
 
Bandits: Thompson Sampling

and Gittins Index
 

Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning  

Fall 2022
1

Today

• Feedback from last lecture

• Recap

• Thompson sampling

• Gittins index

2

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2. Bit of confusion about Bayesian bandits

• I’ll review briefly, but section this week and HW 1 will give examples

3

Today

4

• Feedback from last lecture

• Recap

• Thompson sampling

• Gittins index

Recap

5

Recap

•Algorithms we’ve seen so far: pure greedy, pure exploration, ETC, -greedy,
and UCB

ε

5

Recap

•Algorithms we’ve seen so far: pure greedy, pure exploration, ETC, -greedy,
and UCB

ε

•Bayesian bandit augments bandit environment with a prior distribution,
allowing arm means to be treated as random with known distribution

5

Today

6

• Feedback from last lecture

• Recap

• Thompson sampling

• Gittins index

Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

7

Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

7

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about .

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ

Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

7

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about .

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ
Note that although we are now treating as random, we still assume its value is
only drawn once (from the prior) and then stays the same throughout

μ
t

Bayesian bandit summary
A Bayesian bandit augments the bandit environment we’ve been working in so far
with a prior distribution on the unknown reward distributions: π(ν(1), …, ν(K))

7

Bayes rule at time step gives us a distribution (called the posterior distribution)

that exactly characterizes our uncertainty about .

t
ℙ(μ ∣ r0, a0, r1, a1, …, rt−1, at−1)

μ
Note that although we are now treating as random, we still assume its value is
only drawn once (from the prior) and then stays the same throughout

μ
t

What changes with is our information about , i.e., the posterior distribution, as
we collect more and more data by pulling arms via a bandit algorithm

t μ

Bayesian bandit example

8

Bayesian Bernoulli bandit with uniform prior on gives a running posterior on the
mean of each arm that is

μ
k Beta(1 + #{arm k successes},1 + #{arm k failures})

Bayesian bandit example

8

Bayesian Bernoulli bandit with uniform prior on gives a running posterior on the
mean of each arm that is

μ
k Beta(1 + #{arm k successes},1 + #{arm k failures})

(derived by Bayes rule and some algebra; see this week’s section or HW1 for more details)

Bayesian bandit example

8

Bayesian Bernoulli bandit with uniform prior on gives a running posterior on the
mean of each arm that is

μ
k Beta(1 + #{arm k successes},1 + #{arm k failures})

(derived by Bayes rule and some algebra; see this week’s section or HW1 for more details)

 has mean (posterior mean = what we expect to be):

which starts at 1/2 and approaches the sample mean of arm with more pulls.

Beta(αk, βk) μ(k)
αk

αk + βk
= 1 + #{arm k successes}

2 + #{arm k pulls}
k

Bayesian bandit example

8

Bayesian Bernoulli bandit with uniform prior on gives a running posterior on the
mean of each arm that is

μ
k Beta(1 + #{arm k successes},1 + #{arm k failures})

(derived by Bayes rule and some algebra; see this week’s section or HW1 for more details)

 has mean (posterior mean = what we expect to be):

which starts at 1/2 and approaches the sample mean of arm with more pulls.

Beta(αk, βk) μ(k)
αk

αk + βk
= 1 + #{arm k successes}

2 + #{arm k pulls}
k

 has variance (posterior variance how uncertain we are about):

which decreases at a rate of roughly

Beta(αk, βk) ≈ μ(k)

αk

αk + βk
× βk

αk + βk
× 1

αk + βk + 1
1/#{arm k pulls}

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far

9

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

9

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull

9

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1
(In practice, usually draw a sample and then compute

, which is the same thing as)
μt ∼ distribution of μ ∣ r0, a0, …, rt−1, at−1

at = arg max
k

μ(k)
t at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

That’s it! Statistically, this is a super simple and elegant algorithm

(In practice, usually draw a sample and then compute
, which is the same thing as)

μt ∼ distribution of μ ∣ r0, a0, …, rt−1, at−1
at = arg max

k
μ(k)

t at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Thompson sampling
Bayesian bandit environment means that at every time step, we know the distribution

of the arm reward distributions conditioned on everything we’ve seen so far
In particular, we know the exact probability, given everything we’ve seen so far,

that each arm is the true optimal arm, i.e.,

∀k, we know ℙ(k = k⋆ ∣ r0, a0, …, rt−1, at−1)

Thompson sampling: sample from this distribution to determine next arm to pull
For t = 0,…, T − 1 :

at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

That’s it! Statistically, this is a super simple and elegant algorithm
(though computationally, it may not be easy to update the posterior at each time step)

(In practice, usually draw a sample and then compute
, which is the same thing as)

μt ∼ distribution of μ ∣ r0, a0, …, rt−1, at−1
at = arg max

k
μ(k)

t at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

9

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

10

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

10

Why is this a good idea?

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

10

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

10

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

10

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

10

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

10

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

10

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are
This is exactly what Thompson sampling does, where “promising” is encoded very

naturally as: “the probability that the arm is the optimal arm, given all the data so far”

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

10

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are
This is exactly what Thompson sampling does, where “promising” is encoded very

naturally as: “the probability that the arm is the optimal arm, given all the data so far”

No arbitrary tuning parameter, but do have to choose prior δ π

Thompson sampling intuition
Thompson sampling: at ∼ distribution of k⋆ ∣ r0, a0, …, rt−1, at−1

10

Why is this a good idea?
A good tradeoff of exploration vs exploitation should:

a) Sample the optimal arm as much as possible (duh)
b) Ensure arms that might still be optimal aren’t overlooked
c) Not waste undue time on less promising arms

Intuitively: want to sample arms proportionally to how promising they are
This is exactly what Thompson sampling does, where “promising” is encoded very

naturally as: “the probability that the arm is the optimal arm, given all the data so far”

No arbitrary tuning parameter, but do have to choose prior δ π
 can often be chosen “uninformatively” to a default prior such as the uniform, or
can encode nuanced prior information/belief about the arms’ reward distributions
π

Thompson sampling vs other algorithms

11

Thompson sampling samples arms proportionally to how promising they are

Thompson sampling vs other algorithms

11

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

Thompson sampling vs other algorithms

11

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve
“sampling” at all, i.e., every for UCB is a deterministic function of the previous dataat

Thompson sampling vs other algorithms

11

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve
“sampling” at all, i.e., every for UCB is a deterministic function of the previous dataat

My interpretation: OFU provides a simple heuristic to accomplish what Thompson
sampling does by design, namely, sample arms according to how promising they are

Thompson sampling vs other algorithms

11

Thompson sampling can do this because of the Bayesian bandit: assuming a prior on
the reward distributions makes the arm means random, otherwise it wouldn’t even

make sense to talk about “the probability that an arm is the best arm”

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve
“sampling” at all, i.e., every for UCB is a deterministic function of the previous dataat

My interpretation: OFU provides a simple heuristic to accomplish what Thompson
sampling does by design, namely, sample arms according to how promising they are

Thompson sampling vs other algorithms

11

Thompson sampling can do this because of the Bayesian bandit: assuming a prior on
the reward distributions makes the arm means random, otherwise it wouldn’t even

make sense to talk about “the probability that an arm is the best arm”

Thompson sampling samples arms proportionally to how promising they are
Note this sampling is much more sophisticated than, say, -greedy, which really just

samples according to 2 categories: “most promising” and “other”
ε

But it’s also quite different from UCB, whose OFU approach doesn’t really involve
“sampling” at all, i.e., every for UCB is a deterministic function of the previous dataat

My interpretation: OFU provides a simple heuristic to accomplish what Thompson
sampling does by design, namely, sample arms according to how promising they are

Although derived from the Bayesian bandit, Thompson sampling has excellent
practical performance across bandit problems, whether or not they are Bayesian!

Thompson sampling in practice

12

Thompson sampling in practice

12

Thompson sampling has excellent performance in practice, but is still just a heuristic

Thompson sampling in practice

12

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain sense:T → ∞

Thompson sampling in practice

12

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain sense:T → ∞

Recall our instance-dependent UCB regret bound proved that with high probability,

 or, equivalently, N(k)
t ≤ 2 ln(2KT/δ)

gk

N(k)
t

2 ln(2KT/δ) ≤ 1
gk

Thompson sampling in practice

12

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain sense:T → ∞

Recall our instance-dependent UCB regret bound proved that with high probability,

 or, equivalently, N(k)
t ≤ 2 ln(2KT/δ)

gk

N(k)
t

2 ln(2KT/δ) ≤ 1
gk

There is actually a lower-bound result that says that for any bandit algorithm:

,

where is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

,[N(k)
T]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d

Thompson sampling in practice

12

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain sense:T → ∞

Recall our instance-dependent UCB regret bound proved that with high probability,

 or, equivalently, N(k)
t ≤ 2 ln(2KT/δ)

gk

N(k)
t

2 ln(2KT/δ) ≤ 1
gk

There is actually a lower-bound result that says that for any bandit algorithm:

,

where is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

,[N(k)
T]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d
It turns out that Thompson sampling satisfies this lower-bound with equality!

Thompson sampling in practice

12

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain sense:T → ∞

Recall our instance-dependent UCB regret bound proved that with high probability,

 or, equivalently, N(k)
t ≤ 2 ln(2KT/δ)

gk

N(k)
t

2 ln(2KT/δ) ≤ 1
gk

There is actually a lower-bound result that says that for any bandit algorithm:

,

where is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

,[N(k)
T]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d
It turns out that Thompson sampling satisfies this lower-bound with equality!

So it is asymptotically optimal, not just in its rate, but its constant too!

Thompson sampling in practice

12

Thompson sampling has excellent performance in practice, but is still just a heuristic
However, asymptotically, i.e., as , it actually is optimal in a certain sense:T → ∞

Recall our instance-dependent UCB regret bound proved that with high probability,

 or, equivalently, N(k)
t ≤ 2 ln(2KT/δ)

gk

N(k)
t

2 ln(2KT/δ) ≤ 1
gk

There is actually a lower-bound result that says that for any bandit algorithm:

,

where is a distance between distributions called the Kullback—Leibler divergence

lim inf
T→∞

,[N(k)
T]

ln(T) ≥ 1
d(ν(k⋆), ν(k))

d
It turns out that Thompson sampling satisfies this lower-bound with equality!

So it is asymptotically optimal, not just in its rate, but its constant too!
(UCB is not, but there are more complicated versions of it that are)

Thompson sampling in practice

13

So Thompson sampling is basically exactly optimal for large T

Thompson sampling in practice

13

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller T? Suppose and , and:K = 2 T = 3

Thompson sampling in practice

13

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller T? Suppose and , and:K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1

Thompson sampling in practice

13

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller T? Suppose and , and:K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0

Thompson sampling in practice

13

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller T? Suppose and , and:K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
• (last time step, with and): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling in practice

13

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller T? Suppose and , and:K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
• (last time step, with and): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling has a decent probability of choosing , since with just
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2

Thompson sampling in practice

13

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller T? Suppose and , and:K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
• (last time step, with and): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling has a decent probability of choosing , since with just
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2

But is clear right choice here: there is no future value to learning more, i.e.,
no reason to explore rather than exploit.

a2 = 1

Thompson sampling in practice

13

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller T? Suppose and , and:K = 2 T = 3
• : , t = 0 a0 = 1 r0 = 1
• : , t = 1 a1 = 2 r1 = 0
• (last time step, with and): ?t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling has a decent probability of choosing , since with just
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2

But is clear right choice here: there is no future value to learning more, i.e.,
no reason to explore rather than exploit.

a2 = 1

Thompson sampling doesn’t know this, and neither does UCB (although UCB
wouldn’t happen to make the same mistake in this case).

Thompson sampling in practice (cont’d)

14

For small , Thompson sampling is not greedy enoughT

Thompson sampling in practice (cont’d)

14

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:

Thompson sampling in practice (cont’d)

14

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by instead of just 1 each time1+ϵ

Thompson sampling in practice (cont’d)

14

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by instead of just 1 each time1+ϵ
• Instead of just taking one sample of and computing the greedy action with

respect to it, take samples, compute the greedy action with respect to each,
and pick the mode of those greedy actions

μ
n

Thompson sampling in practice (cont’d)

14

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by instead of just 1 each time1+ϵ
• Instead of just taking one sample of and computing the greedy action with

respect to it, take samples, compute the greedy action with respect to each,
and pick the mode of those greedy actions

μ
n

All of these favor arms that the algorithm has more confidence are good (i.e., arms
that have worked well so far), as opposed to arms that may be good

Thompson sampling in practice (cont’d)

14

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:
• Update the Beta parameters by instead of just 1 each time1+ϵ
• Instead of just taking one sample of and computing the greedy action with

respect to it, take samples, compute the greedy action with respect to each,
and pick the mode of those greedy actions

μ
n

All of these favor arms that the algorithm has more confidence are good (i.e., arms
that have worked well so far), as opposed to arms that may be good

Such tuning can greatly improve Thompson sampling’s performance even for
reasonably large (the asymptotic optimality of vanilla TS is very asymptotic)T

Today

15

• Feedback from last lecture

• Recap

• Thompson sampling

• Gittins index

A different notion of finite horizon

16

A different notion of finite horizon

16

So far, we have always taken the time horizon to be fixedT

A different notion of finite horizon

16

So far, we have always taken the time horizon to be fixedT
Another model we might consider is for the to be random, and a simple yet
intuitive distribution for it is to imagine that the bandit ends at each time step with
a fixed probability , given that it has reached that time step:

T

1 − γ

A different notion of finite horizon

16

So far, we have always taken the time horizon to be fixedT
Another model we might consider is for the to be random, and a simple yet
intuitive distribution for it is to imagine that the bandit ends at each time step with
a fixed probability , given that it has reached that time step:

T

1 − γ
1. ℙ(T = 1) = 1 − γ

A different notion of finite horizon

16

So far, we have always taken the time horizon to be fixedT
Another model we might consider is for the to be random, and a simple yet
intuitive distribution for it is to imagine that the bandit ends at each time step with
a fixed probability , given that it has reached that time step:

T

1 − γ
1. ℙ(T = 1) = 1 − γ
2. ℙ(T = 2) = ℙ(T = 2 ∣ T > 1)ℙ(T > 1) = (1 − γ)γ

A different notion of finite horizon

16

So far, we have always taken the time horizon to be fixedT
Another model we might consider is for the to be random, and a simple yet
intuitive distribution for it is to imagine that the bandit ends at each time step with
a fixed probability , given that it has reached that time step:

T

1 − γ
1. ℙ(T = 1) = 1 − γ
2. ℙ(T = 2) = ℙ(T = 2 ∣ T > 1)ℙ(T > 1) = (1 − γ)γ
3. ℙ(T = 3) = ℙ(T = 3 ∣ T > 2)ℙ(T > 2) = (1 − γ)(1 − (1 − γ) − (1 − γ)γ)

A different notion of finite horizon

16

So far, we have always taken the time horizon to be fixedT
Another model we might consider is for the to be random, and a simple yet
intuitive distribution for it is to imagine that the bandit ends at each time step with
a fixed probability , given that it has reached that time step:

T

1 − γ
1. ℙ(T = 1) = 1 − γ
2. ℙ(T = 2) = ℙ(T = 2 ∣ T > 1)ℙ(T > 1) = (1 − γ)γ
3. ℙ(T = 3) = ℙ(T = 3 ∣ T > 2)ℙ(T > 2) = (1 − γ)(1 − (1 − γ) − (1 − γ)γ)

 = (1 − γ)γ2

A different notion of finite horizon

16

So far, we have always taken the time horizon to be fixedT
Another model we might consider is for the to be random, and a simple yet
intuitive distribution for it is to imagine that the bandit ends at each time step with
a fixed probability , given that it has reached that time step:

T

1 − γ
1. ℙ(T = 1) = 1 − γ
2. ℙ(T = 2) = ℙ(T = 2 ∣ T > 1)ℙ(T > 1) = (1 − γ)γ
3. ℙ(T = 3) = ℙ(T = 3 ∣ T > 2)ℙ(T > 2) = (1 − γ)(1 − (1 − γ) − (1 − γ)γ)

 = (1 − γ)γ2

 … is geometric, i.e., T ℙ(T = n) = (1 − γ)γn−1

A different notion of finite horizon

16

So far, we have always taken the time horizon to be fixedT
Another model we might consider is for the to be random, and a simple yet
intuitive distribution for it is to imagine that the bandit ends at each time step with
a fixed probability , given that it has reached that time step:

T

1 − γ
1. ℙ(T = 1) = 1 − γ
2. ℙ(T = 2) = ℙ(T = 2 ∣ T > 1)ℙ(T > 1) = (1 − γ)γ
3. ℙ(T = 3) = ℙ(T = 3 ∣ T > 2)ℙ(T > 2) = (1 − γ)(1 − (1 − γ) − (1 − γ)γ)

 = (1 − γ)γ2

 … is geometric, i.e., T ℙ(T = n) = (1 − γ)γn−1

Thus, assuming independent of the data, then we’ll get to w/p: T rt

Exactly optimizing the expected reward

17

So we see any given w/p rt γt

Exactly optimizing the expected reward

17

So we see any given w/p rt γt total reward, in expectation only over , is ⇒ T
∞

∑
t=0

γtrt

Exactly optimizing the expected reward

17

So we see any given w/p rt γt total reward, in expectation only over , is ⇒ T
∞

∑
t=0

γtrt

In the Bayesian bandit, there is an algorithm that exactly optimizes , [
∞

∑
t=0

γtrt]

1-minute feedback form: https://bit.ly/3RHtlxy

Today’s summary:
Thompson sampling

•Operates in Bayesian bandit environment

•Samples optimal arm from its (posterior) distribution

•Achieves strong performance in practice

Gittins index

•Operates in Bayesian bandit with random horizon

•Exactly optimal in terms of expected (discounted) reward

•Some computational details to work out on HW1

Next time:

•Contextual bandits

•Other flavors of bandits

22

https://bit.ly/3RHtlxy

