
 
Bandits: Regret Lower Bound

and Instance-Dependent Regret
 

Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning  

Fall 2022

Today

• Feedback from last lecture

• Recap

• Regret lower bound

• Instance-dependent regret

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2. Main feedback: pace was good!
3. Pre-lecture posted lecture notes shouldn’t maintain breaks within slides

Today

• Feedback from last lecture

• Recap

• Regret lower bound

• Instance-dependent regret

Recap

Recap

•Pure greedy and pure exploration achieve linear regret O(T)

Recap

•Pure greedy and pure exploration achieve linear regret O(T)
•ETC and -greedy achieve sublinear regret of ε Õ(T2/3)

Recap

•Pure greedy and pure exploration achieve linear regret O(T)
•ETC and -greedy achieve sublinear regret of ε Õ(T2/3)
•UCB achieves sublinear regret of Õ(T)

Recap

•Pure greedy and pure exploration achieve linear regret O(T)
•ETC and -greedy achieve sublinear regret of ε Õ(T2/3)
•UCB achieves sublinear regret of Õ(T)
•Can we do even better?

Today

• Feedback from last lecture

• Recap

• Regret lower bound

• Instance-dependent regret

Can we do better than regret?Ω(T)

Can we do better than regret?Ω(T)
Short answer: no

Can we do better than regret?Ω(T)
Short answer: no

But how can we know that?

Can we do better than regret?Ω(T)
Short answer: no

But how can we know that?
Want to construct a lower bound on the achievable regret

Can we do better than regret?Ω(T)
Short answer: no

But how can we know that?
Want to construct a lower bound on the achievable regret

So far we our theoretical analysis has always considered a fixed algorithm and
analyzed it (by deriving a regret upper bound with high probability)

Can we do better than regret?Ω(T)
Short answer: no

But how can we know that?
Want to construct a lower bound on the achievable regret

So far we our theoretical analysis has always considered a fixed algorithm and
analyzed it (by deriving a regret upper bound with high probability)

To get a lower bound, we need to consider what regret could be achieved by any
algorithm, and show it can’t be better than some rate

Can we do better than regret?Ω(T)
Short answer: no

But how can we know that?
Want to construct a lower bound on the achievable regret

So far we our theoretical analysis has always considered a fixed algorithm and
analyzed it (by deriving a regret upper bound with high probability)

To get a lower bound, we need to consider what regret could be achieved by any
algorithm, and show it can’t be better than some rate

Useful mathematical device: oracle

An oracle has access to extra information not available to bandit algorithms.

Can we do better than regret?Ω(T)
Short answer: no

But how can we know that?
Want to construct a lower bound on the achievable regret

So far we our theoretical analysis has always considered a fixed algorithm and
analyzed it (by deriving a regret upper bound with high probability)

To get a lower bound, we need to consider what regret could be achieved by any
algorithm, and show it can’t be better than some rate

Useful mathematical device: oracle

An oracle has access to extra information not available to bandit algorithms.

If we can show that oracle can’t do better than some rate, then no algorithm can

Intuition for lower bound

Intuition for lower bound
1. CLT tells us that with i.i.d. samples from from a distribution , we can only

learn ’s mean to within
T ν

ν μ Ω(1/ T)

Intuition for lower bound
1. CLT tells us that with i.i.d. samples from from a distribution , we can only

learn ’s mean to within
T ν

ν μ Ω(1/ T)
2. Then since in a bandit, we get at most samples total, certainly we can’t

learn any of the arm means better than to within
T

Ω(1/ T)

Intuition for lower bound
1. CLT tells us that with i.i.d. samples from from a distribution , we can only

learn ’s mean to within
T ν

ν μ Ω(1/ T)
2. Then since in a bandit, we get at most samples total, certainly we can’t

learn any of the arm means better than to within
T

Ω(1/ T)
3. This means that if an arm is about away from the best arm , then

at no point during the bandit can we tell them apart with high probability
k̃ 1/ T k⋆

Intuition for lower bound
1. CLT tells us that with i.i.d. samples from from a distribution , we can only

learn ’s mean to within
T ν

ν μ Ω(1/ T)
2. Then since in a bandit, we get at most samples total, certainly we can’t

learn any of the arm means better than to within
T

Ω(1/ T)
3. This means that if an arm is about away from the best arm , then

at no point during the bandit can we tell them apart with high probability
k̃ 1/ T k⋆

4. Thus, we should expect to sample roughly as often as , which is at best
roughly times (if we ignore any other arms)

k̃ k⋆

T/2

Intuition for lower bound
1. CLT tells us that with i.i.d. samples from from a distribution , we can only

learn ’s mean to within
T ν

ν μ Ω(1/ T)
2. Then since in a bandit, we get at most samples total, certainly we can’t

learn any of the arm means better than to within
T

Ω(1/ T)
3. This means that if an arm is about away from the best arm , then

at no point during the bandit can we tell them apart with high probability
k̃ 1/ T k⋆

4. Thus, we should expect to sample roughly as often as , which is at best
roughly times (if we ignore any other arms)

k̃ k⋆

T/2
5. Finally, since the regret incurred each time we pull arm is , and we

pull it times, we get a regret lower bound of
k̃ 1/ T

T/2 1/ T × T/2 = Ω(T)

Coming up with an oracle

Coming up with an oracle
Any oracle will give us a lower bound, but if we make the oracle too strong, that
lower bound will be too low/conservative

Coming up with an oracle

What is an oracle that knows more than any bandit algorithm, but not too much?

Any oracle will give us a lower bound, but if we make the oracle too strong, that
lower bound will be too low/conservative

Coming up with an oracle

What is an oracle that knows more than any bandit algorithm, but not too much?
(also want oracle to be easy to study theoretically)

Any oracle will give us a lower bound, but if we make the oracle too strong, that
lower bound will be too low/conservative

Coming up with an oracle

What is an oracle that knows more than any bandit algorithm, but not too much?

Proposal: let the oracle see rewards from all arms at every time step

(also want oracle to be easy to study theoretically)

Any oracle will give us a lower bound, but if we make the oracle too strong, that
lower bound will be too low/conservative

Coming up with an oracle

What is an oracle that knows more than any bandit algorithm, but not too much?

Proposal: let the oracle see rewards from all arms at every time step
• This is definitely more than any bandit algorithm gets

(also want oracle to be easy to study theoretically)

Any oracle will give us a lower bound, but if we make the oracle too strong, that
lower bound will be too low/conservative

Coming up with an oracle

What is an oracle that knows more than any bandit algorithm, but not too much?

Proposal: let the oracle see rewards from all arms at every time step
• This is definitely more than any bandit algorithm gets
• But oracle still has to learn from data, and only gets ~ times as much data

as a bandit algorithm, which we might hope won’t change its regret rate in
K

T

(also want oracle to be easy to study theoretically)

Any oracle will give us a lower bound, but if we make the oracle too strong, that
lower bound will be too low/conservative

Coming up with an oracle

What is an oracle that knows more than any bandit algorithm, but not too much?

Proposal: let the oracle see rewards from all arms at every time step
• This is definitely more than any bandit algorithm gets
• But oracle still has to learn from data, and only gets ~ times as much data

as a bandit algorithm, which we might hope won’t change its regret rate in
K

T
• Theoretically, the oracle actually does see i.i.d. rewards from each arm

(also want oracle to be easy to study theoretically)

Any oracle will give us a lower bound, but if we make the oracle too strong, that
lower bound will be too low/conservative

Coming up with an oracle

What is an oracle that knows more than any bandit algorithm, but not too much?

Proposal: let the oracle see rewards from all arms at every time step
• This is definitely more than any bandit algorithm gets
• But oracle still has to learn from data, and only gets ~ times as much data

as a bandit algorithm, which we might hope won’t change its regret rate in
K

T
• Theoretically, the oracle actually does see i.i.d. rewards from each arm

(also want oracle to be easy to study theoretically)

Any oracle will give us a lower bound, but if we make the oracle too strong, that
lower bound will be too low/conservative

(oracle still has to pick a single arm to pull for each time)at

Coming up with an oracle

What is an oracle that knows more than any bandit algorithm, but not too much?

Proposal: let the oracle see rewards from all arms at every time step
• This is definitely more than any bandit algorithm gets
• But oracle still has to learn from data, and only gets ~ times as much data

as a bandit algorithm, which we might hope won’t change its regret rate in
K

T
• Theoretically, the oracle actually does see i.i.d. rewards from each arm

(also want oracle to be easy to study theoretically)

Additionally: oracle chooses all after seeing all arm rewards up to time

(one decision point makes theory easier)

at T

Any oracle will give us a lower bound, but if we make the oracle too strong, that
lower bound will be too low/conservative

(oracle still has to pick a single arm to pull for each time)at

Oracle strategy
Oracle gets to choose all after seeing all rewards from all arms: at T {r(k)

t }T−1,K
t=0,k=1

Oracle strategy
Oracle gets to choose all after seeing all rewards from all arms: at T {r(k)

t }T−1,K
t=0,k=1

So what’s the best thing the oracle can do?

Oracle strategy
Oracle gets to choose all after seeing all rewards from all arms: at T {r(k)

t }T−1,K
t=0,k=1

 clearly maximizes the total rewardat = ̂kt := arg max
k∈1,…,K

r(k)
t

So what’s the best thing the oracle can do?

Oracle strategy
Oracle gets to choose all after seeing all rewards from all arms: at T {r(k)

t }T−1,K
t=0,k=1

 clearly maximizes the total rewardat = ̂kt := arg max
k∈1,…,K

r(k)
t

Consider 2-armed Bernoulli bandit with , with and .T = 1000 ̂μ(1)
T = 0.6 ̂μ(2)

T = 0.4

So what’s the best thing the oracle can do?

Oracle strategy
Oracle gets to choose all after seeing all rewards from all arms: at T {r(k)

t }T−1,K
t=0,k=1

 clearly maximizes the total rewardat = ̂kt := arg max
k∈1,…,K

r(k)
t

Consider 2-armed Bernoulli bandit with , with and .T = 1000 ̂μ(1)
T = 0.6 ̂μ(2)

T = 0.4
These estimates are extremely good (CLT standard errors (SE)):< 0.02

So what’s the best thing the oracle can do?

Oracle strategy
Oracle gets to choose all after seeing all rewards from all arms: at T {r(k)

t }T−1,K
t=0,k=1

 clearly maximizes the total rewardat = ̂kt := arg max
k∈1,…,K

r(k)
t

Consider 2-armed Bernoulli bandit with , with and .T = 1000 ̂μ(1)
T = 0.6 ̂μ(2)

T = 0.4
These estimates are extremely good (CLT standard errors (SE)):< 0.02
• Oracle overwhelmingly confident that (estimates SEs apart)μ(1) > μ(2) > 10

So what’s the best thing the oracle can do?

Oracle strategy
Oracle gets to choose all after seeing all rewards from all arms: at T {r(k)

t }T−1,K
t=0,k=1

 clearly maximizes the total rewardat = ̂kt := arg max
k∈1,…,K

r(k)
t

Consider 2-armed Bernoulli bandit with , with and .T = 1000 ̂μ(1)
T = 0.6 ̂μ(2)

T = 0.4
These estimates are extremely good (CLT standard errors (SE)):< 0.02
• Oracle overwhelmingly confident that (estimates SEs apart)μ(1) > μ(2) > 10
• Roughly of the time, 0.42 = 16 % r(1)

t = 0 < 1 = r(2)
t

So what’s the best thing the oracle can do?

Oracle strategy
Oracle gets to choose all after seeing all rewards from all arms: at T {r(k)

t }T−1,K
t=0,k=1

 clearly maximizes the total rewardat = ̂kt := arg max
k∈1,…,K

r(k)
t

Consider 2-armed Bernoulli bandit with , with and .T = 1000 ̂μ(1)
T = 0.6 ̂μ(2)

T = 0.4
These estimates are extremely good (CLT standard errors (SE)):< 0.02
• Oracle overwhelmingly confident that (estimates SEs apart)μ(1) > μ(2) > 10
• Roughly of the time, 0.42 = 16 % r(1)

t = 0 < 1 = r(2)
t

So what’s the best thing the oracle can do?

⇒ ̂kt = 2

Oracle strategy
Oracle gets to choose all after seeing all rewards from all arms: at T {r(k)

t }T−1,K
t=0,k=1

 clearly maximizes the total rewardat = ̂kt := arg max
k∈1,…,K

r(k)
t

Consider 2-armed Bernoulli bandit with , with and .T = 1000 ̂μ(1)
T = 0.6 ̂μ(2)

T = 0.4
These estimates are extremely good (CLT standard errors (SE)):< 0.02
• Oracle overwhelmingly confident that (estimates SEs apart)μ(1) > μ(2) > 10
• Roughly of the time, 0.42 = 16 % r(1)

t = 0 < 1 = r(2)
t

But looks at the true mean of arm , not actual reward…RegretT =
T−1

∑
t=0

(μ⋆ − μ(at)) at

So what’s the best thing the oracle can do?

⇒ ̂kt = 2

Oracle strategy
Oracle gets to choose all after seeing all rewards from all arms: at T {r(k)

t }T−1,K
t=0,k=1

 clearly maximizes the total rewardat = ̂kt := arg max
k∈1,…,K

r(k)
t

Consider 2-armed Bernoulli bandit with , with and .T = 1000 ̂μ(1)
T = 0.6 ̂μ(2)

T = 0.4
These estimates are extremely good (CLT standard errors (SE)):< 0.02
• Oracle overwhelmingly confident that (estimates SEs apart)μ(1) > μ(2) > 10
• Roughly of the time, 0.42 = 16 % r(1)

t = 0 < 1 = r(2)
t

But looks at the true mean of arm , not actual reward…RegretT =
T−1

∑
t=0

(μ⋆ − μ(at)) at

So what’s the best thing the oracle can do?

⇒ ̂kt = 2

 for RegretT ≈ 0.16(μ(1) − μ(2)) ≈ 0.032 at = ̂kt

Oracle strategy
Oracle gets to choose all after seeing all rewards from all arms: at T {r(k)

t }T−1,K
t=0,k=1

 clearly maximizes the total rewardat = ̂kt := arg max
k∈1,…,K

r(k)
t

Consider 2-armed Bernoulli bandit with , with and .T = 1000 ̂μ(1)
T = 0.6 ̂μ(2)

T = 0.4
These estimates are extremely good (CLT standard errors (SE)):< 0.02
• Oracle overwhelmingly confident that (estimates SEs apart)μ(1) > μ(2) > 10
• Roughly of the time, 0.42 = 16 % r(1)

t = 0 < 1 = r(2)
t

But looks at the true mean of arm , not actual reward…RegretT =
T−1

∑
t=0

(μ⋆ − μ(at)) at

So what’s the best thing the oracle can do?

⇒ ̂kt = 2

 for RegretT ≈ 0.16(μ(1) − μ(2)) ≈ 0.032 at = ̂kt but gives at = 1 ∀t RegretT ≈ 0

Oracle strategy (cont’d)

Best strategy in terms of maximizing (i.e., minimizing), is to choose

every , since is the oracle’s best guess of

T−1

∑
t=0

μ(at) RegretT

at = ̂kT = arg max
k∈1,…,K

̂μ(k)
T

̂kT k⋆

Oracle strategy (cont’d)

Best strategy in terms of maximizing (i.e., minimizing), is to choose

every , since is the oracle’s best guess of

T−1

∑
t=0

μ(at) RegretT

at = ̂kT = arg max
k∈1,…,K

̂μ(k)
T

̂kT k⋆

This was not mathematically rigorous, but hopefully you can see why this strategy is
the best strategy the oracle could employ given the information it has

Oracle regret

Oracle regret
We know by the CLT that:

̂μ(k)
T − μ(k) ≈ * (0, Varr∼ν(k)(r)

T)

Oracle regret
We know by the CLT that:

̂μ(k)
T − μ(k) ≈ * (0, Varr∼ν(k)(r)

T)
Which means that

̂μ(k⋆)
T − ̂μ(k)

T

Oracle regret
We know by the CLT that:

̂μ(k)
T − μ(k) ≈ * (0, Varr∼ν(k)(r)

T)
Which means that

̂μ(k⋆)
T − ̂μ(k)

T = (̂μ(k⋆)
T − μ(k⋆)) − (̂μ(k)

T − μ(k)) + (μ(k⋆) − μ(k))

Oracle regret
We know by the CLT that:

̂μ(k)
T − μ(k) ≈ * (0, Varr∼ν(k)(r)

T)
Which means that

̂μ(k⋆)
T − ̂μ(k)

T = (̂μ(k⋆)
T − μ(k⋆)) − (̂μ(k)

T − μ(k)) + (μ(k⋆) − μ(k))

≈ * (μ(k⋆) − μ(k), Varr∼ν(k⋆)(r) + Varr∼ν(k)(r)
T)

Oracle regret
We know by the CLT that:

̂μ(k)
T − μ(k) ≈ * (0, Varr∼ν(k)(r)

T)
Which means that

̂μ(k⋆)
T − ̂μ(k)

T = (̂μ(k⋆)
T − μ(k⋆)) − (̂μ(k)

T − μ(k)) + (μ(k⋆) − μ(k))

≈ * (μ(k⋆) − μ(k), Varr∼ν(k⋆)(r) + Varr∼ν(k)(r)
T)

Let and suppose that , then:Ck := Varr∼ν(k⋆)(r) + Varr∼ν(k)(r) μ(k⋆) − μ(k) = Ck /T

Oracle regret
We know by the CLT that:

̂μ(k)
T − μ(k) ≈ * (0, Varr∼ν(k)(r)

T)
Which means that

̂μ(k⋆)
T − ̂μ(k)

T = (̂μ(k⋆)
T − μ(k⋆)) − (̂μ(k)

T − μ(k)) + (μ(k⋆) − μ(k))

≈ * (μ(k⋆) − μ(k), Varr∼ν(k⋆)(r) + Varr∼ν(k)(r)
T)

Let and suppose that , then:Ck := Varr∼ν(k⋆)(r) + Varr∼ν(k)(r) μ(k⋆) − μ(k) = Ck /T

T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) ≈ *(1,1)

Oracle regret (cont’d)
From previous slide:

T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) ≈ *(1,1)

Oracle regret (cont’d)
From previous slide:

T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) ≈ *(1,1)

ℙ(̂μ(k⋆)
T − ̂μ(k)

T < 0) = ℙ T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) < 0

Oracle regret (cont’d)
From previous slide:

T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) ≈ *(1,1)

ℙ(̂μ(k⋆)
T − ̂μ(k)

T < 0) = ℙ T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) < 0 ≈ ℙ(*(1,1) < 0)

Oracle regret (cont’d)
From previous slide:

T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) ≈ *(1,1)

ℙ(̂μ(k⋆)
T − ̂μ(k)

T < 0) = ℙ T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) < 0 ≈ ℙ(*(1,1) < 0) ≈ 16 %

Oracle regret (cont’d)
From previous slide:

T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) ≈ *(1,1)

ℙ(̂μ(k⋆)
T − ̂μ(k)

T < 0) = ℙ T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) < 0 ≈ ℙ(*(1,1) < 0) ≈ 16 %

So if for all , and if all for , thenμ(k⋆) − μ(k) = Ck /T k ≠ k⋆ Ck = C k ≠ k⋆

Oracle regret (cont’d)
From previous slide:

T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) ≈ *(1,1)

ℙ(̂μ(k⋆)
T − ̂μ(k)

T < 0) = ℙ T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) < 0 ≈ ℙ(*(1,1) < 0) ≈ 16 %

So if for all , and if all for , thenμ(k⋆) − μ(k) = Ck /T k ≠ k⋆ Ck = C k ≠ k⋆

ℙ(̂kT ≠ k⋆) ≳ 16 %

Oracle regret (cont’d)
From previous slide:

T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) ≈ *(1,1)

ℙ(̂μ(k⋆)
T − ̂μ(k)

T < 0) = ℙ T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) < 0 ≈ ℙ(*(1,1) < 0) ≈ 16 %

So if for all , and if all for , thenμ(k⋆) − μ(k) = Ck /T k ≠ k⋆ Ck = C k ≠ k⋆

ℙ(̂kT ≠ k⋆) ≳ 16 %
⇒ ℙ(μ(k⋆) − μ(̂kT) = C/T) ≳ 16 %

Oracle regret (cont’d)
From previous slide:

T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) ≈ *(1,1)

ℙ(̂μ(k⋆)
T − ̂μ(k)

T < 0) = ℙ T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) < 0 ≈ ℙ(*(1,1) < 0) ≈ 16 %

So if for all , and if all for , thenμ(k⋆) − μ(k) = Ck /T k ≠ k⋆ Ck = C k ≠ k⋆

RegretT = T (μ(k⋆) − μ(̂kT))

ℙ(̂kT ≠ k⋆) ≳ 16 %
⇒ ℙ(μ(k⋆) − μ(̂kT) = C/T) ≳ 16 %

Oracle regret (cont’d)
From previous slide:

T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) ≈ *(1,1)

ℙ(̂μ(k⋆)
T − ̂μ(k)

T < 0) = ℙ T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) < 0 ≈ ℙ(*(1,1) < 0) ≈ 16 %

So if for all , and if all for , thenμ(k⋆) − μ(k) = Ck /T k ≠ k⋆ Ck = C k ≠ k⋆

RegretT = T (μ(k⋆) − μ(̂kT))

ℙ(̂kT ≠ k⋆) ≳ 16 %
⇒ ℙ(μ(k⋆) − μ(̂kT) = C/T) ≳ 16 %

⇒ ℙ(RegretT = CT) ≳ 16 %

Oracle regret (cont’d)
From previous slide:

T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) ≈ *(1,1)

ℙ(̂μ(k⋆)
T − ̂μ(k)

T < 0) = ℙ T
Ck

(̂μ(k⋆)
T − ̂μ(k)

T) < 0 ≈ ℙ(*(1,1) < 0) ≈ 16 %

So if for all , and if all for , thenμ(k⋆) − μ(k) = Ck /T k ≠ k⋆ Ck = C k ≠ k⋆

RegretT = T (μ(k⋆) − μ(̂kT))

ℙ(̂kT ≠ k⋆) ≳ 16 %
⇒ ℙ(μ(k⋆) − μ(̂kT) = C/T) ≳ 16 %

⇒ ℙ(RegretT = CT) ≳ 16 %

⇒ RegretT = Ω(T) w/p ≥ 16 %

Today

• Feedback from last lecture

• Recap

• Regret lower bound

• Instance-dependent regret

Instance-dependent regret
So no algorithm can beat Ω(T)

Instance-dependent regret
So no algorithm can beat Ω(T)

But clearly there are situations when that’s not true!

E.g., if , then for all for any algorithmν(1) = ⋯ = ν(K) RegretT = 0 T

Instance-dependent regret
So no algorithm can beat Ω(T)

But clearly there are situations when that’s not true!

E.g., if , then for all for any algorithmν(1) = ⋯ = ν(K) RegretT = 0 T

So is our lower-bound wrong?

Instance-dependent regret
So no algorithm can beat Ω(T)

But clearly there are situations when that’s not true!

E.g., if , then for all for any algorithmν(1) = ⋯ = ν(K) RegretT = 0 T

Let’s think about the argument we made…So is our lower-bound wrong?

Instance-dependent regret
So no algorithm can beat Ω(T)

But clearly there are situations when that’s not true!

E.g., if , then for all for any algorithmν(1) = ⋯ = ν(K) RegretT = 0 T

Let’s think about the argument we made…

Recall that we chose very carefully (and in a -dependent way)μ(k⋆) − μ(k) T

So is our lower-bound wrong?

Instance-dependent regret
So no algorithm can beat Ω(T)

But clearly there are situations when that’s not true!

E.g., if , then for all for any algorithmν(1) = ⋯ = ν(K) RegretT = 0 T

Let’s think about the argument we made…

Recall that we chose very carefully (and in a -dependent way)μ(k⋆) − μ(k) T

Correctly inferred w/ choice that the best regret the oracle can guarantee is Ω(T)

So is our lower-bound wrong?

Instance-dependent regret
So no algorithm can beat Ω(T)

But clearly there are situations when that’s not true!

E.g., if , then for all for any algorithmν(1) = ⋯ = ν(K) RegretT = 0 T

Let’s think about the argument we made…

Recall that we chose very carefully (and in a -dependent way)μ(k⋆) − μ(k) T

Correctly inferred w/ choice that the best regret the oracle can guarantee is Ω(T)
But this is worst-case, i.e., it is the best the oracle can guarantee without knowing

more about the environment (since our choice of could be correct)μ(k⋆) − μ(k)

So is our lower-bound wrong?

Instance-dependent regret
So no algorithm can beat Ω(T)

But clearly there are situations when that’s not true!

E.g., if , then for all for any algorithmν(1) = ⋯ = ν(K) RegretT = 0 T

Let’s think about the argument we made…

Recall that we chose very carefully (and in a -dependent way)μ(k⋆) − μ(k) T

Correctly inferred w/ choice that the best regret the oracle can guarantee is Ω(T)
But this is worst-case, i.e., it is the best the oracle can guarantee without knowing

more about the environment (since our choice of could be correct)μ(k⋆) − μ(k)

So is our lower-bound wrong?

The oracle may do (much) better than this in a given problem instance!

Instance-dependent regret
So no algorithm can beat Ω(T)

But clearly there are situations when that’s not true!

E.g., if , then for all for any algorithmν(1) = ⋯ = ν(K) RegretT = 0 T

Let’s think about the argument we made…

Recall that we chose very carefully (and in a -dependent way)μ(k⋆) − μ(k) T

Correctly inferred w/ choice that the best regret the oracle can guarantee is Ω(T)
But this is worst-case, i.e., it is the best the oracle can guarantee without knowing

more about the environment (since our choice of could be correct)μ(k⋆) − μ(k)

So is our lower-bound wrong?

The oracle may do (much) better than this in a given problem instance!
E.g., any algorithm’s if RegretT = 0 ν(1) = ⋯ = ν(K)

Instance-dependent regret (cont’d)
When analyzing the properties of an algorithm, we may be interested in how well it

performs in different problem instances, not just in the worst-case environment

Instance-dependent regret (cont’d)
When analyzing the properties of an algorithm, we may be interested in how well it

performs in different problem instances, not just in the worst-case environment

Instance-dependent regret bounds incorporate information about the particular
instance of a bandit environment into their bounds, reflecting the fact that a given

algorithm’s regret will depend on the instance

Instance-dependent regret (cont’d)
When analyzing the properties of an algorithm, we may be interested in how well it

performs in different problem instances, not just in the worst-case environment

Instance-dependent regret bounds incorporate information about the particular
instance of a bandit environment into their bounds, reflecting the fact that a given

algorithm’s regret will depend on the instance

Expect such bounds to be tighter, since they incorporate more information!

Instance-dependent regret (cont’d)
When analyzing the properties of an algorithm, we may be interested in how well it

performs in different problem instances, not just in the worst-case environment

Instance-dependent regret bounds incorporate information about the particular
instance of a bandit environment into their bounds, reflecting the fact that a given

algorithm’s regret will depend on the instance

Expect such bounds to be tighter, since they incorporate more information!

Example: pure exploration (if divides and deterministically cycle through arms)T K

Instance-dependent regret (cont’d)
When analyzing the properties of an algorithm, we may be interested in how well it

performs in different problem instances, not just in the worst-case environment

Instance-dependent regret bounds incorporate information about the particular
instance of a bandit environment into their bounds, reflecting the fact that a given

algorithm’s regret will depend on the instance

Expect such bounds to be tighter, since they incorporate more information!

Our regret bound started out instance-dependent: , since it
depends on the ’s, which depend on the instance.

RegretT = T(μ⋆ − μ̄)
μ(k)

Example: pure exploration (if divides and deterministically cycle through arms)T K

Instance-dependent regret (cont’d)
When analyzing the properties of an algorithm, we may be interested in how well it

performs in different problem instances, not just in the worst-case environment

Instance-dependent regret bounds incorporate information about the particular
instance of a bandit environment into their bounds, reflecting the fact that a given

algorithm’s regret will depend on the instance

Expect such bounds to be tighter, since they incorporate more information!

Our regret bound started out instance-dependent: , since it
depends on the ’s, which depend on the instance.

RegretT = T(μ⋆ − μ̄)
μ(k)

We used it to derive (looser) worst-case bound: RegretT ≤ T

Example: pure exploration (if divides and deterministically cycle through arms)T K

Instance-dependent regret (cont’d)
When analyzing the properties of an algorithm, we may be interested in how well it

performs in different problem instances, not just in the worst-case environment

Instance-dependent regret bounds incorporate information about the particular
instance of a bandit environment into their bounds, reflecting the fact that a given

algorithm’s regret will depend on the instance

Expect such bounds to be tighter, since they incorporate more information!

Our regret bound started out instance-dependent: , since it
depends on the ’s, which depend on the instance.

RegretT = T(μ⋆ − μ̄)
μ(k)

We used it to derive (looser) worst-case bound: RegretT ≤ T
No dependence

on instance!

Example: pure exploration (if divides and deterministically cycle through arms)T K

Instance-dependent regret for UCB: strategy

Instance-dependent regret for UCB: strategy
1. Now that we can incorporate information about the , we’ll try to

precisely bound how often each suboptimal arm is sampled,
μ(k)

k N(k)
T

Instance-dependent regret for UCB: strategy
1. Now that we can incorporate information about the , we’ll try to

precisely bound how often each suboptimal arm is sampled,
μ(k)

k N(k)
T

2. To do that, we’ll use the uniform Hoeffding bound to see how often the
UCB for is guaranteed (with high probability) to be higher than the
UCB for

k⋆

k

Instance-dependent regret for UCB: strategy
1. Now that we can incorporate information about the , we’ll try to

precisely bound how often each suboptimal arm is sampled,
μ(k)

k N(k)
T

2. To do that, we’ll use the uniform Hoeffding bound to see how often the
UCB for is guaranteed (with high probability) to be higher than the
UCB for

k⋆

k
3. Then we’ll multiply by the suboptimality of arm , and sum this over

the arms to get the total regret
N(k)

T k
k

Today’s summary:

Today’s summary:
Regret lower bound

•No algorithm can do better than

•Algorithms like UCB achieve same worst-case regret as an oracle

Ω(T)

Today’s summary:
Regret lower bound

•No algorithm can do better than

•Algorithms like UCB achieve same worst-case regret as an oracle

Ω(T)

Instance-dependent regret

•Characterizes regret in terms of true arm means

•More descriptive than worst-case analysis

Today’s summary:
Regret lower bound

•No algorithm can do better than

•Algorithms like UCB achieve same worst-case regret as an oracle

Ω(T)

Instance-dependent regret

•Characterizes regret in terms of true arm means

•More descriptive than worst-case analysis

Next time:

•Bayesian Bandit

•Thompson sampling

1-minute feedback form: https://bit.ly/3RHtlxy

Today’s summary:
Regret lower bound

•No algorithm can do better than

•Algorithms like UCB achieve same worst-case regret as an oracle

Ω(T)

Instance-dependent regret

•Characterizes regret in terms of true arm means

•More descriptive than worst-case analysis

Next time:

•Bayesian Bandit

•Thompson sampling

https://bit.ly/3RHtlxy

