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» definition of Markov Decision Processes



Today:

Intro to Markov Decision Processes



Four main themes we will cover in this course:

. Bandits (horizon H = 1)

. Two models, with horizon H > 1:
- Markov Decision Process: Dynamic Programming & planning

- Continuous Control
(technically, this is still an MDP, but with special structure)

. Learning in “Large” Markov Decision Process

. Advanced Topics



Supplementary Reading Materials:
Reinforcement Learning: Theory & Algorithms

https://rltheorybook.qgithub.io/

This is an advanced RL book.
We will pick specific subsections, to further your knowledge.

Please let us know if you find any typos or mistakes in the book


https://rltheorybook.github.io/

Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions



Big Successful Stories of Reinforcement Learning

TD GAMMON [Tesauro 95] [AlphaZero, Silver et.al, 17] [OpenAl Five, 18]
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To better understand RL,
let’s summarize “supervised learning”
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Summary so far:

1. In RL, we often start from zero data

2. In RL, decisions/predictions have consequences:
Future data is determined by our past historical decisions/predictions

3. To solve the task, we often need to make a long sequence of decisions



Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions
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The Mathematical framework:
Markov Decision Process

Learning
Agent

Environment

n(s) = a
" Policy: determine action based on state

A~ 2 a1 ' Multiple Steps
s Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)
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Example:
robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State s: robot configuration (e.g., joint angles)
and the ball’s position

Action a: Torque on joints in arm & fingers

Transition s’ ~ P( - | s, a): physics + some noise

policy z(s): a function mapping from robot
state to action (i.e., torque)

B Cost c(s, a): torque magnitude + dist to goal

7% =argmin E |c(sy, ay) + ye(sy, ap) + yzc(sz, a,) + }/3c(s3, a)+..... |s0, JZ]
T
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« AnMDP: 7/ = {S,A, P, r,y}

« S a set of states

« A aset of actions

« P:SXA— A(S) specifies the-dynamics model,
i.e. P(s’| s, a) is the prob
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MDPs, more formally:

S e s
« An MDP: .7/ = [S, A, P, r, y@
S a set of states e
A a set of actions
P:SXA— A(S) specifies the dynamics model,

i.e. P(s’| s, a) is the probability of transitioning to s’ form states s under action a
r:SxA - [0,1]
* let’s assume this is deterministic

« (sometimes weuseacostc: SXA — [0,1])
« A discount factor y € [0,1)
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The Objective
« A “stationary” policyz: S+ A
» “stationary” means not history dependent
» we could also consider & to be random and a function of the\his)tc%E/
« Sampling a trajectory: from a given policy 7 starting at state s;: & 7<€<;7U Ve
. Fort=0,1,2,...00 hom
- Take action a, = 7(s,)

LN
nguk 1/

« Observe reward r, = r(s,, a,)
- Transition to (and observe) s,, ; where s, | ~ P( - |s, a,)

« Objective: given state starting state s,
find a policy & that maximizes our expected, discount




Question:

Assume we have | S| many states, and |A | many
actions, how many different polices there are?

e
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Question:

Assume we have | S| many states, and |A | many
actions, how many different polices there are?

(Hint: a policy is a mapping from s to a, we have A many choices per state s)
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Infinite horizon Discounted Setting

M= {S,A,P,r, vy}
P:SxXA— AWS), r:SxA-|[0,1], ye]0,1)

Policy z: S+~ A
Quantities that allow us to reason policy’s long-term effect:

Value function V*(s) = E [Z vir(s,, a,) | So = S, ﬂ]
h=0

Q function Q(s,a) = E [Z v (s,, a,) | (So» ag) = (5, a), ;z]
h=0



Understanding Value function and Q functions

Value function V*(s) = E Z v (s, a,) | So=S,7
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Understanding Value function and Q functions >
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Value function V*(s) = E [Z v (s, a,) | So =S, n]
h=0
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Bellman Consistency Equation for V-function:

(0]
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* By definition:

o0

V*(s) = r(s, n(s)) + E [Z yhr(sh, a) | So =S, 7[]
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Bellman Consistency Equation for Q-function:
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Bellman Consistency Equation for Q-function:

0%(s.a) = E [Z Pr(s @) | (s ap) = (s, @), n]
h=0
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Example of Optimal Policy 7*

Consider the following deterministic MDP w/ 3 states & 2 actions

A Let’s say y € (0,1)
Q What'’s the optimal policy?
7*(s) = A, Vs
1
Al |8 V5@) = —— V(b)) = —— V*(e) = ——

1—y 1—vy 1—y
B
G What about policy z(s) = B, Vs
B

V*a) = 0,V*(b) = 0,V(c) =0

Reward: r(b,A) = 1, & 0 everywhere else
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1-minute feedback form: https://bit.ly/3RHtlxy
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