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One logistical reminder:
HW collaboration is allowed as long as you report on the homework who you 

worked with, but solutions must be written up independently
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Recap

• In Bayesian bandit environment, know distribution over everything at all t

• If we consider random/discounted reward , we know that too, 

in principle, for any given algorithm (where expectation is over random arm 
distributions too)

𝔼 [
∞

∑
t=0

γtrt]
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Exactly optimizing the expected reward
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In the Bayesian bandit, there is an algorithm that exactly optimizes 𝔼 [
∞

∑
t=0

γtrt]
Gittins index is both the name of a quantity that can be computed for each arm at 

any given time, and often also used to refer to the algorithm that chooses the argmax 
of the Gittins index at each time point

Proof of optimality is beyond scope of class, but we can cover and discuss the 
algorithm at a high level

There are some computation/implementation aspects that you will deal with on HW1
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Recall that we are in a Bayesian bandit, so we have a posterior for the distribution of 
arm  at any given time: , where I am suppressing the fact that we are 

conditioning on all the data we’ve seen so far—all that matters is that we have a 
distribution on 

k ℙ(ν(k))

ν(k)

Suppose that there were just one other arm, call it arm , whose reward distribution 
is a point mass at some known value ; this is called a one-armed bandit (OAB)

0
λ

Given  and , we can ask: which arm should we pull next in order to maximize 

 in the OAB?

λ ℙ(ν(k))

𝔼 [
∞

∑
t=0

γtrt]

Computing the Gittins index for arm : k
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The reward function is self-similar over time, meaning that it doesn’t matter what  is 
when we ask this question (because at time , I want to maximize 

, which is the same as maximizing the original 

expected reward  if time starts at )

t
t

𝔼 [
∞

∑
τ=t

γτrτ] = γt𝔼 [
∞

∑
τ=0

γτrt+τ]
𝔼 [

∞

∑
τ=0

γτrτ] t
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Also, if you choose arm , you gain no new information (since you already know arm 
’s full reward distribution), and hence you should make the same OAB decision at 

the next time step, and forever after

0
0

The reward function is self-similar over time, meaning that it doesn’t matter what  is 
when we ask this question (because at time , I want to maximize 

, which is the same as maximizing the original 

expected reward  if time starts at )

t
t

𝔼 [
∞

∑
τ=t

γτrτ] = γt𝔼 [
∞

∑
τ=0

γτrt+τ]
𝔼 [

∞

∑
τ=0

γτrτ] t

OAB: arm  (with known deterministic reward ) or arm  (with posterior )0 λ k ℙ(ν(k))
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k λ > λ⋆(ℙ(ν(k))) 0

How to think about the optimal choice in the OAB given  and ?λ ℙ(ν(k))

We can think of  as our state of belief about arm ’s reward distribution, and 
by Bayes rule, we know how that state will evolve after the next observation, i.e., we 
know what  will be for any  (recall that  if )

ℙ(ν(k)) k

ℙ(ν(k) ∣ a0, r0) a0, r0 ℙ(ν(k) ∣ a0, r0) = ℙ(ν(k)) a0 = 0

Now let’s think about the optimal value  depending 

on which decision is optimal

V(ℙ(ν(k)), λ, γ) := 𝔼 [
∞

∑
t=0

γtrt]
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If arm  is optimal, then arm  will stay optimal and 0 0 V(ℙ(ν(k)), λ, γ) =
λ

1 − γ
If arm  is optimal, k V(ℙ(ν(k)), λ, γ) = 𝔼r∼ν(k) [r + γV(ℙ(ν(k) ∣ a0 = k, r0 = r), λ, γ)]
So the true  is the max of these twoV(ℙ(ν(k)), λ, γ)
Since the  function appears on both sides of the equation (though with different 
arguments), this formula is a recursive one

V

Details of recursion left to HW1 (for Bayesian Bernoulli bandit), but the point is that 
in some cases,  can be extremely well-approximated quite 
efficiently, at which point we can just check if it is bigger than  to see what 
the optimal choice is (if bigger, arm  optimal, otherwise arm  optimal)

V(ℙ(ν(k)), λ, γ)
λ/(1 − γ)

k 0
Then just search over  to find , the Gittins index!λ λ⋆
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Comments about Gittins index:

• Its exact optimality is quite complicated to understand and beyond the 
scope of this class

• Relies on knowing  and the prior , and optimal in expectation over γ π π
• The Gittins index can be computed for an arm without any information 

about the other arms!

• It performs REALLY well in practice, even a little outside of the regime it is 
exactly optimal for (e.g., fixed arm means, fixed T)

• Hard to extend exact optimality beyond this setting, though could inspire 
ideas for new algorithms in other settings
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E.g., in online advertising there may not be a single best ad to show all users 
on all websites:
• maybe some types of users prefer one ad while others prefer another, or 
• maybe one type of ad works better on certain websites while another 

works better on other websites
Which user comes in next is random, but we have some context to tell 
situations apart and hence learn different optimal actions

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time
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our action should be chosen by a function of  (a policy), namely, 
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(Sorry for overlap with notation for prior in Bayesian bandit; both extremely standard)
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Context at time  encoded into a variable  that we see before choosing our actiont xt

Accordingly, we should also choose our action  in a way that depends on , i.e., 
our action should be chosen by a function of  (a policy), namely, 

at xt
xt πt(xt)

(Sorry for overlap with notation for prior in Bayesian bandit; both extremely standard)

If we knew everything about the environment, we’d want to use the optimal policy

π⋆(xt) := arg max

k∈{1,…,K}
μ(k)(xt), where μ(k)(x) := 𝔼r∼ν(k)(x)[r]

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a 
reward that is drawn from a distribution that depends on , namely, 

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution  on sample space xt νx 𝒳

 is the policy we compare to in computing regretπ⋆
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Formally, a contextual bandit is the following interactive learning process:

For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}

3. Learner observes reward  from arm  in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from 

all data seen so far

πt

Note that if the context distribution  always returns the same value (e.g., 0), then 
the contextual bandit reduces to the original multi-armed bandit

νx

 might seem unfamiliar since we haven’t talked about a policy in bandits before, but 
actually we’ve always had it, it’s just that without context, we didn’t need a name or 

notation for it because it was so simple!

πt

Independent of any previous data
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Contextual bandit algorithms
What was  for UCB? (  has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

but now this is  (usually  ) distributions, so need more complicated priorK |𝒳| ≫ K
Still can update distribution on  after each reward {ν(k)(x)}k∈{1,…,K},x∈𝒳 rt ∼ ν(at)(xt)

Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈𝒳

Still know posterior over  that can draw from to choose ; this is k⋆(xt) at πt(xt)
17
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UCB algorithm also conceptually identical as long as  finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
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πt(xt) = arg max
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t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added  argument to  and  since we now keep track of the sample 
mean and number of arm pulls separately for each value of the context
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t N(k)

t

• Added  inside the log because our union bound argument is now over 
all arm mean estimates , of which there are  instead of just 

|𝒳|
̂μ(k)
t (x) K |𝒳| K

But when  is really big (or even infinite), this will be really bad!|𝒳|
Solution: share information across contexts , i.e., don’t treat  and  as 

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′ )

Example: showing an ad on a NYT article on politics vs a NYT article on sports: 
Not identical readership, but still both on NYT, so probably still similar readership!
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Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

   w/o linear model, need to learn 4 different  values for each arm |𝒳| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of ), for articles 
on politics or sports (encoded as 0 or 1 in the second entry of ) 

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Lower dimension makes learning easier, but model could be wrong/biased

Choosing the best model, fitting it, and quantifying uncertainty are essentially 
problems of supervised learning (for another day)
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• Feedback from last lecture


• Recap


• Gittins index


• Contextual bandits
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