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Today

• HW 1 due this thurs 

• Today: what is Reinforcement Learning?

• examples/concepts

• definition of Markov Decision Processes



Today:

Intro to Markov Decision Processes



Four main themes we will cover in this course: 
1. Bandits (horizon )


2. Two models, with horizon : 
- Markov Decision Process: Dynamic Programming & planning  
- Continuous Control  
(technically, this is still an MDP, but with special structure)


3. Learning in “Large” Markov Decision Process

4. Advanced Topics

H = 1
H > 1



Supplementary Reading Materials: 
Reinforcement Learning: Theory & Algorithms

 https://rltheorybook.github.io/

This is an advanced RL book.  
We will pick specific subsections, to further your knowledge.

Please let us know if you find any typos or mistakes in the book

https://rltheorybook.github.io/


Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions



Big Successful Stories of Reinforcement Learning

TD GAMMON [Tesauro 95] [AlphaZero, Silver et.al, 17] [OpenAI Five, 18]
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To better understand RL,  
let’s summarize “supervised learning”
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Given i.i.d examples at training:

( )



11 [Ross&Bagnell, 11, AISTATS]
Active: Decisions Data Distribution 



11 [Ross&Bagnell, 11, AISTATS]
Active: Decisions Data Distribution 



11 [Ross&Bagnell, 11, AISTATS]
Active: Decisions Data Distribution 



Summary so far:

1. In RL, we often start from zero data



Summary so far:

2. In RL, decisions/predictions have consequences: 
Future data is determined by our past historical decisions/predictions

1. In RL, we often start from zero data



Summary so far:

2. In RL, decisions/predictions have consequences: 
Future data is determined by our past historical decisions/predictions

1. In RL, we often start from zero data

3. To solve the task, we often need to make a long sequence of decisions



Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions
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Example:  
robot hand needs to pick the ball and hold it in a goal (x,y,z) position 

State : robot configuration (e.g., joint angles)

and the ball’s position

s

Action : Torque on joints in arm & fingersa

policy : a function mapping from robot 
state to action (i.e., torque)

π(s)

Cost : torque magnitude + dist to goalc(s, a)

Transition : physics + some noises′ ∼ P( ⋅ |s, a)

π⋆ = arg min
π

& [c(s0, a0) + γc(s1, a1) + γ2c(s2, a2) + γ3c(s3, a3) + … . . s0, π]
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MDPs, more formally:

• An MDP: ℳ = {S, A, P, r, γ}
•  a set of statesS
•  a set of actionsA
•  specifies the dynamics model,  

i.e.  is the probability of transitioning to  form states  under action 
P : S × A ↦ Δ(S)

P(s′ |s, a) s′ s a
• r : S × A → [0,1]
• let’s assume this is deterministic
• (sometimes we use a cost )c : S × A → [0,1]

• A discount factor γ ∈ [0,1)

so

sometimes we often specify
a starting state so



The Objective
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• “stationary” means not history dependent

• we could also consider  to be random and a function of the history

π : S ↦ A

π

Suppose this is

deterministic
T S OCA



The Objective
• A “stationary” policy  

• “stationary” means not history dependent

• we could also consider  to be random and a function of the history

π : S ↦ A

π
• Sampling a trajectory: from a given policy  starting at state :

• For 

• Take action 

• Observe reward 

• Transition to (and observe)  where 

π s0
t = 0,1,2,…∞

at = π(st)
rt = r(st, at)

st+1 st+1 ∼ P( ⋅ |st, at)
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The Objective
• A “stationary” policy  

• “stationary” means not history dependent

• we could also consider  to be random and a function of the history

π : S ↦ A

π
• Sampling a trajectory: from a given policy  starting at state :

• For 

• Take action 

• Observe reward 

• Transition to (and observe)  where 

π s0
t = 0,1,2,…∞

at = π(st)
rt = r(st, at)

st+1 st+1 ∼ P( ⋅ |st, at)
• Objective: given state starting state ,  

find a policy  that maximizes our expected, discounted future reward: 
 

s
π

max
π

& [r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + … . . s0 = s, π]

h on i 20a l

EEI ris.a.rs
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Question:  

Assume we have  many states, and  many 
actions, how many different polices there are?

|S | |A |

stationary



Question:  

Assume we have  many states, and  many 
actions, how many different polices there are?

|S | |A |

(Hint: a policy is a mapping from s to a, we have A many choices per state s)

possible dot stat Policies

H's



Infinite horizon Discounted Setting

ℳ = {S, A, P, r, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ A



Infinite horizon Discounted Setting

ℳ = {S, A, P, r, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ A

Quantities that allow us to reason policy’s long-term effect:



Infinite horizon Discounted Setting

ℳ = {S, A, P, r, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ A

Value function Vπ(s) = & [
∞

∑
h=0

γhr(sh, ah) s0 = s, π]
Quantities that allow us to reason policy’s long-term effect:

on a
ends



Infinite horizon Discounted Setting

ℳ = {S, A, P, r, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ A

Value function Vπ(s) = & [
∞

∑
h=0

γhr(sh, ah) s0 = s, π]
Q function Qπ(s, a) = & [

∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), π]

Quantities that allow us to reason policy’s long-term effect:



Understanding Value function and Q functions

Value function Vπ(s) = & [
∞

∑
h=0

γhr(sh, ah) s0 = s, π]
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Understanding Value function and Q functions

Value function Vπ(s) = & [
∞

∑
h=0

γhr(sh, ah) s0 = s, π]

Q function Qπ(s, a) = & [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), π]

suppose ta

Q'CS.FI VTC

possible a tics
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Vπ(s) = & [
∞

∑
h=0

γhr(sh, ah) s0 = s, π]

Bellman Consistency Equation for V-function:

Vπ(s) = r(s, π(s)) + γ&s′ ∼P(⋅|s,a)Vπ(s′ )

We have that: 1 tony
stationary

deterministic

Ipc l S T s
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• By definition: 

 
Vπ(s) = r(s, π(s)) + & [

∞

∑
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γhr(sh, ah) s0 = s, π]
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Proof: Bellman Consistency for V-function:
• By definition: 

 
Vπ(s) = r(s, π(s)) + & [

∞

∑
h=1

γhr(sh, ah) s0 = s, π]
= r(s, π(s)) + γ& [r(s1, a1) + γr(s2, a2) + … s0 = s, π]

• By the “tower property” and due to that  with probability , s1 = s′ P(s′ |s, π(s))
= r(s, π(s)) + γ&s′ ∼P(⋅|s,π(s)) [& [r(s1, a1) + γr(s2, a2) + … s0 = s, s1 = s′ , π]]
= r(s, π(s)) + γ&s′ ∼P(⋅|s,π(s)) [& [r(s1, a1) + γr(s2, a2) + … s1 = s′ , π]]
= r(s, π(s)) + γ&s′ ∼P(⋅|s,π(s)) [Vπ(s′ )]

Exe fat Emigh

n'Yaakov

2
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Bellman Consistency Equation for Q-function:



Qπ(s, a) = & [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), π]

Bellman Consistency Equation for Q-function:

Vcs QTS Tess



Qπ(s, a) = & [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), π]
Qπ(s, a) = r(s, a) + γ&s′ ∼P(⋅|s,a)Vπ(s′ )

Bellman Consistency Equation for Q-function:

resists E Ecs s
s Tpl Is a

al fat f c
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Example of Optimal Policy π⋆

Consider the following deterministic MDP w/ 3 states & 2 actions

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0

Let’s say 

What’s the optimal policy?

γ ∈ (0,1)

π⋆(s) = A, ∀s

V⋆(a) = γ
1 − γ

, V⋆(b) = 1
1 − γ

, V⋆(c) = γ
1 − γ

What about policy π(s) = B, ∀s
Vπ(a) = 0,Vπ(b) = 0,Vπ(c) = 0
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1-minute feedback form: https://bit.ly/3RHtlxy 

https://bit.ly/3RHtlxy

