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Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2. Main feedback: pace was good! 
3. Pre-lecture posted lecture notes shouldn’t maintain breaks within slides
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Can we do better than  regret?Ω( T)
Short answer: no

But how can we know that?
Want to construct a lower bound on the achievable regret

So far we our theoretical analysis has always considered a fixed algorithm and 
analyzed it (by deriving a regret upper bound with high probability)

To get a lower bound, we need to consider what regret could be achieved by any 
algorithm, and show it can’t be better than some rate

Useful mathematical device: oracle

An oracle has access to extra information not available to bandit algorithms.

If we can show that oracle can’t do better than some rate, then no algorithm can
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Intuition for lower bound
1. CLT tells us that with  i.i.d. samples from from a distribution , we can only 

learn ’s mean  to within 
T ν

ν μ Ω(1/ T)
2. Then since in a bandit, we get at most  samples total, certainly we can’t 

learn any of the arm means better than to within 
T

Ω(1/ T)
3. This means that if an arm  is about  away from the best arm , then 

at no point during the bandit can we tell them apart with high probability
k̃ 1/ T k⋆

4. Thus, we should expect to sample  roughly as often as , which is at best 
roughly  times (if we ignore any other arms)

k̃ k⋆

T/2
5. Finally, since the regret incurred each time we pull arm  is , and we 

pull it  times, we get a regret lower bound of 
k̃ 1/ T

T/2 1/ T × T/2 = Ω( T)
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Coming up with an oracle

What is an oracle that knows more than any bandit algorithm, but not too much?

Proposal: let the oracle see rewards from all arms at every time step
• This is definitely more than any bandit algorithm gets
• But oracle still has to learn from data, and only gets ~  times as much data 

as a bandit algorithm, which we might hope won’t change its regret rate in 
K

T
• Theoretically, the oracle actually does see i.i.d. rewards from each arm

(also want oracle to be easy to study theoretically)

Additionally: oracle chooses all  after seeing all arm rewards up to time  

(one decision point makes theory easier)

at T

Any oracle will give us a lower bound, but if we make the oracle too strong, that 
lower bound will be too low/conservative

(oracle still has to pick a single arm to pull  for each time)at
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Oracle strategy
Oracle gets to choose all  after seeing all  rewards from all arms:  at T {r(k)

t }T−1,K
t=0,k=1

 clearly maximizes the total rewardat = ̂kt := arg max
k∈1,…,K

r(k)
t

Consider 2-armed Bernoulli bandit with , with  and .T = 1000 ̂μ(1)
T = 0.6 ̂μ(2)

T = 0.4
These estimates are extremely good (CLT standard errors (SE) ):< 0.02
• Oracle overwhelmingly confident that  (estimates  SEs apart)μ(1) > μ(2) > 10
• Roughly  of the time,   0.42 = 16 % r(1)

t = 0 < 1 = r(2)
t

But  looks at the true mean of arm , not actual reward…RegretT =
T−1

∑
t=0

(μ⋆ − μ(at)) at

So what’s the best thing the oracle can do?

⇒ ̂kt = 2

 for RegretT ≈ 0.16(μ(1) − μ(2)) ≈ 0.032 at = ̂kt but  gives at = 1 ∀t RegretT ≈ 0
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Best strategy in terms of maximizing  (i.e., minimizing ), is to choose 

every , since  is the oracle’s best guess of 

T−1

∑
t=0

μ(at) RegretT

at = ̂kT = arg max
k∈1,…,K

̂μ(k)
T

̂kT k⋆

This was not mathematically rigorous, but hopefully you can see why this strategy is 
the best strategy the oracle could employ given the information it has
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Let’s think about the argument we made…

Recall that we chose  very carefully (and in a -dependent way)μ(k⋆) − μ(k) T

Correctly inferred w/ choice that the best regret the oracle can guarantee is Ω( T)
But this is worst-case, i.e., it is the best the oracle can guarantee without knowing 

more about the environment (since our choice of  could be correct)μ(k⋆) − μ(k)

So is our lower-bound wrong? 

The oracle may do (much) better than this in a given problem instance!
E.g., any algorithm’s   if  RegretT = 0 ν(1) = ⋯ = ν(K)
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performs in different problem instances, not just in the worst-case environment

Instance-dependent regret bounds incorporate information about the particular 
instance of a bandit environment into their bounds, reflecting the fact that a given 

algorithm’s regret will depend on the instance

Expect such bounds to be tighter, since they incorporate more information!

Our regret bound started out instance-dependent: , since it 
depends on the ’s, which depend on the instance.

RegretT = T(μ⋆ − μ̄)
μ(k)

We used it to derive (looser) worst-case bound: RegretT ≤ T
No dependence 


on instance!

Example: pure exploration (if  divides  and deterministically cycle through arms)T K
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Instance-dependent regret for UCB: strategy
1. Now that we can incorporate information about the , we’ll try to 

precisely bound how often each suboptimal arm  is sampled, 
μ(k)

k N(k)
T

2. To do that, we’ll use the uniform Hoeffding bound to see how often the 
UCB for  is guaranteed (with high probability) to be higher than the 
UCB for 

k⋆

k
3. Then we’ll multiply  by the suboptimality of arm , and sum this over 

the arms  to get the total regret
N(k)

T k
k
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