
Bandits: Gittins index and
Contextual bandits

 
Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning 

Fall 2022

1

Today

• Feedback from last lecture

• Recap

• Gittins index

• Contextual bandits

2

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2. Microphone for both of us so we’re both audible in recording

3

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2. Microphone for both of us so we’re both audible in recording

3

One logistical reminder:
HW collaboration is allowed as long as you report on the homework who you

worked with, but solutions must be written up independently

Today

4

• Feedback from last lecture

• Recap

• Gittins index

• Contextual bandits

Recap

5

Recap

• In Bayesian bandit environment, know distribution over everything at all t

5

Recap

• In Bayesian bandit environment, know distribution over everything at all t

• If we consider random/discounted reward , we know that too,

in principle, for any given algorithm (where expectation is over random arm
distributions too)

𝔼 [
∞

∑
t=0

γtrt]

5

Today

6

• Feedback from last lecture

• Recap

• Gittins index

• Contextual bandits

Exactly optimizing the expected reward

7

Exactly optimizing the expected reward

7

In the Bayesian bandit, there is an algorithm that exactly optimizes 𝔼 [
∞

∑
t=0

γtrt]

Exactly optimizing the expected reward

7

In the Bayesian bandit, there is an algorithm that exactly optimizes 𝔼 [
∞

∑
t=0

γtrt]
Gittins index is both the name of a quantity that can be computed for each arm at

any given time, and often also used to refer to the algorithm that chooses the argmax
of the Gittins index at each time point

Exactly optimizing the expected reward

7

In the Bayesian bandit, there is an algorithm that exactly optimizes 𝔼 [
∞

∑
t=0

γtrt]
Gittins index is both the name of a quantity that can be computed for each arm at

any given time, and often also used to refer to the algorithm that chooses the argmax
of the Gittins index at each time point

Proof of optimality is beyond scope of class, but we can cover and discuss the
algorithm at a high level

Exactly optimizing the expected reward

7

In the Bayesian bandit, there is an algorithm that exactly optimizes 𝔼 [
∞

∑
t=0

γtrt]
Gittins index is both the name of a quantity that can be computed for each arm at

any given time, and often also used to refer to the algorithm that chooses the argmax
of the Gittins index at each time point

Proof of optimality is beyond scope of class, but we can cover and discuss the
algorithm at a high level

There are some computation/implementation aspects that you will deal with on HW1

One-armed bandit (OAB)

8

Computing the Gittins index for arm : k

One-armed bandit (OAB)

8

Recall that we are in a Bayesian bandit, so we have a posterior for the distribution of
arm at any given time: , where I am suppressing the fact that we are

conditioning on all the data we’ve seen so far—all that matters is that we have a
distribution on

k ℙ(ν(k))

ν(k)

Computing the Gittins index for arm : k

One-armed bandit (OAB)

8

Recall that we are in a Bayesian bandit, so we have a posterior for the distribution of
arm at any given time: , where I am suppressing the fact that we are

conditioning on all the data we’ve seen so far—all that matters is that we have a
distribution on

k ℙ(ν(k))

ν(k)

Suppose that there were just one other arm, call it arm , whose reward distribution
is a point mass at some known value ; this is called a one-armed bandit (OAB)

0
λ

Computing the Gittins index for arm : k

One-armed bandit (OAB)

8

Recall that we are in a Bayesian bandit, so we have a posterior for the distribution of
arm at any given time: , where I am suppressing the fact that we are

conditioning on all the data we’ve seen so far—all that matters is that we have a
distribution on

k ℙ(ν(k))

ν(k)

Suppose that there were just one other arm, call it arm , whose reward distribution
is a point mass at some known value ; this is called a one-armed bandit (OAB)

0
λ

Given and , we can ask: which arm should we pull next in order to maximize

 in the OAB?

λ ℙ(ν(k))

𝔼 [
∞

∑
t=0

γtrt]

Computing the Gittins index for arm : k

One-armed bandit (cont’d)

9

OAB: arm (with known deterministic reward) or arm (with posterior)0 λ k ℙ(ν(k))

One-armed bandit (cont’d)

9

The reward function is self-similar over time, meaning that it doesn’t matter what is
when we ask this question (because at time , I want to maximize

, which is the same as maximizing the original

expected reward if time starts at)

t
t

𝔼 [
∞

∑
τ=t

γτrτ] = γt𝔼 [
∞

∑
τ=0

γτrt+τ]
𝔼 [

∞

∑
τ=0

γτrτ] t

OAB: arm (with known deterministic reward) or arm (with posterior)0 λ k ℙ(ν(k))

One-armed bandit (cont’d)

9

Also, if you choose arm , you gain no new information (since you already know arm
’s full reward distribution), and hence you should make the same OAB decision at

the next time step, and forever after

0
0

The reward function is self-similar over time, meaning that it doesn’t matter what is
when we ask this question (because at time , I want to maximize

, which is the same as maximizing the original

expected reward if time starts at)

t
t

𝔼 [
∞

∑
τ=t

γτrτ] = γt𝔼 [
∞

∑
τ=0

γτrt+τ]
𝔼 [

∞

∑
τ=0

γτrτ] t

OAB: arm (with known deterministic reward) or arm (with posterior)0 λ k ℙ(ν(k))

Gittins Index

10

Gittins Index

10

Gittins index for arm with posterior is the value of at which
the optimal choice between arm and arm is a toss-up (i.e., for ,
arm is the optimal choice, and for , arm is the optimal choice)

k ℙ(ν(k)) λ⋆(ℙ(ν(k))) λ
0 k λ < λ⋆(ℙ(ν(k)))

k λ > λ⋆(ℙ(ν(k))) 0

Gittins Index

10

Gittins index for arm with posterior is the value of at which
the optimal choice between arm and arm is a toss-up (i.e., for ,
arm is the optimal choice, and for , arm is the optimal choice)

k ℙ(ν(k)) λ⋆(ℙ(ν(k))) λ
0 k λ < λ⋆(ℙ(ν(k)))

k λ > λ⋆(ℙ(ν(k))) 0

How to think about the optimal choice in the OAB given and ?λ ℙ(ν(k))

Gittins Index

10

Gittins index for arm with posterior is the value of at which
the optimal choice between arm and arm is a toss-up (i.e., for ,
arm is the optimal choice, and for , arm is the optimal choice)

k ℙ(ν(k)) λ⋆(ℙ(ν(k))) λ
0 k λ < λ⋆(ℙ(ν(k)))

k λ > λ⋆(ℙ(ν(k))) 0

How to think about the optimal choice in the OAB given and ?λ ℙ(ν(k))

We can think of as our state of belief about arm ’s reward distribution, and
by Bayes rule, we know how that state will evolve after the next observation, i.e., we
know what will be for any (recall that if)

ℙ(ν(k)) k

ℙ(ν(k) ∣ a0, r0) a0, r0 ℙ(ν(k) ∣ a0, r0) = ℙ(ν(k)) a0 = 0

Gittins Index

10

Gittins index for arm with posterior is the value of at which
the optimal choice between arm and arm is a toss-up (i.e., for ,
arm is the optimal choice, and for , arm is the optimal choice)

k ℙ(ν(k)) λ⋆(ℙ(ν(k))) λ
0 k λ < λ⋆(ℙ(ν(k)))

k λ > λ⋆(ℙ(ν(k))) 0

How to think about the optimal choice in the OAB given and ?λ ℙ(ν(k))

We can think of as our state of belief about arm ’s reward distribution, and
by Bayes rule, we know how that state will evolve after the next observation, i.e., we
know what will be for any (recall that if)

ℙ(ν(k)) k

ℙ(ν(k) ∣ a0, r0) a0, r0 ℙ(ν(k) ∣ a0, r0) = ℙ(ν(k)) a0 = 0

Now let’s think about the optimal value depending

on which decision is optimal

V(ℙ(ν(k)), λ, γ) := 𝔼 [
∞

∑
t=0

γtrt]

Gittins Index (cont’d)

11

Gittins Index (cont’d)

11

If arm is optimal, then arm will stay optimal and 0 0 V(ℙ(ν(k)), λ, γ) =
λ

1 − γ

Gittins Index (cont’d)

11

If arm is optimal, then arm will stay optimal and 0 0 V(ℙ(ν(k)), λ, γ) =
λ

1 − γ
If arm is optimal, k V(ℙ(ν(k)), λ, γ) = 𝔼r∼ν(k) [r + γV(ℙ(ν(k) ∣ a0 = k, r0 = r), λ, γ)]

Gittins Index (cont’d)

11

If arm is optimal, then arm will stay optimal and 0 0 V(ℙ(ν(k)), λ, γ) =
λ

1 − γ
If arm is optimal, k V(ℙ(ν(k)), λ, γ) = 𝔼r∼ν(k) [r + γV(ℙ(ν(k) ∣ a0 = k, r0 = r), λ, γ)]
So the true is the max of these twoV(ℙ(ν(k)), λ, γ)

Gittins Index (cont’d)

11

If arm is optimal, then arm will stay optimal and 0 0 V(ℙ(ν(k)), λ, γ) =
λ

1 − γ
If arm is optimal, k V(ℙ(ν(k)), λ, γ) = 𝔼r∼ν(k) [r + γV(ℙ(ν(k) ∣ a0 = k, r0 = r), λ, γ)]
So the true is the max of these twoV(ℙ(ν(k)), λ, γ)
Since the function appears on both sides of the equation (though with different
arguments), this formula is a recursive one

V

Gittins Index (cont’d)

11

If arm is optimal, then arm will stay optimal and 0 0 V(ℙ(ν(k)), λ, γ) =
λ

1 − γ
If arm is optimal, k V(ℙ(ν(k)), λ, γ) = 𝔼r∼ν(k) [r + γV(ℙ(ν(k) ∣ a0 = k, r0 = r), λ, γ)]
So the true is the max of these twoV(ℙ(ν(k)), λ, γ)
Since the function appears on both sides of the equation (though with different
arguments), this formula is a recursive one

V

Details of recursion left to HW1 (for Bayesian Bernoulli bandit), but the point is that
in some cases, can be extremely well-approximated quite
efficiently, at which point we can just check if it is bigger than to see what
the optimal choice is (if bigger, arm optimal, otherwise arm optimal)

V(ℙ(ν(k)), λ, γ)
λ/(1 − γ)

k 0

Gittins Index (cont’d)

11

If arm is optimal, then arm will stay optimal and 0 0 V(ℙ(ν(k)), λ, γ) =
λ

1 − γ
If arm is optimal, k V(ℙ(ν(k)), λ, γ) = 𝔼r∼ν(k) [r + γV(ℙ(ν(k) ∣ a0 = k, r0 = r), λ, γ)]
So the true is the max of these twoV(ℙ(ν(k)), λ, γ)
Since the function appears on both sides of the equation (though with different
arguments), this formula is a recursive one

V

Details of recursion left to HW1 (for Bayesian Bernoulli bandit), but the point is that
in some cases, can be extremely well-approximated quite
efficiently, at which point we can just check if it is bigger than to see what
the optimal choice is (if bigger, arm optimal, otherwise arm optimal)

V(ℙ(ν(k)), λ, γ)
λ/(1 − γ)

k 0
Then just search over to find , the Gittins index!λ λ⋆

Gittins Index (cont’d)

12

Gittins Index (cont’d)

12

Comments about Gittins index:

Gittins Index (cont’d)

12

Comments about Gittins index:

• Its exact optimality is quite complicated to understand and beyond the
scope of this class

Gittins Index (cont’d)

12

Comments about Gittins index:

• Its exact optimality is quite complicated to understand and beyond the
scope of this class

• Relies on knowing and the prior , and optimal in expectation over γ π π

Gittins Index (cont’d)

12

Comments about Gittins index:

• Its exact optimality is quite complicated to understand and beyond the
scope of this class

• Relies on knowing and the prior , and optimal in expectation over γ π π
• The Gittins index can be computed for an arm without any information

about the other arms!

Gittins Index (cont’d)

12

Comments about Gittins index:

• Its exact optimality is quite complicated to understand and beyond the
scope of this class

• Relies on knowing and the prior , and optimal in expectation over γ π π
• The Gittins index can be computed for an arm without any information

about the other arms!

• It performs REALLY well in practice, even a little outside of the regime it is
exactly optimal for (e.g., fixed arm means, fixed T)

Gittins Index (cont’d)

12

Comments about Gittins index:

• Its exact optimality is quite complicated to understand and beyond the
scope of this class

• Relies on knowing and the prior , and optimal in expectation over γ π π
• The Gittins index can be computed for an arm without any information

about the other arms!

• It performs REALLY well in practice, even a little outside of the regime it is
exactly optimal for (e.g., fixed arm means, fixed T)

• Hard to extend exact optimality beyond this setting, though could inspire
ideas for new algorithms in other settings

Today

13

• Feedback from last lecture

• Recap

• Gittins index

• Contextual bandits

Beyond simple bandits

14

Beyond simple bandits

14

In a bandit, we are presented with the same decision at every time

Beyond simple bandits

14

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Beyond simple bandits

14

E.g., in online advertising there may not be a single best ad to show all users
on all websites:

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Beyond simple bandits

14

E.g., in online advertising there may not be a single best ad to show all users
on all websites:
• maybe some types of users prefer one ad while others prefer another, or

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Beyond simple bandits

14

E.g., in online advertising there may not be a single best ad to show all users
on all websites:
• maybe some types of users prefer one ad while others prefer another, or
• maybe one type of ad works better on certain websites while another

works better on other websites

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Beyond simple bandits

14

E.g., in online advertising there may not be a single best ad to show all users
on all websites:
• maybe some types of users prefer one ad while others prefer another, or
• maybe one type of ad works better on certain websites while another

works better on other websites
Which user comes in next is random, but we have some context to tell
situations apart and hence learn different optimal actions

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Contextual bandit environment

15

Contextual bandit environment

15

Context at time encoded into a variable that we see before choosing our actiont xt

Contextual bandit environment

15

Context at time encoded into a variable that we see before choosing our actiont xt

 is drawn i.i.d. at each time point from a distribution on sample space xt νx 𝒳

Contextual bandit environment

15

Context at time encoded into a variable that we see before choosing our actiont xt

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx 𝒳

Contextual bandit environment

15

Context at time encoded into a variable that we see before choosing our actiont xt

Accordingly, we should also choose our action in a way that depends on , i.e.,
our action should be chosen by a function of (a policy), namely,

at xt
xt πt(xt)

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx 𝒳

Contextual bandit environment

15

Context at time encoded into a variable that we see before choosing our actiont xt

Accordingly, we should also choose our action in a way that depends on , i.e.,
our action should be chosen by a function of (a policy), namely,

at xt
xt πt(xt)

(Sorry for overlap with notation for prior in Bayesian bandit; both extremely standard)

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx 𝒳

Contextual bandit environment

15

Context at time encoded into a variable that we see before choosing our actiont xt

Accordingly, we should also choose our action in a way that depends on , i.e.,
our action should be chosen by a function of (a policy), namely,

at xt
xt πt(xt)

(Sorry for overlap with notation for prior in Bayesian bandit; both extremely standard)

If we knew everything about the environment, we’d want to use the optimal policy

π⋆(xt) := arg max

k∈{1,…,K}
μ(k)(xt), where μ(k)(x) := 𝔼r∼ν(k)(x)[r]

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx 𝒳

Contextual bandit environment

15

Context at time encoded into a variable that we see before choosing our actiont xt

Accordingly, we should also choose our action in a way that depends on , i.e.,
our action should be chosen by a function of (a policy), namely,

at xt
xt πt(xt)

(Sorry for overlap with notation for prior in Bayesian bandit; both extremely standard)

If we knew everything about the environment, we’d want to use the optimal policy

π⋆(xt) := arg max

k∈{1,…,K}
μ(k)(xt), where μ(k)(x) := 𝔼r∼ν(k)(x)[r]

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx 𝒳

 is the policy we compare to in computing regretπ⋆

Contextual bandit environment (cont’d)

16

Formally, a contextual bandit is the following interactive learning process:

Contextual bandit environment (cont’d)

16

Formally, a contextual bandit is the following interactive learning process:

For t = 0 → T − 1

Contextual bandit environment (cont’d)

16

Formally, a contextual bandit is the following interactive learning process:

For t = 0 → T − 1
1. Learner sees context xt ∼ νx

Contextual bandit environment (cont’d)

16

Formally, a contextual bandit is the following interactive learning process:

For t = 0 → T − 1
1. Learner sees context xt ∼ νx Independent of any previous data

Contextual bandit environment (cont’d)

16

Formally, a contextual bandit is the following interactive learning process:

For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}

1. Learner sees context xt ∼ νx Independent of any previous data

Contextual bandit environment (cont’d)

16

Formally, a contextual bandit is the following interactive learning process:

For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}

1. Learner sees context xt ∼ νx
 policy learned from

all data seen so far

πt

Independent of any previous data

Contextual bandit environment (cont’d)

16

Formally, a contextual bandit is the following interactive learning process:

For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}

3. Learner observes reward from arm in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from

all data seen so far

πt

Independent of any previous data

Contextual bandit environment (cont’d)

16

Formally, a contextual bandit is the following interactive learning process:

For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}

3. Learner observes reward from arm in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from

all data seen so far

πt

Note that if the context distribution always returns the same value (e.g., 0), then
the contextual bandit reduces to the original multi-armed bandit

νx

Independent of any previous data

Contextual bandit environment (cont’d)

16

Formally, a contextual bandit is the following interactive learning process:

For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}

3. Learner observes reward from arm in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from

all data seen so far

πt

Note that if the context distribution always returns the same value (e.g., 0), then
the contextual bandit reduces to the original multi-armed bandit

νx

 might seem unfamiliar since we haven’t talked about a policy in bandits before, but
actually we’ve always had it, it’s just that without context, we didn’t need a name or

notation for it because it was so simple!

πt

Independent of any previous data

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

17

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

17

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?

17

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

17

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?

17

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

17

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈𝒳

17

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

but now this is (usually) distributions, so need more complicated priorK |𝒳| ≫ K
Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈𝒳

17

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

but now this is (usually) distributions, so need more complicated priorK |𝒳| ≫ K
Still can update distribution on after each reward {ν(k)(x)}k∈{1,…,K},x∈𝒳 rt ∼ ν(at)(xt)

Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈𝒳

17

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

but now this is (usually) distributions, so need more complicated priorK |𝒳| ≫ K
Still can update distribution on after each reward {ν(k)(x)}k∈{1,…,K},x∈𝒳 rt ∼ ν(at)(xt)

Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈𝒳

Still know posterior over that can draw from to choose ; this is k⋆(xt) at πt(xt)
17

UCB for contextual bandits

18

UCB for contextual bandits

18

UCB algorithm also conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

UCB for contextual bandits

18

UCB algorithm also conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

UCB for contextual bandits

18

UCB algorithm also conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|𝒳|
̂μ(k)
t (x) K |𝒳| K

UCB for contextual bandits

18

UCB algorithm also conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|𝒳|
̂μ(k)
t (x) K |𝒳| K

But when is really big (or even infinite), this will be really bad!|𝒳|

UCB for contextual bandits

18

UCB algorithm also conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|𝒳|
̂μ(k)
t (x) K |𝒳| K

But when is really big (or even infinite), this will be really bad!|𝒳|
Solution: share information across contexts , i.e., don’t treat and as

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′)

UCB for contextual bandits

18

UCB algorithm also conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|𝒳|
̂μ(k)
t (x) K |𝒳| K

But when is really big (or even infinite), this will be really bad!|𝒳|
Solution: share information across contexts , i.e., don’t treat and as

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′)

Example: showing an ad on a NYT article on politics vs a NYT article on sports:

UCB for contextual bandits

18

UCB algorithm also conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|𝒳|
̂μ(k)
t (x) K |𝒳| K

But when is really big (or even infinite), this will be really bad!|𝒳|
Solution: share information across contexts , i.e., don’t treat and as

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′)

Example: showing an ad on a NYT article on politics vs a NYT article on sports:
Not identical readership, but still both on NYT, so probably still similar readership!

Modeling in contextual bandits

19

Modeling in contextual bandits

19

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

Modeling in contextual bandits

19

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

Modeling in contextual bandits

19

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |𝒳| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

Modeling in contextual bandits

19

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |𝒳| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Modeling in contextual bandits

19

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |𝒳| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Lower dimension makes learning easier, but model could be wrong/biased

Modeling in contextual bandits

19

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |𝒳| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Lower dimension makes learning easier, but model could be wrong/biased

Choosing the best model, fitting it, and quantifying uncertainty are essentially
problems of supervised learning (for another day)

Today

20

• Feedback from last lecture

• Recap

• Gittins index

• Contextual bandits

Today’s summary:

21

Today’s summary:
Gittins index

•Operates in Bayesian bandit with random horizon

•Exactly optimal in terms of expected (discounted) reward

•Some computational details to work out on HW1

21

Today’s summary:
Gittins index

•Operates in Bayesian bandit with random horizon

•Exactly optimal in terms of expected (discounted) reward

•Some computational details to work out on HW1

Contextual bandits

•Adds i.i.d. context/state variable to bandit

•Same algorithms apply, just need to model

•Modeling aspects = supervised learning

μ(k)(x)

21

Today’s summary:
Gittins index

•Operates in Bayesian bandit with random horizon

•Exactly optimal in terms of expected (discounted) reward

•Some computational details to work out on HW1

Contextual bandits

•Adds i.i.d. context/state variable to bandit

•Same algorithms apply, just need to model

•Modeling aspects = supervised learning

μ(k)(x)

Next time:

•Markov decision processes (= contextual bandit where

context can depend on previous action and context)

21

1-minute feedback form: https://bit.ly/3RHtlxy

Today’s summary:
Gittins index

•Operates in Bayesian bandit with random horizon

•Exactly optimal in terms of expected (discounted) reward

•Some computational details to work out on HW1

Contextual bandits

•Adds i.i.d. context/state variable to bandit

•Same algorithms apply, just need to model

•Modeling aspects = supervised learning

μ(k)(x)

Next time:

•Markov decision processes (= contextual bandit where

context can depend on previous action and context)

21

https://bit.ly/3RHtlxy

