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1. Now that we can incorporate information about the , we’ll try to 
precisely bound how often each suboptimal arm  is sampled, 

μ(k)

k N(k)
T

2. To do that, we’ll use the uniform Hoeffding bound to see how often the 
UCB for  is (with high probability) higher than the UCB for k⋆ k

3. Then we’ll multiply  by the suboptimality of arm , and sum this over 
the arms  to get the total regret
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mink gk

Instance-dependent bound

indeed much better!

Idea: CLT says that with  steps, we’ll easily find best arm if it’s better byT ≫ 1/T
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But need to think about  to be suregk
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k
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Reasonable to expect  to scale like  times worst arm regret 

for any algorithm when it’s too hard to distinguish the arms!

RegretT T

UCB regret with VERY small gk

Summary: instance-dependent analysis gives more nuanced bounds on regret
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No satisfying answer that I know of to this.
3. What if we have prior information about the arms before collecting the data?

There are heuristics for incorporating such information into UCB, but no single 
obvious and natural way to do so; Thompson sampling will though! 

4. OFU principle seems reasonable, but why does it work?
We will try to answer this today.
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(  will sometimes denote a continuous density instead of a true probability, 

e.g., for , we would write )
ℙ

μ ∼ Uniform([0,1]K) ℙ(μ) = 1{0≤μ(k)≤1 ∀k}



Bayesian Bernoulli bandit (cont’d)
1. At ,  t = 0 ℙ(μ) = π(μ)

17



Bayesian Bernoulli bandit (cont’d)
1. At ,  t = 0 ℙ(μ) = π(μ)

17

2. At , we have one data point , and the distribution of  
gets updated via Bayes rule: 

t = 1 r0 ∼ Bernoulli(μ(a0)) μ



Bayesian Bernoulli bandit (cont’d)
1. At ,  

2. At , we have one data point , and the distribution of  

gets updated via Bayes rule: 

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = ℙ(r0 ∣ a0, μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(μ̃)dμ̃

18



Bayesian Bernoulli bandit (cont’d)
1. At ,  

2. At , we have one data point , and the distribution of  

gets updated via Bayes rule: 

 

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

19



Bayesian Bernoulli bandit (cont’d)
1. At ,  

2. At , we have one data point , and the distribution of  

gets updated via Bayes rule: 

 

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

3. At , we have another data point , and we can update 
the distribution of  again via Bayes rule, treating  as the prior

t = 2 r1 ∼ Bernoulli(μ(a1))
μ ℙ(μ ∣ r0, a0)

19



Bayesian Bernoulli bandit (cont’d)
1. At ,  

2. At , we have one data point , and the distribution of  

gets updated via Bayes rule: 

 

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

…

3. At , we have another data point , and we can update 
the distribution of  again via Bayes rule, treating  as the prior

t = 2 r1 ∼ Bernoulli(μ(a1))
μ ℙ(μ ∣ r0, a0)

19



Bayesian Bernoulli bandit (cont’d)
1. At ,  

2. At , we have one data point , and the distribution of  

gets updated via Bayes rule: 

 

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

…

3. At , we have another data point , and we can update 
the distribution of  again via Bayes rule, treating  as the prior

t = 2 r1 ∼ Bernoulli(μ(a1))
μ ℙ(μ ∣ r0, a0)

Bayes rule at time step  gives us a distribution (called the posterior distribution)



that exactly characterizes our uncertainty about .

t
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Today
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• Feedback from last lecture

• Recap

• Instance-dependent regret of UCB 

• Bayesian bandit

• Thompson sampling
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