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Recap

•Pure greedy and pure exploration achieve linear regret

•Explore-then-commit (ETC) and -greedy:ε
•balance exploration with exploitation
•Achieve sublinear regret of Õ(T2/3)
•Exploration is non-adaptive

•Today: can we do better than a rate of ?T2/3

•First, review a couple points of common confusion from last lecture
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to one that holds uniformly over a collection of random variables , i.e.,


Xi
X1, …, Xn

Xi ≤ B(δ) w/p 1 − δ, ∀i
X1, …, Xn

Xi ≤ Bn(δ) ∀i, w/p 1 − δ

i.e.,   ℙ(Xi ≤ B(δ)) ≥ 1 − δ, ∀i ⟶ ℙ(∀i, Xi ≤ Bn(δ)) ≥ 1 − δ
What is ?Bn
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and use them to focus exploration on most promising arms

First: how to construct confidence intervals?
Recall Hoeffding inequality: 


Sample mean of  i.i.d. samples on  satisfies


  w/p 

N [0,1]

̂μ − μ ≤
ln(2/δ)

2N
1 − δ

Worked for ETC b/c exploration phase was i.i.d., but in general the 

rewards from a given arm are not i.i.d. due to adaptivity of action selections



Constructing confidence intervals



Constructing confidence intervals
Notation:



Constructing confidence intervals

Let  be the number of times arm  is pulled before time N(k)
t =

t−1

∑
τ=0

1{aτ=k} k t

Notation:



Constructing confidence intervals

Let  be the number of times arm  is pulled before time N(k)
t =

t−1

∑
τ=0

1{aτ=k} k t

Let   be the sample mean reward of arm  up to time ̂μ(k)
t =

1
N(k)

t

t−1

∑
τ=0

1{aτ=k}rτ k t

Notation:



Constructing confidence intervals

Let  be the number of times arm  is pulled before time N(k)
t =

t−1

∑
τ=0

1{aτ=k} k t

Let   be the sample mean reward of arm  up to time ̂μ(k)
t =

1
N(k)

t

t−1

∑
τ=0

1{aτ=k}rτ k t

Notation:

So want Hoeffding to give us something like


  w/p ̂μ(k)
t − μ ≤

ln(2/δ)
2N(k)

t
1 − δ
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Let  be the number of times arm  is pulled before time N(k)
t =

t−1

∑
τ=0

1{aτ=k} k t

Let   be the sample mean reward of arm  up to time ̂μ(k)
t =

1
N(k)

t

t−1

∑
τ=0

1{aτ=k}rτ k t

Notation:

So want Hoeffding to give us something like


  w/p ̂μ(k)
t − μ ≤

ln(2/δ)
2N(k)

t
1 − δ

But this is generally FALSE 

(unless  chosen very simply, like exploration phase of ETC)at
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K k

ℙ (∀k ≤ K, t < T, | ̂μ(k)
t − μ(k) | ≤ ln(2TK/δ)/2N(k)

t ) ≥ 1 − δ

So we have a valid  confidence interval (CI) for  at time  from last equation:


,


i.e., 

(1 − δ) μ(k) t

ℙ ( | ̂μ(k)
t − μ(k) | ≤ ln(2t/δ)/2N(k)

t ) ≥ 1 − δ

[ ̂μ(k)
t − ln(2t/δ)/2N(k)

t , ̂μ(k)
t + ln(2t/δ)/2N(k)

t ]
But analysis easier if CIs are uniformly valid over time  and arm t k
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t ≤ T t < T

Valid for any bandit algorithm!

Of independent statistical interest
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Optimism in the face of uncertainty is an important principle in RL


It basically says to give each arm the benefit of the doubt, and basically act as if that 
arm is as good as it could plausibly be in choosing an action

In UCB, this means constructing a CI (i.e., set of plausible values) for each , and 
being greedy with respect to the upper bound of the CIs

μ(k)

Since each upper bound is , this means when we select 

, at least one of the two terms is large, i.e., either
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t + ln(2KT/δ)/2N(k)

t
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1.  large, i.e., we haven’t explored arm  much (exploration)ln(2KT/δ)/2N(k)
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2.  large, i.e., based on what we’ve seen so far, arm  is the best (exploitation)̂μ(k)
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Note that the exploration here is adaptive, i.e., focused on most promising arms
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UCB Regret Analysis Strategy

1. Bound regret at each time step
2. Bound the sum of those bounds over time steps



UCB regret at each time step

μ(k⋆) − μ(at)

Recall  is optimal arm, so  is true best arm mean. Thus time step  regret is:k⋆ μ(k⋆) t



Sum of UCB per-time-step regrets

1. per-time-step regret bound μ(k⋆) − μ(at) ≤ 2 ln(2KT/δ)/N(at)
t w/p 1 − δ

2.
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UCB total regret

In fact, a more sophisticated analysis can get:    RegretT = Õ( KT)  w/p 1 − δ

Finally, putting it all together, we get:
RegretT ≤ 2K T 2 ln(KT/δ)  w/p 1 − δ

= Õ( T)  w/p 1 − δ
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