
 
Bandits: Bayesian Bandits and

Thompson Sampling
 

Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning  

Fall 2022
1

Today

• Feedback from last lecture

• Recap

• Instance-dependent regret of UCB

• Bayesian bandit

• Thompson sampling

2

Feedback from feedback forms

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!
2. Just a few people filled out form, and net zero on the pace

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!
2. Just a few people filled out form, and net zero on the pace
3. Added slide numbers

3

Today

• Feedback from last lecture

• Recap

• Instance-dependent regret of UCB

• Bayesian bandit

• Thompson sampling

4

Recap

5

Recap

•Pure greedy, pure exploration, ETC, -greedy achieve suboptimal worst-
case regret

ε

5

Recap

•Pure greedy, pure exploration, ETC, -greedy achieve suboptimal worst-
case regret

ε

•UCB uses Optimism in the Face of Uncertainty (OFU) principle and
achieves optimal rate of worst-case regretÕ(T)

5

Recap

•Pure greedy, pure exploration, ETC, -greedy achieve suboptimal worst-
case regret

ε

•UCB uses Optimism in the Face of Uncertainty (OFU) principle and
achieves optimal rate of worst-case regretÕ(T)
• Instance-dependent regret should be more informative than worst-case
regret, but we haven’t actually bounded it for UCB yet

5

Today

• Feedback from last lecture

• Recap

• Instance-dependent regret of UCB

• Bayesian bandit

• Thompson sampling

6

Instance-dependent regret for UCB: strategy

7

(Reminder from last time)

Instance-dependent regret for UCB: strategy

1. Now that we can incorporate information about the , we’ll try to
precisely bound how often each suboptimal arm is sampled,

μ(k)

k N(k)
T

7

(Reminder from last time)

Instance-dependent regret for UCB: strategy

1. Now that we can incorporate information about the , we’ll try to
precisely bound how often each suboptimal arm is sampled,

μ(k)

k N(k)
T

2. To do that, we’ll use the uniform Hoeffding bound to see how often the
UCB for is (with high probability) higher than the UCB for k⋆ k

7

(Reminder from last time)

Instance-dependent regret for UCB: strategy

1. Now that we can incorporate information about the , we’ll try to
precisely bound how often each suboptimal arm is sampled,

μ(k)

k N(k)
T

2. To do that, we’ll use the uniform Hoeffding bound to see how often the
UCB for is (with high probability) higher than the UCB for k⋆ k

3. Then we’ll multiply by the suboptimality of arm , and sum this over
the arms to get the total regret

N(k)
T k

k

7

(Reminder from last time)

Instance-dependent regret for UCB

8

By uniform Hoeffding: w/p , ≥ 1 − δ

Instance-dependent regret for UCB

8

By uniform Hoeffding: w/p , ≥ 1 − δ
,UCB(k⋆)

t ≥ μ(k⋆) = μ⋆

Instance-dependent regret for UCB

8

By uniform Hoeffding: w/p , ≥ 1 − δ
,UCB(k⋆)

t ≥ μ(k⋆) = μ⋆

Instance-dependent regret for UCB

8

:= ̂μ(k)
t + B(k)

t

and , ∀k UCB(k)
t := ̂μ(k)

t + ln(2KT/δ)/2N(k)
t

By uniform Hoeffding: w/p , ≥ 1 − δ
,UCB(k⋆)

t ≥ μ(k⋆) = μ⋆

Instance-dependent regret for UCB

≤ μ(k) + 2B(k)
t

8

:= ̂μ(k)
t + B(k)

t

and , ∀k UCB(k)
t := ̂μ(k)

t + ln(2KT/δ)/2N(k)
t

By uniform Hoeffding: w/p , ≥ 1 − δ
,UCB(k⋆)

t ≥ μ(k⋆) = μ⋆

Denote the gap between the best arm and arm ’s meangk := μ⋆ − μ(k) k

Instance-dependent regret for UCB

≤ μ(k) + 2B(k)
t

8

:= ̂μ(k)
t + B(k)

t

and , ∀k UCB(k)
t := ̂μ(k)

t + ln(2KT/δ)/2N(k)
t

By uniform Hoeffding: w/p , ≥ 1 − δ
,UCB(k⋆)

t ≥ μ(k⋆) = μ⋆

 if , then ⇒ B(k)
t < gk /2 UCB(k⋆)

t > UCB(k)
t

Denote the gap between the best arm and arm ’s meangk := μ⋆ − μ(k) k

Instance-dependent regret for UCB

≤ μ(k) + 2B(k)
t

8

:= ̂μ(k)
t + B(k)

t

and , ∀k UCB(k)
t := ̂μ(k)

t + ln(2KT/δ)/2N(k)
t

By uniform Hoeffding: w/p , ≥ 1 − δ
,UCB(k⋆)

t ≥ μ(k⋆) = μ⋆

 if , then ⇒ B(k)
t < gk /2 UCB(k⋆)

t > UCB(k)
t

Denote the gap between the best arm and arm ’s meangk := μ⋆ − μ(k) k

When is ?B(k)
t < gk /2

Instance-dependent regret for UCB

≤ μ(k) + 2B(k)
t

8

:= ̂μ(k)
t + B(k)

t

and , ∀k UCB(k)
t := ̂μ(k)

t + ln(2KT/δ)/2N(k)
t

From last slide: w/p , such that , ≥ 1 − δ ∀t, k N(k)
t > 2 ln(2KT/δ)/g2

k

Instance-dependent regret for UCB (cont’d)

9

From last slide: w/p , such that , ≥ 1 − δ ∀t, k N(k)
t > 2 ln(2KT/δ)/g2

k

Instance-dependent regret for UCB (cont’d)

UCB(k⋆)
t > UCB(k)

t

9

From last slide: w/p , such that , ≥ 1 − δ ∀t, k N(k)
t > 2 ln(2KT/δ)/g2

k

Instance-dependent regret for UCB (cont’d)

(arm not pulled at time)k tUCB(k⋆)
t > UCB(k)

t

9

From last slide: w/p , such that , ≥ 1 − δ ∀t, k N(k)
t > 2 ln(2KT/δ)/g2

k

Instance-dependent regret for UCB (cont’d)

(arm not pulled at time)k t ⇒ 1{at=k} = 0UCB(k⋆)
t > UCB(k)

t

9

From last slide: w/p , such that , ≥ 1 − δ ∀t, k N(k)
t > 2 ln(2KT/δ)/g2

k

RegretT =
K

∑
k=1

(μ⋆ − μ(k))N(k)
T

Instance-dependent regret for UCB (cont’d)

(arm not pulled at time)k t ⇒ 1{at=k} = 0UCB(k⋆)
t > UCB(k)

t

9

RegretT ≤
K

∑
k=1

2 ln(2KT/δ)
gk

 w/p ≥ 1 − δ

UCB regret with large gk

10

RegretT ≤
K

∑
k=1

2 ln(2KT/δ)
gk

 w/p ≥ 1 − δ

Logarithmic in : seems much better than worst-case lower-bound of T Ω(T)

UCB regret with large gk

10

RegretT ≤
K

∑
k=1

2 ln(2KT/δ)
gk

 w/p ≥ 1 − δ

Logarithmic in : seems much better than worst-case lower-bound of T Ω(T)

UCB regret with large gk

But need to think about to be suregk

10

RegretT ≤
K

∑
k=1

2 ln(2KT/δ)
gk

 w/p ≥ 1 − δ

Logarithmic in : seems much better than worst-case lower-bound of T Ω(T)

When all are large relative to :gk 1/T

UCB regret with large gk

But need to think about to be suregk

10

RegretT ≤
K

∑
k=1

2 ln(2KT/δ)
gk

 w/p ≥ 1 − δ

Logarithmic in : seems much better than worst-case lower-bound of T Ω(T)

When all are large relative to :gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

UCB regret with large gk

But need to think about to be suregk

10

RegretT ≤
K

∑
k=1

2 ln(2KT/δ)
gk

 w/p ≥ 1 − δ

Logarithmic in : seems much better than worst-case lower-bound of T Ω(T)

When all are large relative to :gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

≤ K
2 ln(2KT/δ)

mink gk

UCB regret with large gk

But need to think about to be suregk

10

RegretT ≤
K

∑
k=1

2 ln(2KT/δ)
gk

 w/p ≥ 1 − δ

Logarithmic in : seems much better than worst-case lower-bound of T Ω(T)

When all are large relative to :gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

≪ 2K ln(2KT/δ) T≤ K
2 ln(2KT/δ)

mink gk

UCB regret with large gk

But need to think about to be suregk

10

RegretT ≤
K

∑
k=1

2 ln(2KT/δ)
gk

 w/p ≥ 1 − δ

Logarithmic in : seems much better than worst-case lower-bound of T Ω(T)

When all are large relative to :gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

≪ 2K ln(2KT/δ) T≤ K
2 ln(2KT/δ)

mink gk

Instance-dependent bound

indeed much better!

UCB regret with large gk

But need to think about to be suregk

10

RegretT ≤
K

∑
k=1

2 ln(2KT/δ)
gk

 w/p ≥ 1 − δ

Logarithmic in : seems much better than worst-case lower-bound of T Ω(T)

When all are large relative to :gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

≪ 2K ln(2KT/δ) T≤ K
2 ln(2KT/δ)

mink gk

Instance-dependent bound

indeed much better!

Idea: CLT says that with steps, we’ll easily find best arm if it’s better byT ≫ 1/T

UCB regret with large gk

But need to think about to be suregk

10

RegretT ≤
K

∑
k=1

2 ln(2KT/δ)
gk

 w/p ≥ 1 − δ

Logarithmic in : seems much better than worst-case lower-bound of T Ω(T)

When all are large relative to :gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

≪ 2K ln(2KT/δ) T≤ K
2 ln(2KT/δ)

mink gk

Instance-dependent bound

indeed much better!

Idea: CLT says that with steps, we’ll easily find best arm if it’s better byT ≫ 1/T
so basically we make relatively few mistakes

UCB regret with large gk

But need to think about to be suregk

10

UCB regret with small gk

11

If is much smaller than :min
k

gk 1/T
UCB regret with small gk

11

If is much smaller than :min
k

gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

UCB regret with small gk

11

If is much smaller than :min
k

gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

≥ 2 ln(2KT/δ)
mink gk

UCB regret with small gk

11

If is much smaller than :min
k

gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

≫ 2 ln(2KT/δ) T≥ 2 ln(2KT/δ)
mink gk

UCB regret with small gk

11

If is much smaller than :min
k

gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

≫ 2 ln(2KT/δ) T≥ 2 ln(2KT/δ)
mink gk

Way worse than worst-case

 upper-bound of …Õ(T)

UCB regret with small gk

11

If is much smaller than :min
k

gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

≫ 2 ln(2KT/δ) T≥ 2 ln(2KT/δ)
mink gk

Way worse than worst-case

 upper-bound of …Õ(T)

But can match worst-case upper-bound by splitting arms into two groups:

UCB regret with small gk

11

If is much smaller than :min
k

gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

≫ 2 ln(2KT/δ) T≥ 2 ln(2KT/δ)
mink gk

Way worse than worst-case

 upper-bound of …Õ(T)

But can match worst-case upper-bound by splitting arms into two groups:
 and {k : gk ≤ 1/T} {k : gk > 1/T}

UCB regret with small gk

11

If is much smaller than :min
k

gk 1/T
K

∑
k=1

2 ln(2KT/δ)
gk

≫ 2 ln(2KT/δ) T≥ 2 ln(2KT/δ)
mink gk

Way worse than worst-case

 upper-bound of …Õ(T)

But can match worst-case upper-bound by splitting arms into two groups:
 and {k : gk ≤ 1/T} {k : gk > 1/T}

RegretT = ∑
{k:gk≤ 1/T}

gkN(k)
T + ∑

{k:gk> 1/T}

gkN(k)
T

UCB regret with small gk

11

UCB regret with VERY small gk

12

Of course, if and hence , then …ν(1) = ⋯ = ν(K) μ(1) = ⋯ = μ(K) RegretT = 0

UCB regret with VERY small gk

12

Of course, if and hence , then …ν(1) = ⋯ = ν(K) μ(1) = ⋯ = μ(K) RegretT = 0
neither bound is tight

UCB regret with VERY small gk

12

Of course, if and hence , then …ν(1) = ⋯ = ν(K) μ(1) = ⋯ = μ(K) RegretT = 0
neither bound is tight

RegretT =
K

∑
k=1

gkN(k)
t

UCB regret with VERY small gk

12

Of course, if and hence , then …ν(1) = ⋯ = ν(K) μ(1) = ⋯ = μ(K) RegretT = 0
neither bound is tight

RegretT =
K

∑
k=1

gkN(k)
t ≤ max

k
gk

K

∑
k=1

N(k)
t

UCB regret with VERY small gk

12

Of course, if and hence , then …ν(1) = ⋯ = ν(K) μ(1) = ⋯ = μ(K) RegretT = 0
neither bound is tight

RegretT =
K

∑
k=1

gkN(k)
t ≤ max

k
gk

K

∑
k=1

N(k)
t = T max

k
gk

UCB regret with VERY small gk

12

Of course, if and hence , then …ν(1) = ⋯ = ν(K) μ(1) = ⋯ = μ(K) RegretT = 0
neither bound is tight

RegretT =
K

∑
k=1

gkN(k)
t ≤ max

k
gk

K

∑
k=1

N(k)
t = T max

k
gk

Tighter than other bounds when , i.e., for small and/or small max
k

gk ≪ ln(T)
T

gk T

UCB regret with VERY small gk

12

Of course, if and hence , then …ν(1) = ⋯ = ν(K) μ(1) = ⋯ = μ(K) RegretT = 0
neither bound is tight

RegretT =
K

∑
k=1

gkN(k)
t ≤ max

k
gk

K

∑
k=1

N(k)
t = T max

k
gk

Tighter than other bounds when , i.e., for small and/or small max
k

gk ≪ ln(T)
T

gk T

Reasonable to expect to scale like times worst arm regret

for any algorithm when it’s too hard to distinguish the arms!

RegretT T

UCB regret with VERY small gk

12

Of course, if and hence , then …ν(1) = ⋯ = ν(K) μ(1) = ⋯ = μ(K) RegretT = 0
neither bound is tight

RegretT =
K

∑
k=1

gkN(k)
t ≤ max

k
gk

K

∑
k=1

N(k)
t = T max

k
gk

Tighter than other bounds when , i.e., for small and/or small max
k

gk ≪ ln(T)
T

gk T

Reasonable to expect to scale like times worst arm regret

for any algorithm when it’s too hard to distinguish the arms!

RegretT T

UCB regret with VERY small gk

Summary: instance-dependent analysis gives more nuanced bounds on regret
12

Questions about UCB

13

Questions about UCB
1. Can we get rid of in the algorithm so we don’t have to know the time horizon?T

13

Questions about UCB
1. Can we get rid of in the algorithm so we don’t have to know the time horizon?T

Yes: a more careful analysis allows to essentially replace with .T t

13

Questions about UCB
1. Can we get rid of in the algorithm so we don’t have to know the time horizon?T

Yes: a more careful analysis allows to essentially replace with .T t
2. How to choose , since it impacts the algorithm and the regret bound?δ

13

Questions about UCB
1. Can we get rid of in the algorithm so we don’t have to know the time horizon?T

Yes: a more careful analysis allows to essentially replace with .T t
2. How to choose , since it impacts the algorithm and the regret bound?δ

No satisfying answer that I know of to this.

13

Questions about UCB
1. Can we get rid of in the algorithm so we don’t have to know the time horizon?T

Yes: a more careful analysis allows to essentially replace with .T t
2. How to choose , since it impacts the algorithm and the regret bound?δ

No satisfying answer that I know of to this.
3. What if we have prior information about the arms before collecting the data?

13

Questions about UCB
1. Can we get rid of in the algorithm so we don’t have to know the time horizon?T

Yes: a more careful analysis allows to essentially replace with .T t
2. How to choose , since it impacts the algorithm and the regret bound?δ

No satisfying answer that I know of to this.
3. What if we have prior information about the arms before collecting the data?

There are heuristics for incorporating such information into UCB, but no single
obvious and natural way to do so; Thompson sampling will though!

13

Questions about UCB
1. Can we get rid of in the algorithm so we don’t have to know the time horizon?T

Yes: a more careful analysis allows to essentially replace with .T t
2. How to choose , since it impacts the algorithm and the regret bound?δ

No satisfying answer that I know of to this.
3. What if we have prior information about the arms before collecting the data?

There are heuristics for incorporating such information into UCB, but no single
obvious and natural way to do so; Thompson sampling will though!

4. OFU principle seems reasonable, but why does it work?

13

Questions about UCB
1. Can we get rid of in the algorithm so we don’t have to know the time horizon?T

Yes: a more careful analysis allows to essentially replace with .T t
2. How to choose , since it impacts the algorithm and the regret bound?δ

No satisfying answer that I know of to this.
3. What if we have prior information about the arms before collecting the data?

There are heuristics for incorporating such information into UCB, but no single
obvious and natural way to do so; Thompson sampling will though!

4. OFU principle seems reasonable, but why does it work?
We will try to answer this today.

13

Today

• Feedback from last lecture

• Recap

• Instance-dependent regret of UCB

• Bayesian bandit

• Thompson sampling

14

Bayesian bandit

15

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

15

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

E.g., in a Bernoulli bandit, each is entirely characterized by its mean
, so a prior on the is equivalent to a prior on the

ν(k)

μ(k) = ℙr∼ν(k)(r = 1) ν(k) μ(k)

15

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

E.g., in a Bernoulli bandit, each is entirely characterized by its mean
, so a prior on the is equivalent to a prior on the

ν(k)

μ(k) = ℙr∼ν(k)(r = 1) ν(k) μ(k)

One such prior, since all the are bounded between and ,

is the prior that is Uniform on the unit hypercube, i.e.,

μ(k) 0 1

(μ(1), …, μ(K)) =: μ ∼ Uniform([0,1]K)

15

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

E.g., in a Bernoulli bandit, each is entirely characterized by its mean
, so a prior on the is equivalent to a prior on the

ν(k)

μ(k) = ℙr∼ν(k)(r = 1) ν(k) μ(k)

One such prior, since all the are bounded between and ,

is the prior that is Uniform on the unit hypercube, i.e.,

μ(k) 0 1

(μ(1), …, μ(K)) =: μ ∼ Uniform([0,1]K)
Note that the Bernoulli bandit reduced everything unknown about the bandit system

to a -dimensional vector K μ

15

Bayesian bandit
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

E.g., in a Bernoulli bandit, each is entirely characterized by its mean
, so a prior on the is equivalent to a prior on the

ν(k)

μ(k) = ℙr∼ν(k)(r = 1) ν(k) μ(k)

One such prior, since all the are bounded between and ,

is the prior that is Uniform on the unit hypercube, i.e.,

μ(k) 0 1

(μ(1), …, μ(K)) =: μ ∼ Uniform([0,1]K)
Note that the Bernoulli bandit reduced everything unknown about the bandit system

to a -dimensional vector K μ

15

Without the Bernoulli assumption, we may need many more dimensions to describe
the possible distributions, and hence have to define a much higher-dimensional prior

Bayesian Bernoulli bandit

16

Bayesian Bernoulli bandit
The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly

characterize our uncertainty about the reward distributions at every time step.

16

Bayesian Bernoulli bandit
The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly

characterize our uncertainty about the reward distributions at every time step.

16

Example: Bayesian Bernoulli bandit

Bayesian Bernoulli bandit
The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly

characterize our uncertainty about the reward distributions at every time step.

1. At , we have no data, and the distribution of the reward distributions is
simply given by the prior on the reward parameters :

t = 0
μ

ℙ(μ) = π(μ)

16

Example: Bayesian Bernoulli bandit

Bayesian Bernoulli bandit
The really nice thing about a Bayesian bandit is that we can use Bayes rule to exactly

characterize our uncertainty about the reward distributions at every time step.

1. At , we have no data, and the distribution of the reward distributions is
simply given by the prior on the reward parameters :

t = 0
μ

ℙ(μ) = π(μ)

16

Example: Bayesian Bernoulli bandit

(will sometimes denote a continuous density instead of a true probability,

e.g., for , we would write)
ℙ

μ ∼ Uniform([0,1]K) ℙ(μ) = 1{0≤μ(k)≤1 ∀k}

Bayesian Bernoulli bandit (cont’d)
1. At , t = 0 ℙ(μ) = π(μ)

17

Bayesian Bernoulli bandit (cont’d)
1. At , t = 0 ℙ(μ) = π(μ)

17

2. At , we have one data point , and the distribution of
gets updated via Bayes rule:

t = 1 r0 ∼ Bernoulli(μ(a0)) μ

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = ℙ(r0 ∣ a0, μ)ℙ(μ)
∫μ̃∈[0,1]K ℙ(r0 ∣ a0, μ̃)ℙ(μ̃)dμ̃

18

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

19

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

3. At , we have another data point , and we can update
the distribution of again via Bayes rule, treating as the prior

t = 2 r1 ∼ Bernoulli(μ(a1))
μ ℙ(μ ∣ r0, a0)

19

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

…

3. At , we have another data point , and we can update
the distribution of again via Bayes rule, treating as the prior

t = 2 r1 ∼ Bernoulli(μ(a1))
μ ℙ(μ ∣ r0, a0)

19

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

…

3. At , we have another data point , and we can update
the distribution of again via Bayes rule, treating as the prior

t = 2 r1 ∼ Bernoulli(μ(a1))
μ ℙ(μ ∣ r0, a0)

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about .

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ
19

Bayesian Bernoulli bandit (cont’d)
1. At ,

2. At , we have one data point , and the distribution of

gets updated via Bayes rule:

t = 0 ℙ(μ) = π(μ)
t = 1 r0 ∼ Bernoulli(μ(a0)) μ

ℙ(μ ∣ r0, a0) = 2(μ(a0))r0(1 − μ(a0))1−r0

…

3. At , we have another data point , and we can update
the distribution of again via Bayes rule, treating as the prior

t = 2 r1 ∼ Bernoulli(μ(a1))
μ ℙ(μ ∣ r0, a0)

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about .

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ We can use this to choose !at19

Today

20

• Feedback from last lecture

• Recap

• Instance-dependent regret of UCB

• Bayesian bandit

• Thompson sampling

Today’s summary:

25

Today’s summary:
Instance-dependent regret

•More descriptive than worst-case analysis

•UCB can do much better than worst-case regret in many casesΩ(T)

25

Today’s summary:
Instance-dependent regret

•More descriptive than worst-case analysis

•UCB can do much better than worst-case regret in many casesΩ(T)

Bayesian bandit

•Adds an additional assumption of prior on reward distributions

•Bayes rule gives exact running uncertainty quantification for any algorithm

25

Today’s summary:
Instance-dependent regret

•More descriptive than worst-case analysis

•UCB can do much better than worst-case regret in many casesΩ(T)

Bayesian bandit

•Adds an additional assumption of prior on reward distributions

•Bayes rule gives exact running uncertainty quantification for any algorithm

Thompson sampling

•Samples optimal arm from its (posterior) distribution

•Achieves excellent performance in practice

25

Today’s summary:
Instance-dependent regret

•More descriptive than worst-case analysis

•UCB can do much better than worst-case regret in many casesΩ(T)

Bayesian bandit

•Adds an additional assumption of prior on reward distributions

•Bayes rule gives exact running uncertainty quantification for any algorithm

Thompson sampling

•Samples optimal arm from its (posterior) distribution

•Achieves excellent performance in practice

Next time:

•Gittins index

25

1-minute feedback form: https://bit.ly/3RHtlxy

Today’s summary:
Instance-dependent regret

•More descriptive than worst-case analysis

•UCB can do much better than worst-case regret in many casesΩ(T)

Bayesian bandit

•Adds an additional assumption of prior on reward distributions

•Bayes rule gives exact running uncertainty quantification for any algorithm

Thompson sampling

•Samples optimal arm from its (posterior) distribution

•Achieves excellent performance in practice

Next time:

•Gittins index

25

https://bit.ly/3RHtlxy

