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Feedback from feedback forms

1. Thank you to everyone who filled out the forms!


2. Main feedback: pace was good! 

3. Pre-lecture posted lecture notes shouldn’t maintain breaks within slides
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Recap

•Pure greedy and pure exploration achieve linear regret 


•ETC and -greedy achieve sublinear regret of 


•UCB achieves sublinear regret of 


•Can we do even better?

O(T)

ε Õ(T2/3)

Õ( T)
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Can we do better than  regret?Ω( T)
Short answer: no

But how can we know that?
Want to construct a lower bound on the achievable regret

So far we our theoretical analysis has always considered a fixed algorithm and 
analyzed it (by deriving a regret upper bound with high probability)

To get a lower bound, we need to consider what regret could be achieved by any 
algorithm, and show it can’t be better than some rate

Useful mathematical device: oracle

An oracle has access to extra information not available to bandit algorithms.

If we can show that oracle can’t do better than some rate, then no algorithm can



Intuition for lower bound
1. CLT tells us that with  i.i.d. samples from from a distribution , we can only 

learn ’s mean  to within 

2. Then since in a bandit, we get at most  samples total, certainly we can’t 

learn any of the arm means better than to within 

3. This means that if an arm  is about  away from the best arm , then 

at no point during the bandit can we tell them apart with high probability

4. Thus, we should expect to sample  roughly as often as , which is at best 

roughly  times (if we ignore any other arms)

5. Finally, since the regret incurred each time we pull arm  is , and we 

pull it  times, we get a regret lower bound of 

T ν
ν μ Ω(1/ T)

T
Ω(1/ T)

k̃ 1/ T k⋆

k̃ k⋆

T/2
k̃ 1/ T

T/2 1/ T × T/2 = Ω( T)



Coming up with an oracle

What is an oracle that knows more than any bandit algorithm, but not too much?

Proposal: let the oracle see rewards from all arms at every time step

• This is definitely more than any bandit algorithm gets

• But oracle still has to learn from data, and only gets ~  times as much data 

as a bandit algorithm, which we might hope won’t change its regret rate in 

• Theoretically, the oracle actually does see i.i.d. rewards from each arm

K
T

(also want oracle to be easy to study theoretically)

Additionally: oracle chooses all  after seeing all arm rewards up to time  

(one decision point makes theory easier)

at T

Any oracle will give us a lower bound, but if we make the oracle too strong, that 
lower bound will be too low/conservative

(oracle still has to pick a single arm to pull  for each time)at



Oracle strategy
Oracle gets to choose all  after seeing all  rewards from all arms:  at T {r(k)

t }T−1,K
t=0,k=1

 clearly maximizes the total rewardat = ̂kt := arg max
k∈1,…,K

r(k)
t

Consider 2-armed Bernoulli bandit with , with  and .

These estimates are extremely good (CLT standard errors (SE) ):

• Oracle overwhelmingly confident that  (estimates  SEs apart)

• Roughly  of the time,   

T = 1000 ̂μ(1)
T = 0.6 ̂μ(2)

T = 0.4
< 0.02

μ(1) > μ(2) > 10
0.42 = 16 % r(1)

t = 0 < 1 = r(2)
t

But  looks at the true mean of arm , not actual reward…RegretT =
T−1

∑
t=0

(μ⋆ − μ(at)) at

So what’s the best thing the oracle can do?

⇒ ̂kt = 2

 for RegretT ≈ 0.16(μ(1) − μ(2)) ≈ 0.032 at = ̂kt but  gives at = 1 ∀t RegretT ≈ 0



Oracle strategy (cont’d)

Best strategy in terms of maximizing  (i.e., minimizing ), is to choose 

every , since  is the oracle’s best guess of 

T−1

∑
t=0

μ(at) RegretT

at = ̂kT = arg max
k∈1,…,K

̂μ(k)
T

̂kT k⋆

This was not mathematically rigorous, but hopefully you can see why this strategy is 
the best strategy the oracle could employ given the information it has



Oracle regret
We know by the CLT that:

̂μ(k)
T − μ(k) ≈ 𝒩 (0,

Varr∼ν(k)(r)
T )

Which means that
̂μ(k⋆)
T − ̂μ(k)

T = ( ̂μ(k⋆)
T − μ(k⋆)) − ( ̂μ(k)

T − μ(k)) + (μ(k⋆) − μ(k))

≈ 𝒩 (μ(k⋆) − μ(k),
Varr∼ν(k⋆)(r) + Varr∼ν(k)(r)

T )
Let  and suppose that , then:Ck := Varr∼ν(k⋆)(r) + Varr∼ν(k)(r) μ(k⋆) − μ(k) = Ck /T

T
Ck

( ̂μ(k⋆)
T − ̂μ(k)

T ) ≈ 𝒩(1,1)



Oracle regret (cont’d)
From previous slide: 

T
Ck

( ̂μ(k⋆)
T − ̂μ(k)

T ) ≈ 𝒩(1,1)

ℙ( ̂μ(k⋆)
T − ̂μ(k)

T < 0) = ℙ
T
Ck

( ̂μ(k⋆)
T − ̂μ(k)

T ) < 0 ≈ ℙ(𝒩(1,1) < 0) ≈ 16 %

So if  for all , and if all  for , thenμ(k⋆) − μ(k) = Ck /T k ≠ k⋆ Ck = C k ≠ k⋆

RegretT = T (μ(k⋆) − μ( ̂kT))

ℙ( ̂kT ≠ k⋆) ≳ 16 %

⇒ ℙ(μ(k⋆) − μ( ̂kT) = C/T) ≳ 16 %

⇒ ℙ(RegretT = CT) ≳ 16 %

⇒ RegretT = Ω( T) w/p  ≥ 16 %
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Instance-dependent regret
So no algorithm can beat Ω( T)

But clearly there are situations when that’s not true! 

E.g., if , then  for all  for any algorithmν(1) = ⋯ = ν(K) RegretT = 0 T

Let’s think about the argument we made…

Recall that we chose  very carefully (and in a -dependent way)μ(k⋆) − μ(k) T

Correctly inferred w/ choice that the best regret the oracle can guarantee is Ω( T)
But this is worst-case, i.e., it is the best the oracle can guarantee without knowing 

more about the environment (since our choice of  could be correct)μ(k⋆) − μ(k)

So is our lower-bound wrong? 

The oracle may do (much) better than this in a given problem instance!
E.g., any algorithm’s   if  RegretT = 0 ν(1) = ⋯ = ν(K)



Instance-dependent regret (cont’d)
When analyzing the properties of an algorithm, we may be interested in how well it 

performs in different problem instances, not just in the worst-case environment

Instance-dependent regret bounds incorporate information about the particular 
instance of a bandit environment into their bounds, reflecting the fact that a given 

algorithm’s regret will depend on the instance

Expect such bounds to be tighter, since they incorporate more information!

Our regret bound started out instance-dependent: , since it 
depends on the ’s, which depend on the instance.

RegretT = T(μ⋆ − μ̄)
μ(k)

We used it to derive (looser) worst-case bound: RegretT ≤ T
No dependence 


on instance!

Example: pure exploration (if  divides  and deterministically cycle through arms)T K



Instance-dependent regret for UCB: strategy
1. Now that we can incorporate information about the , we’ll try to 

precisely bound how often each suboptimal arm  is sampled, 

2. To do that, we’ll use the uniform Hoeffding bound to see how often the 

UCB for  is guaranteed (with high probability) to be higher than the 
UCB for 


3. Then we’ll multiply  by the suboptimality of arm , and sum this over 
the arms  to get the total regret

μ(k)

k N(k)
T

k⋆

k
N(k)

T k
k



By uniform Hoeffding: w/p , 


, and , 

≥ 1 − δ
UCB(k⋆)

t ≥ μ(k⋆) = μ⋆ ∀k UCB(k)
t = ̂μ(k)

t + ln(2KT/δ)/2N(k)
t

 if , then  ⇒ B(k)
t < gk /2 UCB(k⋆)

t > UCB(k)
t

Denote  the gap between the best arm and arm ’s meangk := μ⋆ − μ(k) k

When is ?B(k)
t < gk /2

Instance-dependent regret for UCB

= ̂μ(k)
t + B(k)

t ≤ μ(k) + 2B(k)
t



From last slide:     w/p ,  such that , ≥ 1 − δ ∀t, k N(k)
t > 2 ln(2KT/δ)/g2

k

RegretT =
K

∑
k=1

(μ⋆ − μ(k))N(k)
T

Instance-dependent regret for UCB (cont’d)

(arm  not pulled at time )k t⇒ 1{at=k} = 0UCB(k⋆)
t > UCB(k)

t



RegretT ≤
K

∑
k=1

2 ln(2KT/δ)
gk

 w/p  ≥ 1 − δ

Logarithmic in : seems much better than worst-case lower-bound of  T Ω( T)

When all  are large relative to :gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

≪ 2K ln(2KT/δ) T≤ K
2 ln(2KT/δ)

mink gk

Instance-dependent bound

indeed much better!

Idea: CLT says that with  steps, we’ll easily find best arm if it’s better by 

so basically we make relatively few mistakes

T ≫ 1/T

Instance-dependent regret for UCB (cont’d)

But need to think about  to be suregk



If  is much smaller than :min
k

gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

≫ 2 ln(2KT/δ) T≥
2 ln(2KT/δ)

mink gk

Way worse than worst-case

 upper-bound of …Õ( T)

But can match worst-case upper-bound by splitting arms into two groups:
    and    {k : gk ≤ 1/T} {k : gk > 1/T}

RegretT = ∑
{k:gk≤ 1/T}

gkN(k)
T + ∑

{k:gk> 1/T}

gkN(k)
T

Instance-dependent regret for UCB (cont’d)



Of course, if  and hence , then …

neither bound is tight

ν(1) = ⋯ = ν(K) μ(1) = ⋯ = μ(K) RegretT = 0

RegretT =
K

∑
k=1

gkN(k)
t ≤ max

k
gk

K

∑
k=1

N(k)
t = T max

k
gk

Tighter than other bounds when , i.e., for small  and/or small max
k

gk ≪
ln(T)

T
gk T

Reasonable to expect  to scale like  times worst arm regret 

for any algorithm when it’s too hard to distinguish the arms!

RegretT T

Instance-dependent regret for UCB (cont’d)

Summary: instance-dependent analysis gives more nuanced bounds on regret
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1-minute feedback form: https://bit.ly/3RHtlxy 

Today’s summary:
Regret lower bound


•No algorithm can do better than 

•Algorithms like UCB achieve same worst-case regret as an oracle


Instance-dependent regret

•Characterizes regret in terms of true arm means

•More descriptive than worst-case analysis


Next time:

•Bayesian Bandit

•Thompson sampling

Ω( T)

https://bit.ly/3RHtlxy

