Reinforcement Learning & Markov Decision Processes

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2022

Today

- HW 1 due this thurs
- Today: what is Reinforcement Learning?
 - examples/concepts
 - · definition of Markov Decision Processes

Today:

Intro to Markov Decision Processes

Four main themes we will cover in this course:

- 1. Bandits (horizon H = 1)
- 2. Two models, with horizon H > 1:
 - Markov Decision Process: Dynamic Programming & planning
 - Continuous Control
 - (technically, this is still an MDP, but with special structure)
- 3. Learning in "Large" Markov Decision Process
- 4. Advanced Topics

Supplementary Reading Materials: Reinforcement Learning: Theory & Algorithms

https://rltheorybook.github.io/

This is an advanced RL book. We will pick **specific subsections**, to further your knowledge.

Please let us know if you find any typos or mistakes in the book

Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions

Big Successful Stories of Reinforcement Learning

TD GAMMON [Tesauro 95]

[AlphaZero, Silver et.al, 17]

[OpenAl Five, 18]

Reinforcement Learning in Real World:

Reinforcement Learning in Real World:

Reinforcement Learning in Real World:

To better understand RL,

let's summarize "supervised learning"

Given i.i.d examples at training:

Given i.i.d examples at training:

Given i.i.d examples at training:

Selected Actions:

RIGHT

SPEED

Selected Actions:

RIGHT

SPEED

Selected Actions:

RIGHT

SPEED

Summary so far:

1. In RL, we often start from zero data

Summary so far:

1. In RL, we often start from zero data

2. In RL, decisions/predictions have consequences: Future data is determined by our past historical decisions/predictions

Summary so far:

1. In RL, we often start from zero data

2. In RL, decisions/predictions have consequences: Future data is determined by our past historical decisions/predictions

3. To solve the task, we often need to make a long sequence of decisions

Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions

Policy: determine action based on state

Send **reward** and **next state** from a Markovian transition dynamics

$$r(s, a), s' \sim P(\cdot \mid s, a)$$

Environment

Example: robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State *s*: robot configuration (e.g., joint angles) and the ball's position

State *s*: robot configuration (e.g., joint angles) and the ball's position

Action *a*: Torque on joints in arm & fingers

State *s*: robot configuration (e.g., joint angles) and the ball's position

Action *a*: Torque on joints in arm & fingers

Transition $s' \sim P(\cdot \mid s, a)$: physics + some noise

State *s*: robot configuration (e.g., joint angles) and the ball's position

Action *a*: Torque on joints in arm & fingers

Transition $s' \sim P(\cdot \mid s, a)$: physics + some noise

policy $\pi(s)$: a function mapping from robot state to action (i.e., torque)

State *s*: robot configuration (e.g., joint angles) and the ball's position

Action *a*: Torque on joints in arm & fingers

Transition $s' \sim P(\cdot \mid s, a)$: physics + some noise

policy $\pi(s)$: a function mapping from robot state to action (i.e., torque)

Cost c(s, a): torque magnitude + dist to goal

State *s*: robot configuration (e.g., joint angles) and the ball's position

Action *a*: Torque on joints in arm & fingers

Transition $s' \sim P(\cdot \mid s, a)$: physics + some noise

policy $\pi(s)$: a function mapping from robot state to action (i.e., torque)

Cost c(s, a): torque magnitude + dist to goal

$$\pi^* = \arg\min_{\pi} \mathbb{E} \left[c(s_0, a_0) + \gamma c(s_1, a_1) + \gamma^2 c(s_2, a_2) + \gamma^3 c(s_3, a_3) + \dots \right]$$

• An MDP: $\mathcal{M} = \{S, A, P, r, \gamma\}$

- An MDP: $\mathcal{M} = \{S, A, P, r, \gamma\}$
 - *S* a set of states

- An MDP: $\mathcal{M} = \{S, A, P, r, \gamma\}$
 - *S* a set of states
 - A a set of actions

- An MDP: $\mathcal{M} = \{S, A, P, r, \gamma\}$
 - S a set of states
 - A a set of actions
 - $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model, i.e. P(s'|s,a) is the probability of transitioning to s' form states s under action a

- An MDP: $\mathcal{M} = \{S, A, P, r, \gamma\}$
 - S a set of states
 - A a set of actions
 - $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model, i.e. P(s'|s,a) is the probability of transitioning to s' form states s under action a
 - $r: S \times A \rightarrow [0,1]$
 - let's assume this is deterministic
 - (sometimes we use a cost $c: S \times A \rightarrow [0,1]$)

· Casy to extend

r was stockes to

- An MDP: $\mathcal{M} = \{S, A, P, r, \gamma\}$
 - S a set of states
 - A a set of actions
 - $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model, i.e. P(s' | s, a) is the probability of transitioning to s' form states s under action a
 - $r: S \times A \rightarrow [0,1]$
 - · let's assume this is deterministic
 - (sometimes we use a cost $c: S \times A \rightarrow [0,1]$)
 - A discount factor $\gamma \in [0,1)$
 - a starting state so

The Objective

- - we could also consider π to be random and a function of the history

T: 5-90(A)

The Objective

- A "stationary" policy $\pi: S \mapsto A$
 - "stationary" means not history dependent
 - we could also consider π to be random and a function of the history
- Sampling a trajectory: from a given policy π starting at state s_0 :
 - For $t = 0, 1, 2, ..., \infty$
 - Take action $a_t = \pi(s_t)$
 - Observe reward $r_t = r(s_t, a_t)$
 - S_{i} , $Q_{i} = T(S_{i})$, $V(S_{i}, Q_{i})$ • Transition to (and observe) s_{t+1} where $s_{t+1} \sim P(\cdot \mid s_t, a_t)$

5,~P(.)5,90) 50,90= tr(50) v(50,96)

The Objective

- A "stationary" policy $\pi: S \mapsto A$
 - "stationary" means not history dependent
 - we could also consider π to be random and a function of the history
- Sampling a trajectory: from a given policy π starting at state s_0 :
 - For $t = 0, 1, 2, ... \infty$
 - Take action $a_t = \pi(s_t)$
 - Observe reward $r_t = r(s_t, a_t)$
 - Transition to (and observe) s_{t+1} where $s_{t+1} \sim P(\cdot \mid s_t, a_t)$
- Objective: given state starting state s, find a policy π that maximizes our expected, discounted future reward:

$$\max_{\pi} \mathbb{E} \left[r(s_0, a_0) + \gamma r(s_1, a_1) + \gamma^2 r(s_2, a_2) + \dots \right] |s_0 = s, \pi$$

Question:

Assume we have |S| many states, and |A| many actions, how many different polices there are?

station any

Question:

Assume we have |S| many states, and |A| many actions, how many different polices there are?

(Hint: a policy is a mapping from s to a, we have A many choices per state s)

possible det. stat. policies

$$\mathcal{M} = \{S, A, P, r, \gamma\}$$

$$P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1)$$
 Policy $\pi: S \mapsto A$

$$\mathcal{M} = \{S, A, P, r, \gamma\}$$

$$P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1)$$

$$\mathsf{Policy} \ \pi: S \mapsto A$$

Quantities that allow us to reason policy's long-term effect:

$$\mathcal{M} = \{S, A, P, r, \gamma\}$$

$$P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1)$$

$$\text{Policy } \pi: S \mapsto A$$

Quantities that allow us to reason policy's long-term effect:

Value function
$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \middle| s_0 = s, \pi\right]$$

$$\mathcal{M} = \{S, A, P, r, \gamma\}$$

$$P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1)$$

$$\mathsf{Policy} \ \pi: S \mapsto A$$

Quantities that allow us to reason policy's long-term effect:

Value function
$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \,\middle|\, s_0 = s, \pi\right]$$
Q function $Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \,\middle|\, (s_0, a_0) = (s, a), \pi\right]$

Understanding Value function and Q functions

Value function
$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \middle| s_0 = s, \pi\right]$$

start so, take $q_0 = \pi(s_0)$, $r(s_0, a_0)$, $s_1 \sim P(a_0|s_0, q_0)$
 $s_1 = \pi(s_0)$, $r(s_1, q_1)$, $r(s_1, q_1)$

Understanding Value function and Q functions

Value function
$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \middle| s_0 = s, \pi\right]^{\frac{1}{2}} (s, \pi)^{\frac{1}{2}} \sqrt{\frac{\pi}{s}}$$

Possible
$$a \neq tT(s)$$

Q function $Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| (s_{0}, a_{0}) = (s, a), \pi\right]$

So q_{0}

start so, take $q_{0} = \alpha$, $v(s_{0}, a_{0})$, $s_{1} \sim P(\cdot | s_{1} | q_{1})$
 $s_{1} \sim fake$ $q_{1} = \pi(s_{1})$, $v(s_{1}, a_{1}) \sim s_{2} \sim P(\cdot | s_{2} | q_{1})$

Bellman Consistency Equation for V-function:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \,\middle|\, s_0 = s, \pi\right]$$
 We have that:
$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s \sim P(\cdot \mid s, \sigma)} V^{\pi}(s')$$

$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} V^{\pi}(s')$$

Proof: Bellman Consistency for V-function:

Proof: Bellman Consistency for V-function:

• By definition:

$$V^{\pi}(s) = r(s, \pi(s)) + \mathbb{E}\left[\sum_{h=1}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| s_{0} = s, \pi\right]$$

$$= r(s, \pi(s)) + \gamma \mathbb{E}\left[r(s_{1}, a_{1}) + \gamma r(s_{2}, a_{2}) + \dots \middle| s_{0} = s, \pi\right]$$

Proof: Bellman Consistency for V-function:

By definition:

$$V^{\pi}(s) = r(s, \pi(s)) + \mathbb{E}\left[\sum_{h=1}^{\infty} \gamma^h r(s_h, a_h) \,\middle|\, s_0 = s, \pi\right]$$

By the "tower property" and due to that
$$s_1 = s'$$
 with probability $P(s' | s, \pi(s))$,

 $= r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))} \left[\mathbb{E} \left[r(s_1, a_1) + \gamma r(s_2, a_2) + \dots \middle| s_0 = s, s_1 = s', \pi \right] \right]$

 $= r(s, \pi(s)) + \gamma \mathbb{E} \left[r(s_1, a_1) + \gamma r(s_2, a_2) + \dots \right] s_0 = s, \pi$

$$= r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))} \left[\mathbb{E} \left[r(s_1, a_1) + \gamma r(s_2, a_2) + \dots \middle| s_0 = s, s_1 = s', \pi \right] \right]$$

$$= r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))} \left[\mathbb{E} \left[r(s_1, a_1) + \gamma r(s_2, a_2) + \dots \middle| s_1 = s', \pi \right] \right]$$

$$= r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))} \left[V^{\pi}(s') \right]$$

$$= r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))} \left[V^{\pi}(s') \right]$$

$$= r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))} \left[V^{\pi}(s') \right]$$

Bellman Consistency Equation for Q-function:

Bellman Consistency Equation for Q-function:

$$Q^{\pi}(s, a) = \mathbb{E}\left[\left.\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h})\right| (s_{0}, a_{0}) = (s, a), \pi\right]$$

$$V^{\pi}(S) = Q^{\pi}(S \pi(S))$$

Bellman Consistency Equation for Q-function:

$$Q^{\pi}(s, a) = \mathbb{E}\left[\left.\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h})\right| (s_{0}, a_{0}) = (s, a), \pi\right]$$

$$Q^{\pi}(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\pi}(s')$$

$$= r(s,a) + \gamma \mathbb{E} \left[Q^{T}(s',a) - T(s') \right]$$

$$= r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\pi}(s')$$

Consider the following deterministic MDP w/ 3 states & 2 actions

Consider the following **deterministic** MDP w/ 3 states & 2 actions

Let's say $\gamma \in (0,1)$ What's the optimal policy?

Consider the following **deterministic** MDP w/ 3 states & 2 actions

Let's say $\gamma \in (0,1)$ What's the optimal policy?

$$\pi^{\star}(s) = A, \forall s$$

Consider the following deterministic MDP w/ 3 states & 2 actions

Let's say $\gamma \in (0,1)$ What's the optimal policy?

$$\pi^{\star}(s) = A, \forall s$$

$$V^*(a) = \frac{\gamma}{1 - \gamma}, V^*(b) = \frac{1}{1 - \gamma}, V^*(c) = \frac{\gamma}{1 - \gamma}$$

Consider the following deterministic MDP w/ 3 states & 2 actions

Let's say $\gamma \in (0,1)$ What's the optimal policy?

$$\pi^{\star}(s) = A, \forall s$$

$$V^{\star}(a) = \frac{\gamma}{1-\gamma}, V^{\star}(b) = \frac{1}{1-\gamma}, V^{\star}(c) = \frac{\gamma}{1-\gamma}$$

What about policy $\pi(s) = B, \forall s$

Consider the following deterministic MDP w/ 3 states & 2 actions

Let's say $\gamma \in (0,1)$ What's the optimal policy?

$$\pi^{\star}(s) = A, \forall s$$

$$V^*(a) = \frac{\gamma}{1 - \gamma}, V^*(b) = \frac{1}{1 - \gamma}, V^*(c) = \frac{\gamma}{1 - \gamma}$$

What about policy $\pi(s) = B, \forall s$

$$V^{\pi}(a) = 0, V^{\pi}(b) = 0, V^{\pi}(c) = 0$$

Summary:

- RL is different from Supervised Learning:
 - Our actions have consequences
 - Need to make sequence of decisions to complete the task
- Discounted infinite horizon MDP:
 - State, action, policy, transition, reward (or cost), discount factor
 - V function and Q function
 - Key concept: Bellman consistency equations

Summary:

- RL is different from Supervised Learning:
 - Our actions have consequences
 - Need to make sequence of decisions to complete the task
- Discounted infinite horizon MDP:
 - State, action, policy, transition, reward (or cost), discount factor
 - V function and Q function
 - Key concept: Bellman consistency equations

1-minute feedback form: https://bit.ly/3RHtlxy