(k)} \quad$ Now define: $\tilde{\mu}_{n}^{(k)}=\frac{1}{n} \sum_{i=0}^{n-1} r_{i}^{(k)} \quad\left(\Rightarrow \hat{\mu}_{t}^{(k)}=\tilde{\mu}_{N_{l}^{(k)}}^{(k)}\right)$
Now Hoeffding applies to $\tilde{\mu}_{n}^{(k)}$ because n fixed/nonrandom and we know $\hat{\mu}_{t}^{(k)}=\tilde{\mu}_{n}^{(k)}$ for some $n \leq t$ (but which one is random)

Recall union bound in ETC analysis made Hoeffding hold simultaneously over $k \leq K$

Constructing confidence intervals (cont'd)

Recall: $\hat{\mu}_{t}^{(k)}=\frac{1}{N_{t}^{(k)}} \sum_{i=0}^{N(k)-1} r_{i}^{(k)} \quad$ Now define: $\tilde{\mu}_{n}^{(k)}=\frac{1}{n} \sum_{i=0}^{n-1} \tilde{r}_{i}^{(k)}\left(\Rightarrow \hat{\mu}_{t}^{(k)}=\tilde{\mu}_{N(k)}^{(k)}\right)$
Now Hoeffding applies to $\tilde{\mu}_{n}^{(k)}$ because n fixed/nonrandom and we know $\hat{\mu}_{t}^{(k)}=\tilde{\mu}_{n}^{(k)}$ for some $n \leq t$ (but which one is random)

Recall union bound in ETC analysis made Hoeffding hold simultaneously over $k \leq K$

$$
\begin{gathered}
\text { Hoeffding + union bound over } n \leq t \text { : } \\
\Rightarrow \mathbb{P}\left(\forall n \leq t,\left|\tilde{\mu}_{n}^{(k)}-\mu^{(k)}\right| \leq \sqrt{\ln (2 t / \delta) / 2 n}\right) \geq 1-\delta
\end{gathered}
$$

Constructing confidence intervals (cont'd)

Hoeffding + union bound over $n \leq t$:

$$
\Rightarrow \mathbb{P}\left(\forall n \leq t,\left|\tilde{\mu}_{n}^{(k)}-\mu^{(k)}\right| \leq \sqrt{\ln (2 t / \delta) / 2 n}\right) \geq 1-\delta
$$

Constructing confidence intervals (cont'd)

Hoeffding + union bound over $n \leq t$:
$\Rightarrow \mathbb{P}\left(\forall n \leq t,\left|\tilde{\mu}_{n}^{(k)}-\mu^{(k)}\right| \leq \sqrt{\ln (2 t / \delta) / 2 n}\right) \geq 1-\delta$
But since in particular $N_{t}^{(k)} \leq t$, this immediately implies

$$
\mathbb{P}\left(\left|\tilde{\mu}_{N_{t}^{(k)}}^{(k)}-\mu^{(k)}\right| \leq \sqrt{\ln (2 t / \delta) / 2 N_{t}^{(k)}}\right) \geq 1-\delta
$$

Constructing confidence intervals (cont'd)

Hoeffding + union bound over $n \leq t$:
$\Rightarrow \mathbb{P}\left(\forall n \leq t,\left|\tilde{\mu}_{n}^{(k)}-\mu^{(k)}\right| \leq \sqrt{\ln (2 t / \delta) / 2 n}\right) \geq 1-\delta$
But since in particular $N_{t}^{(k)} \leq t$, this immediately implies

$$
\mathbb{P}\left(\left|\tilde{\mu}_{N_{t}^{(k)}}^{(k)}-\mu^{(k)}\right| \leq \sqrt{\ln (2 t / \delta) / 2 N_{t}^{(k)}}\right) \geq 1-\delta
$$

And then since $\tilde{\mu}_{N_{t}^{(k)}}^{(k)}=\hat{\mu}_{t}^{(k)}$, we immediately get the kind of result we want:

$$
\mathbb{P}\left(\left|\hat{\mu}_{t}^{(k)}-\mu^{(k)}\right| \leq \sqrt{\ln (2 t / \delta) / 2 N_{t}^{(k)}}\right) \geq 1-\delta
$$

Constructing confidence intervals (cont'd)

Hoeffding + union bound over $n \leq t$:

$$
\Rightarrow \mathbb{P}\left(\forall n \leq t,\left|\tilde{\mu}_{n}^{(k)}-\mu^{(k)}\right| \leq \sqrt{\ln (2 t / \delta) / 2 n}\right) \geq 1-\delta
$$

But since in particular $N_{t}^{(k)} \leq t$, this immediately implies

$$
\mathbb{P}\left(\left|\tilde{\mu}_{N_{t}^{(k)}}^{(k)}-\mu^{(k)}\right| \leq \sqrt{\ln (2 t / \delta) / 2 N_{t}^{(k)}}\right) \geq 1-\delta
$$

And then since $\tilde{\mu}_{N_{t}^{(k)}}^{(k)}=\hat{\mu}_{t}^{(k)}$, we immediately get the kind of result we want:

$$
\mathbb{P}\left(\left|\hat{\mu}_{t}^{(k)}-\mu^{(k)}\right| \leq \sqrt{\ln (2 \hat{t} t \delta) / 2 N_{t}^{(k)}}\right) \geq 1-\delta
$$

Summary: to deal with problem of non-i.i.d. rewards that enter into $\hat{\mu}_{t}^{(k)}$, we used rewards' conditional i.i.d. property along with a union bound to get Hoeffding bound that is wider by just a factor of t in the log term

