Reinforcement Learning & Markov Decision Processes

Lucas Janson and Sham Kakade CS/Stat 184: Introduction to Reinforcement Learning Fall 2022

- HW 1 due this thurs
- Today: what is Reinforcement Learning?
 - examples/concepts
 - definition of Markov Decision Processes

Today: Intro to Markov Decision Processes

Four main themes we will cover in this course:

- 1. Bandits (horizon H = 1)
- 2. Two models, with horizon H > 1:

 - Continuous Control

(technically, this is still an MDP, but with special structure)

- 3. Learning in "Large" Markov Decision Process
- 4. Advanced Topics

- Markov Decision Process: Dynamic Programming & planning

Supplementary Reading Materials: Reinforcement Learning: Theory & Algorithms

https://rltheorybook.github.io/

This is an advanced RL book. We will pick **specific subsections**, to further your knowledge.

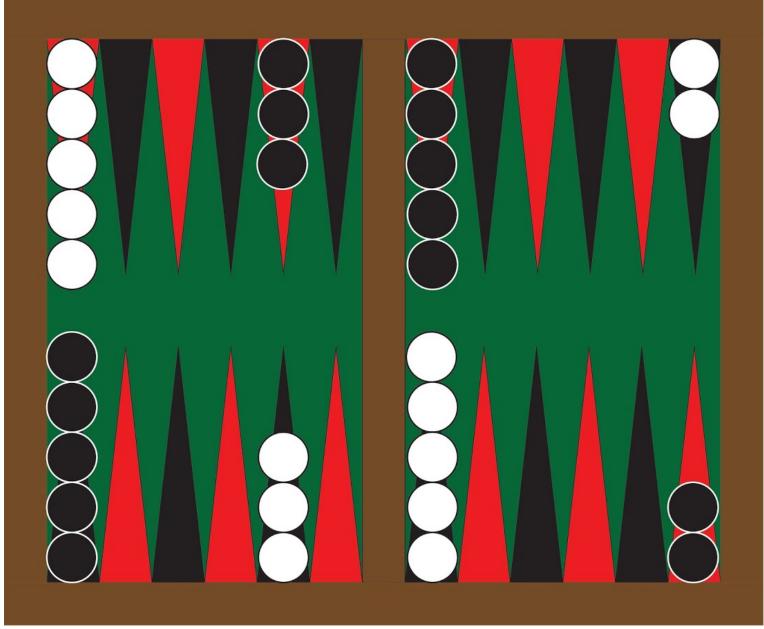
Please let us know if you find any typos or mistakes in the book

Outlines:

1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions

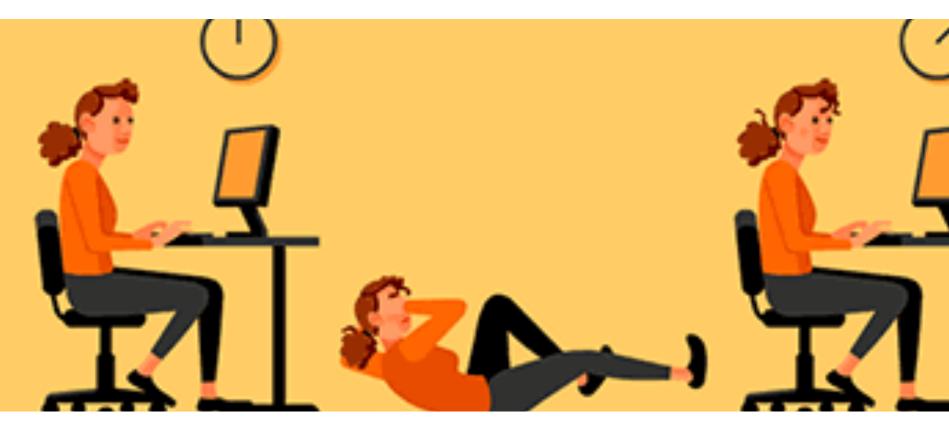
Big Successful Stories of Reinforcement Learning

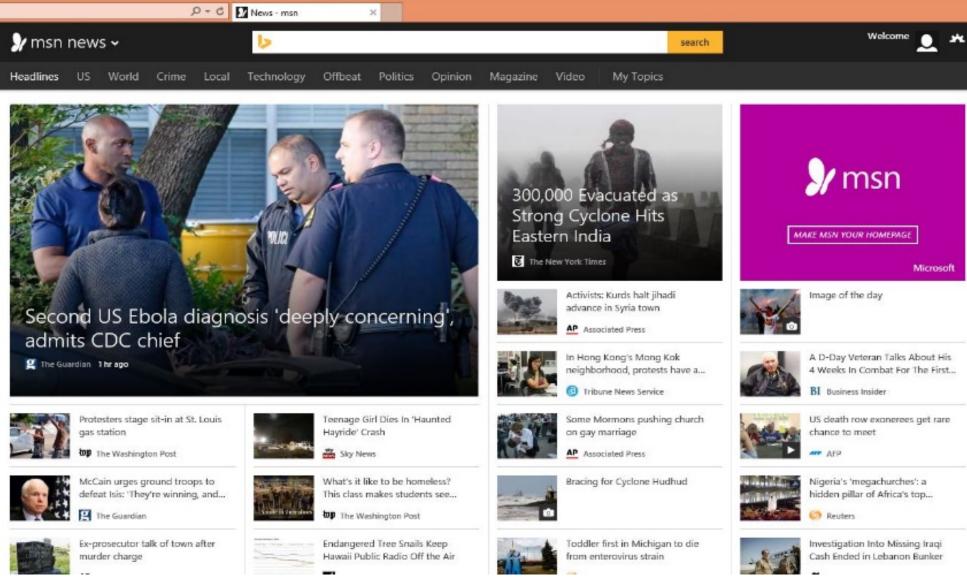


TD GAMMON [Tesauro 95]

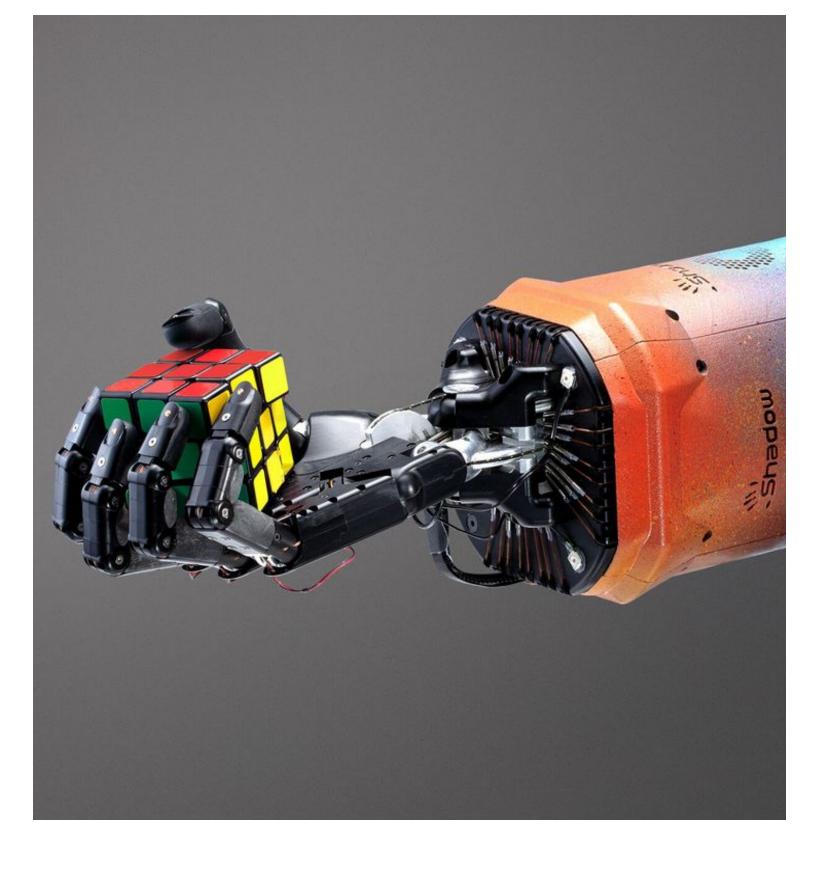
[OpenAl Five, 18]

Reinforcement Learning in Real World:





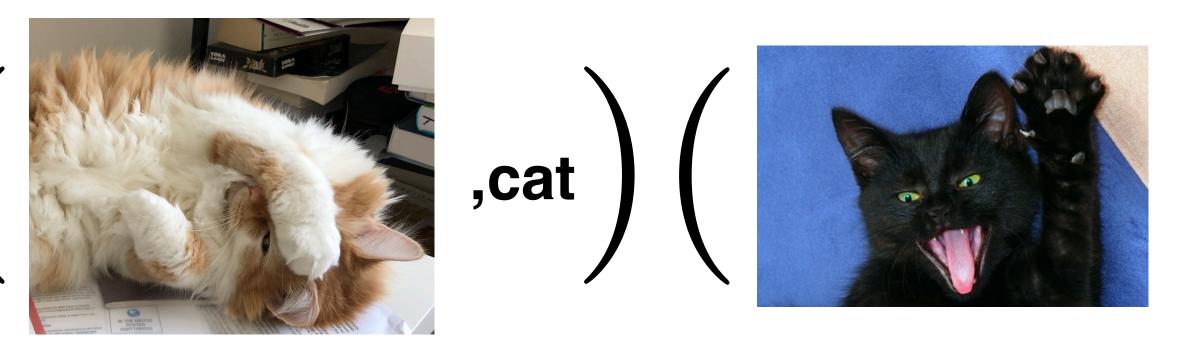
Hawaii Public Radio Off the Air

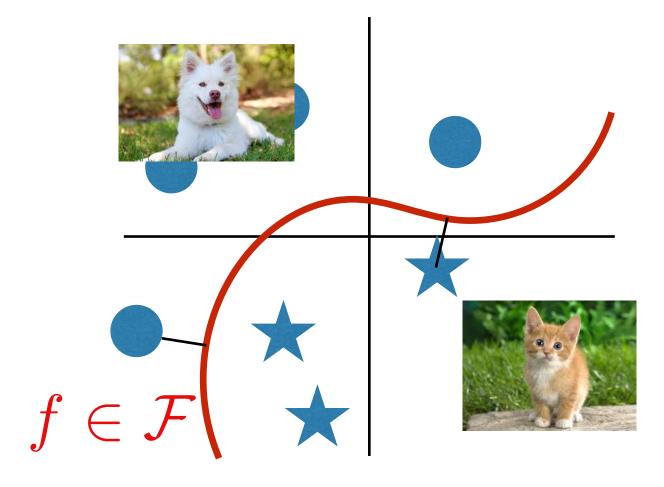


To better understand RL, let's summarize "supervised learning"

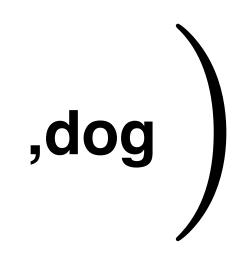
Recap: Supervised Learning

Given i.i.d examples at training:

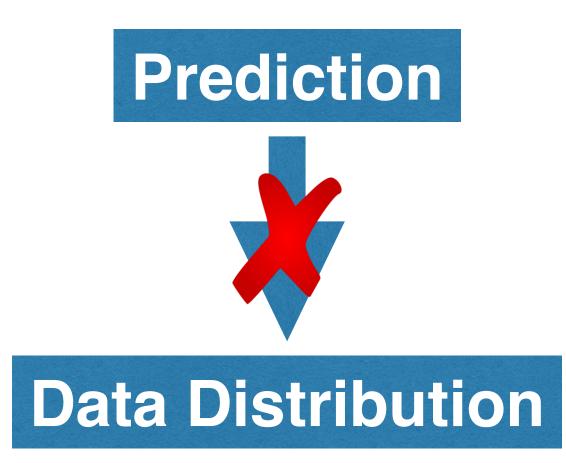




,cat



Passive:



Selected Actions:

RIGHT

Summary so far:

1. In RL, we often start from zero data

2. In RL, **decisions/predictions have consequences:** Future data is determined by our past historical decisions/predictions

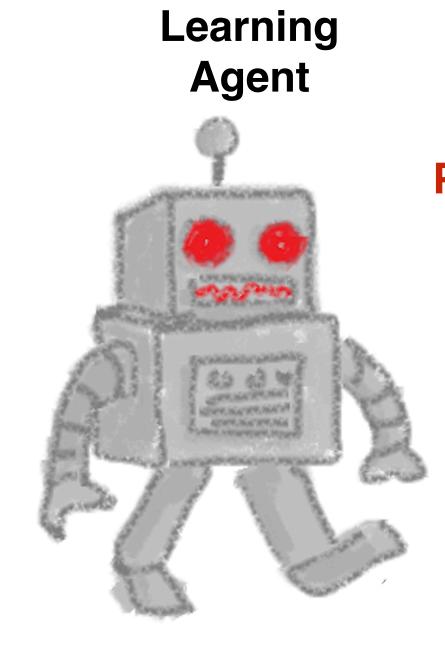
3. To solve the task, we often need to make a long sequence of decisions

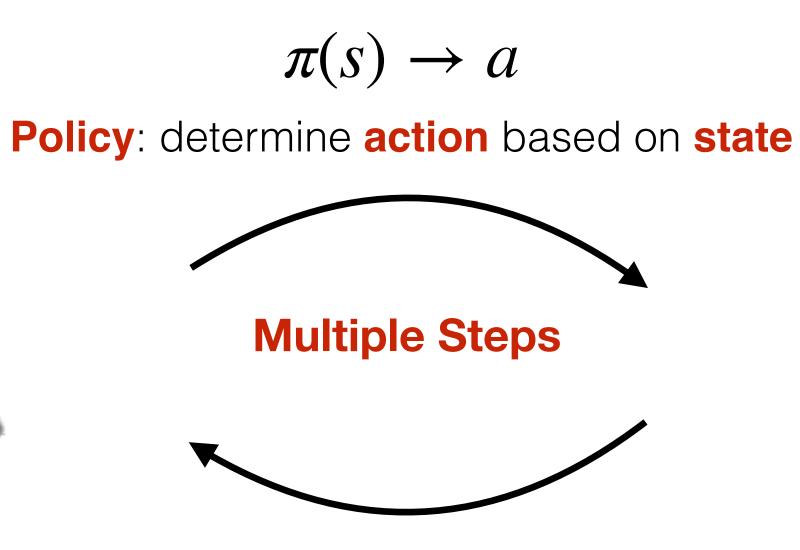
Outlines:

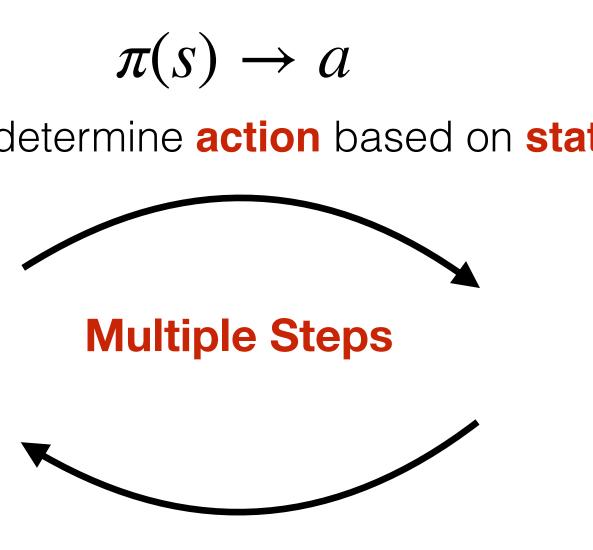
1. Introduction: Applications of RL, RL versus Supervised Learning

2. Basics of Markov Decision Process (MDP): model, example, V & Q functions

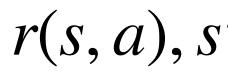
The Mathematical framework: **Markov Decision Process**







Send **reward** and **next state** from a Markovian transition dynamics



$$\sim P(\cdot | s, a)$$

Environment

Example: robot hand needs to pick the ball and hold it in a goal (x,y,z) position

$$\pi^{\star} = \arg\min_{\pi} \mathbb{E} \left[c(s_0, a_0) + \gamma c(s_1, a_0) \right]$$

State *s*: robot configuration (e.g., joint angles) and the ball's position

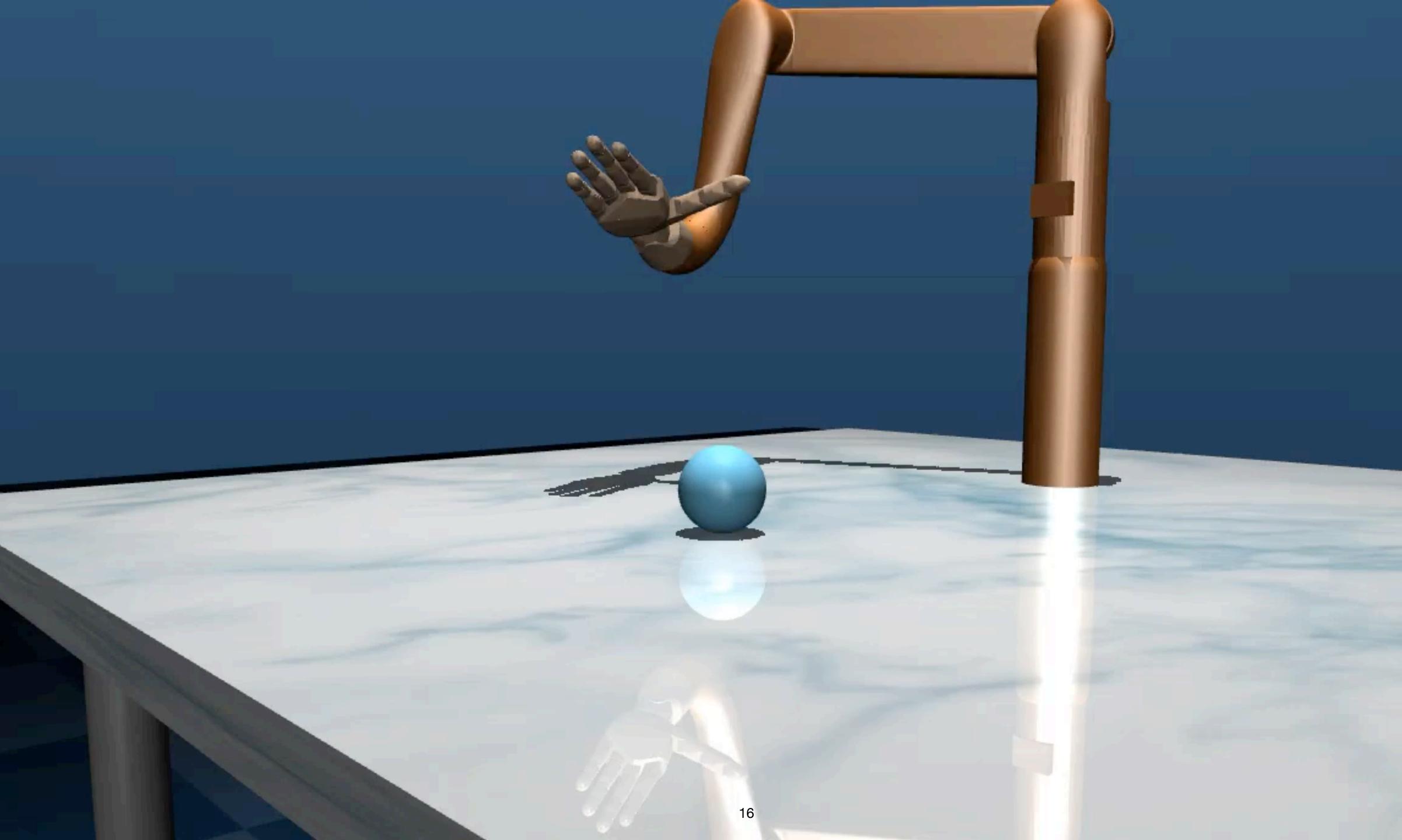
Action *a*: Torque on joints in arm & fingers

Transition $s' \sim P(\cdot | s, a)$: physics + some noise

policy $\pi(s)$: a function mapping from robot state to action (i.e., torque)

<u>Cost</u> c(s, a): torque magnitude + dist to goal

 $(a_1) + \gamma^2 c(s_2, a_2) + \gamma^3 c(s_3, a_3) + \dots |s_0, \pi|$



MDPs, more formally:

- An MDP: $\mathcal{M} = \{S, A, P, r, \gamma\}$
 - *S* a set of states
 - A a set of actions
 - $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model, i.e. $P(s' \mid s, a)$ is the probability of transitioning to s' form states s under action a
 - $r: S \times A \rightarrow [0,1]$
 - let's assume this is deterministic
 - (sometimes we use a cost $c: S \times A \rightarrow [0,1]$)
 - A discount factor $\gamma \in [0,1)$

- A "stationary" policy $\pi: S \mapsto A$
 - "stationary" means not history dependent
 - we could also consider π to be random and a function of the history
- Sampling a trajectory: from a given policy π starting at state s_0 :
 - For $t = 0, 1, 2, ... \infty$
 - Take action $a_t = \pi(s_t)$
 - Observe reward $r_t = r(s_t, a_t)$
 - Transition to (and observe) S_{t+1} w
- Objective: given state starting state s, find a policy π that maximizes our expected, discounted future reward:

$$\max_{\pi} \mathbb{E} \left[r(s_0, a_0) + \gamma r(s_1, a_1) + \gamma^2 r(s_2, a_2) + \dots \right] |s_0 = s, \pi$$

The Objective

where
$$s_{t+1} \sim P(\cdot | s_t, a_t)$$

Assume we have |S| many states, and |A| many actions, how many different polices there are?

(Hint: a policy is a mapping from s to a, we have A many choices per state s)

Question:

Infinite horizon Discounted Setting

- $P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad \gamma \in [0,1]$

Quantities that allow us to reason policy's long-term effect:

Value function $V^{\pi}(s) =$

Q function $Q^{\pi}(s, a) = \mathbb{E}$

 $\mathcal{M} = \{S, A, P, r, \gamma\}$

Policy $\pi: S \mapsto A$

$$= \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| s_{0} = s, \pi\right]$$
$$\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| (s_{0}, a_{0}) = (s, a), \pi\right]$$

Understanding Value function and Q functions

Value function $V^{\pi}(s) =$

Q function $Q^{\pi}(s, a) = \mathbb{E} \begin{bmatrix} x \\ y \end{bmatrix}$

$$= \mathbb{E}\left[\left|\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h})\right| s_{0} = s, \pi\right]$$

$$\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \left| (s_{0}, a_{0}) = (s, a), \pi \right|$$

Bellman Consistency Equation for V-function:

 $V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma'\right]$

We have that:

 $V^{\pi}(s) = r(s, \pi(s))$

$$\gamma^h r(s_h, a_h) \left| s_0 = s, \pi \right|$$

$$S)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))} V^{\pi}(s')$$

Proof: Bellman Consistency for V-function:

By definition:

$$V^{\pi}(s) = r(s, \pi(s)) + \mathbb{E}\left[\sum_{h=1}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \left| s_{0} = s, \pi\right]$$

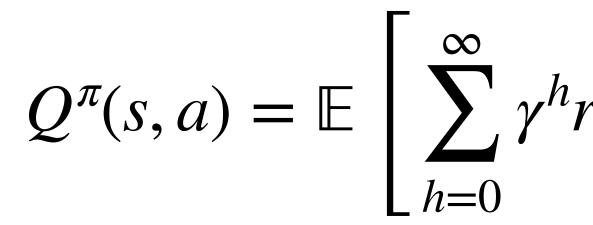
$$= r(s, \pi(s)) + \gamma \mathbb{E}\left[r(s_{1}, a_{1}) + \gamma r(s_{2}, a_{2}) + \dots \right| s_{0} = s, \pi$$

 $= r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, \pi(s))} \left[V^{\pi}(s') \right]$

 \bullet

• By the "tower property" and due to that $s_1 = s'$ with probability $P(s' | s, \pi(s))$, = $r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))} \left[\mathbb{E} \left[r(s_1, a_1) + \gamma r(s_2, a_2) + \dots \left| s_0 = s, s_1 = s', \pi \right] \right]$ $= r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, \pi(s))} \left| \mathbb{E} \left[r(s_1, a_1) + \gamma r(s_2, a_2) + \dots \left| s_1 = s', \pi \right] \right|$

Bellman Consistency Equation for Q-function:

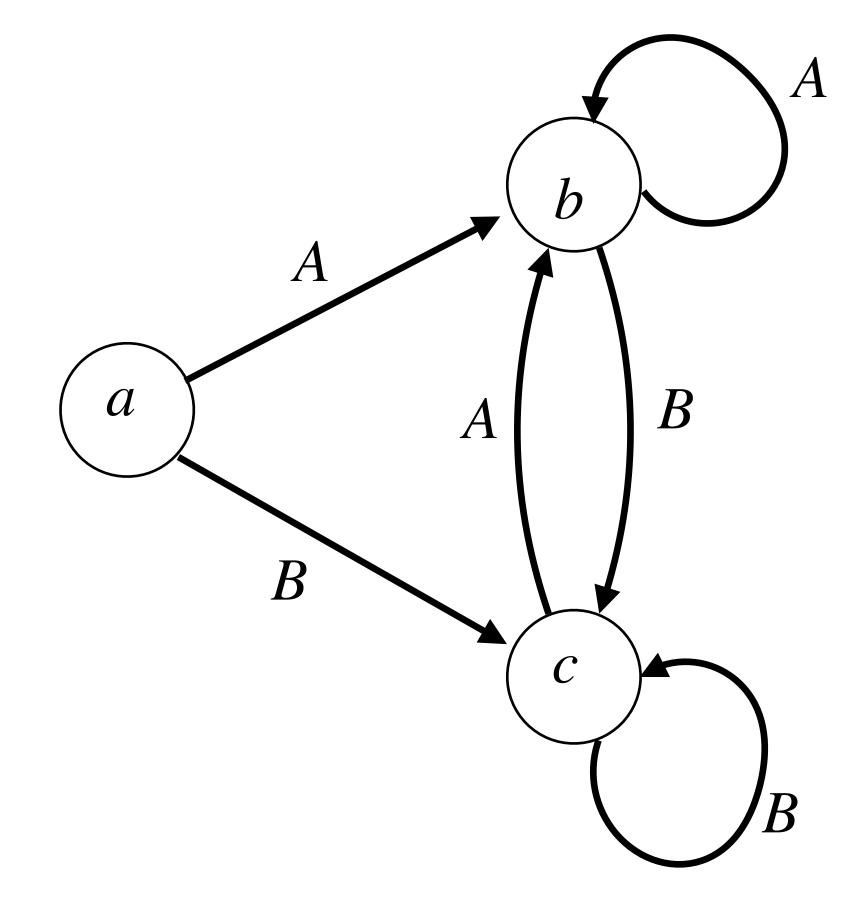


 $Q^{\pi}(s,a)=r(s,$

$$r(s_h, a_h) \left| (s_0, a_0) = (s, a), \pi \right|$$

$$a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\pi}(s')$$

Example of Optimal Policy π^{\star}



Reward: r(b, A) = 1, & 0 everywhere else

Consider the following **deterministic** MDP w/ 3 states & 2 actions

Let's say
$$\gamma \in (0,1)$$

What's the optimal policy?
 $\pi^{\star}(s) = A, \forall s$
 $V^{\star}(a) = \frac{\gamma}{1-\gamma}, V^{\star}(b) = \frac{1}{1-\gamma}, V^{\star}(c) = \frac{\gamma}{1-\gamma}$

What about policy $\pi(s) = B, \forall s$

 $V^{\pi}(a) = 0, V^{\pi}(b) = 0, V^{\pi}(c) = 0$

Summary:

RL is different from Supervised Learning:

- Our actions have consequences
- Need to make sequence of decisions to complete the task

Discounted infinite horizon MDP:

- State, action, policy, transition, reward (or cost), discount factor
- V function and Q function
- Key concept: **Bellman consistency equations**

1-minute feedback form: <u>https://bit.ly/3RHtlxy</u>

