Bandits: Explore-Then-Commit and ε -greedy

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2022

- Recap
- Explore-then-commit (ETC)
- ε -greedy

Recap

- Reinforcement learning is an interactive form of machine learning
 - Applicable whenever you want to learn to do something better
 - One component is learning while acting: exploration vs exploitation
 - Other component is optimization
- Multi-armed bandits (or MAB or just bandits)
 - Exemplify first component (exploration vs exploitation)
 - Pure greedy not much better than pure exploration (linear regret)
- Today: let's do better than linear regret!

Notes from yesterday

1.
$$\operatorname{Regret}_T = T\mu^{\star} - \sum_{t=0}^{T-1} \mu_{a_t} = \sum_{t=0}^{T-1} (\mu^{\star} - \mu_{a_t})$$
Expected regret at time t given that you chose arm a_t

- 2. Recall Regret_T = $\Omega(T)$, i.e., linear regret
 - $\Rightarrow \text{ for some } c>0 \text{ and } T_0, \quad \text{Regret}_T \geq cT \quad \forall T \geq T_0$ (and $\text{Regret}_T = O(T)$ means same except with $\leq cT$)
- 3. Why is linear regret bad? \Rightarrow average regret := $\frac{\text{Regret}_T}{T} \nrightarrow 0$

- Recap
 - Explore-then-commit (ETC)
 - ε -greedy

What we learned last lecture:

Lesson from pure greedy: exploring each arm once is not enough Lesson from pure exploration: exploring each arm too much is bad too

Let's allow both, and see how best to trade them off

Plan: (1) try each arm <u>multiple</u> times, (2) compute the empirical mean of each arm, (3) commit to the one that has the highest empirical mean

Explore-Then-Commit (ETC)

 $N_{\rm e} = \underline{\text{N}}$ umber of $\underline{\text{e}}$ xplorations

Algorithm hyper parameter $N_{\rm e} < T/K$ (we assume T >> K)

For k = 1, ..., K: (# Exploration phase)

Pull arm k $N_{\rm e}$ times to observe $\{r_i^{(k)}\}_{i=1}^{N_{\rm e}} \sim \nu_k$ Calculate arm k's empirical mean: $\hat{\mu}_k = \frac{1}{N_{\rm e}} \sum_{i=1}^{N_{\rm e}} r_i^{(k)}$

For $t = N_e K, ..., (T-1)$: (# Exploitation phase)

Pull the best empirical arm $a_t = \arg\max_{i \in [K]} \hat{\mu}_i$

Regret Analysis Strategy

- 1. Calculate regret during exploration stage
- 2. Quantify error of arm mean estimates at end of exploration stage
- 3. Using step 2, calculate regret during exploitation stage (Actually, will only be able to upper-bound total regret in steps 1-3)
- 4. Minimize our upper-bound over $N_{\rm e}$

But First... An Important Inequality

Hoeffding inequality

Given N i.i.d samples
$$\{r_i\}_{i=1}^N \sim \nu \in \Delta([0,1])$$
 with mean μ , let $\hat{\mu} := \frac{1}{N} \sum_{i=1}^N r_i$.

Then with probability at least $1 - \delta$,

$$|\hat{\mu} - \mu| \leq \sqrt{\frac{\ln(2/\delta)}{2N}}$$

- Why is this useful? Quantify error of arm mean estimates at end of exploration stage (if all estimates are close, arm we commit to must be close to best)
- Why is this true? Full proof beyond course scope, but intuition easier...

Intuition Behind Hoeffding

Hoeffding inequality: sample mean of N i.i.d. samples on [0,1] satisfies

$$\left| \hat{\mu} - \mu \right| \le \sqrt{\frac{\ln(2/\delta)}{2N}} \text{ w/p } 1 - \delta$$

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):

- CLT $\Rightarrow \hat{\mu} \mu \approx$ Gaussian w/ mean 0 and standard deviation $\propto \sqrt{1/N}$
- CLT standard deviation explains the Hoeffding denominator
- Numerator is because Gaussian has double-exponential tails, i.e., probability of a deviation from the mean by x scales roughly like e^{-x^2} , which, when inverted (i.e., set $\delta = e^{-x^2}$ and solve for x) gives $x = \sqrt{\ln(1/\delta)}$
- Don't worry too much about the extra 2's... CLT is only approximate!

Back to Regret Analysis of ETC

1. Calculate regret during exploration stage

$$\operatorname{Regret}_{N_{\mathbf{e}}K} \leq N_{\mathbf{e}}K$$
 with probability 1

- 2. Quantify error of arm mean estimates at end of exploration stage
 - a) Hoeffding $\Rightarrow \mathbb{P}\left(|\hat{\mu}_k \mu_k| \leq \sqrt{\ln(2/\delta)/2N_{\mathrm{e}}}\right) \geq 1 \underbrace{\delta}_{\mathbb{P}(\forall k, A_1^c, \dots, A_K^c) \geq 1 \sum\limits_{k=1}^K \mathbb{P}(A_k)}$ b) Recall Union/Boole/Bonferroni bound: $\mathbb{P}(\text{any of } A_1, \dots, A_K) \leq \sum_{k=1}^K \mathbb{P}(A_k)$

 - c) $\delta \to \delta/K$, Union bound with $A_k = \left\{ |\hat{\mu}_k \mu_k| > \sqrt{\ln(2K/\delta)/2N_e} \right\}$, and Hoeffding:

$$\Rightarrow \mathbb{P}\left(\forall k, |\hat{\mu}_k - \mu_k| \leq \sqrt{\ln(2K/\delta)/2N_e}\right) \geq 1 - \delta$$

Regret Analysis of ETC (cont'd)

2. Quantify error of arm mean estimates at end of exploration stage

$$\mathbb{P}\left(\forall k, |\hat{\mu}_k - \mu_k| \le \sqrt{\ln(2K/\delta)/2N_{\mathsf{e}}}\right) \ge 1 - \delta$$

- 3. Using step 2, calculate regret during exploitation stage:
- Denote (apparent) best arm after exploration stage by \hat{k} and actual best arm by k^* regret at each step of exploitation phase = $\mu_{k^*} \mu_{\hat{k}}$

Regret Analysis of ETC (cont'd)

4. From steps 1-3: with probability $1 - \delta$,

$$\operatorname{Regret}_T \leq N_{\mathbf{e}}K + T\sqrt{2\ln(2K/\delta)/N_{\mathbf{e}}}$$

Take any $N_{\rm e}$ so that $N_{\rm e} \to \infty$ and $N_{\rm e}/T \to 0$ (e.g., $N_{\rm e} = \sqrt{T}$): sublinear regret!

Minimize over N_e : (won't bore you with algebra)

optimal
$$N_{\rm e} = \left(\frac{T\sqrt{\ln(2K/\delta)/2}}{K}\right)^{2/3}$$

(A bit more algebra to plug optimal $N_{\mathbf{e}}$ into Regret_T equation above)

$$\Rightarrow \operatorname{Regret}_{T} \leq 3T^{2/3}(K \ln(2K/\delta)/2)^{1/3}$$

- Recap
- Explore-then-commit (ETC)
 - ε -greedy

ε -greedy

ETC very abrupt (huge difference between exploration and exploitation stages) ε -greedy like a smoother version of ETC: at *every* step, do pure greedy w/p $1 - \varepsilon$, and do pure exploration w/p ε

```
\begin{split} &\text{Initialize } \hat{\mu}_0 = \dots = \hat{\mu}_K = 1 \\ &\text{For } t = 0, \dots, T-1 \text{:} \\ &\text{Sample } E_t \sim \text{Bernoulli}(\varepsilon) \\ &\text{If } E_t = 1 \text{, choose } a_t \sim \text{Uniform}(1, \dots, K) &\text{(pure explore)} \\ &\text{If } E_t = 0 \text{, choose } a_t = \arg\max_{k \in \{1, \dots, K\}} \hat{\mu}_k &\text{(pure exploit)} \\ &\text{Update } \hat{\mu}_{a_t} \end{split}
```

ε -greedy (cont'd)

Can also allow ε to depend on t, usually so that it decreases: the more learned by time t, the less exploration needed at/after time t

It turns out that
$$\varepsilon$$
-greedy with $\varepsilon_t = \left(\frac{K \ln(t)}{t}\right)^{1/3}$ also achieves
$$\mathrm{Regret}_t = \tilde{O}(t^{2/3}K^{1/3}),$$

where $ilde{O}(\ \cdot\)$ hides logarithmic factors

- Regret rate (ignoring log factors) is the same as ETC, but holds for <u>all</u> t, not just the full time horizon T
- Nothing in ε -greedy (including ε_t above) depends on T, so don't need to know horizon!

- Recap
- Explore-then-commit (ETC)
- \sim ϵ -greedy

Today's summary:

Explore-then-commit and ε -greedy:

- balance exploration with exploitation
- Achieve sublinear regret of $\tilde{O}(T^{2/3}K^{1/3})$
- Exploration is non-adaptive (bad)

Next time:

- Upper Confidence Bound (UCB) explores adaptively
- Achieves regret $\tilde{O}(\sqrt{TK})$

1-minute feedback form: https://forms.gle/2mKHGRMCpFTRMQqd8