Optimality in Markov Decision Processes

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning
Fall 2022

Today

- Recap
- In the bandit setting, we were learning.
- Now we are starting with computation (of the optimal policy).
- Today:
- Is there a simple way to characterize the optimal policy?
- The Bellman Optimality Equations
- The state-action visitation distribution

Recap

The Objective

- A "stationary" policy $\pi: S \mapsto A$
- "stationary" means not history dependent
- we could also consider π to be random and a function of the history
- Sampling a trajectory: from a given policy π starting at state s_{0} :
- For $t=0,1,2, \ldots \infty$
- Take action $a_{t}=\pi\left(s_{t}\right)$
- Observe reward $r_{t}=r\left(s_{t}, a_{t}\right)$
- Transition to (and observe) s_{t+1} where $s_{t+1} \sim P\left(\cdot \mid s_{t}, a_{t}\right)$
- Objective: given state starting state s, find a policy π that maximizes our expected, discounted future reward:
$\max _{\pi} \mathbb{E}\left[r\left(s_{0}, a_{0}\right)+\gamma r\left(s_{1}, a_{1}\right)+\gamma^{2} r\left(s_{2}, a_{2}\right)+\ldots . \mid s_{0}=s, \pi\right]$

Infinite horizon Discounted Setting

$$
\begin{gathered}
\mathscr{M}=\{S, A, P, r, \gamma\} \\
P: S \times A \mapsto \Delta(S), \quad r: S \times A \rightarrow[0,1], \quad \gamma \in[0,1)
\end{gathered}
$$

$$
\text { Policy } \pi: S \mapsto A
$$

Quantities that allow us to reason policy's long-term effect:
Value function $V^{\pi}(s)=\mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right) \mid s_{0}=s, \pi\right]$
Q function $Q^{\pi}(s, a)=\mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right) \mid\left(s_{0}, a_{0}\right)=(s, a), \pi\right]$

Bellman Consistency Equations:

$$
\begin{gathered}
V^{\pi}(s)=\mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right) \mid s_{0}=s, \pi\right] \\
V^{\pi}(s)=r(s, \pi(s))+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, \pi(s))} V^{\pi}\left(s^{\prime}\right) \\
Q^{\pi}(s, a)=\mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right) \mid\left(s_{0}, a_{0}\right)=(s, a), \pi\right] \\
Q^{\pi}(s, a)=r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} V^{\pi}\left(s^{\prime}\right)
\end{gathered}
$$

Notation

- For a distribution D over a finite set \mathcal{X},

$$
E_{x \sim D}[f(x)]=\sum_{x \in \mathscr{X}} D(x) f(x)
$$

- $P(\cdot \mid s, a)$ is a distribution, where $P\left(s^{\prime} \mid s, a\right)$ specifies the probability of the transition $(s, a) \rightarrow s^{\prime}$
-We will use notation:

$$
E_{s^{\prime} \sim P(\cdot \mid s, a)}\left[f\left(s^{\prime}\right)\right]=\sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) f\left(s^{\prime}\right)
$$

And, if we are short on space and when it is clear, sometimes:

$$
E_{s^{\prime} \sim P(s, a)}\left[f\left(s^{\prime}\right)\right]=\sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) f\left(s^{\prime}\right)
$$

Today:

Optimality in Markov Decision Processes

Property 1 of an Optimal Policy π^{\star}

Even if we consider policies which are randomized and history dependent, the policy which optimizes the the value (starting from any state s) is deterministic and memoryless.

- Defs:
- "NonStat+Rand": the set of all non-stationary (history dependent), randomized policies.
- "Stat+Det": the set of all deterministic, stationary (memoryless), policies.
- For any s, we have that:

$$
\max _{\pi \in \text { NonStat+Rand }} V^{\pi}(s)=\max _{\pi \in S t a t+\operatorname{Det}} V^{\pi}(s)
$$

[see theorem 1.7 in AJKS - no need to understand the proof]

- Part of the reason why: the transition function $P\left(s_{t+1} \mid s_{t}, a_{t}\right)$ is no a function of t.

So knowledge of s_{t} implies that using the history doesn't alter the next state distribution.

- (Until we say otherwise) we limit ourselves to only consider det. stationary policies.

Property 2 of an Optimal Policy π^{\star}

- The optimal value at state s is defined as:

$$
V^{\star}(s)=\max V^{\pi}(s)
$$

π
Note the above permits the optimizing policy to be a function of the starting state s.

- There always exists a deterministic policy π^{\star} such that, for all states s,

$$
V^{\pi^{\star}}(s)=V^{\star}(s)
$$

[see theorem 1.7 in AJKS-no need to understand the proof]

- There is an optimal policy that simultaneously dominates all π, from any starting state.
- Intuition:

$$
\begin{aligned}
V^{\pi}(s) & =r(s, \pi(s))+\gamma E_{s^{\prime} \sim P(\cdot \mid s, \pi(s))}\left[V^{\pi}\left(s^{\prime}\right)\right] \\
& \leq r(s, \pi(s))+\gamma E_{s^{\prime} \sim P(\cdot \mid s, \pi(s))}\left[\max _{\tilde{\pi}} V^{\tilde{\pi}}\left(s^{\prime}\right)\right]
\end{aligned}
$$

$\left(\Longrightarrow\right.$ after reaching any state s^{\prime}, we can ignore how we got to s^{\prime} and instead choose the next action at s^{\prime} to optimize the long term future only as a function of s)

Example of Optimal Policy π^{\star}

Consider the following deterministic MDP w/ 3 states \& 2 actions

Let's say $\gamma \in(0,1)$
What's the optimal policy?

$$
\pi^{\star}(s)=A, \forall s
$$

$$
V^{\star}(a)=\frac{\gamma}{1-\gamma}, V^{\star}(b)=\frac{1}{1-\gamma}, V^{\star}(c)=\frac{\gamma}{1-\gamma}
$$

What about policy $\pi(s)=B, \forall s$

$$
V^{\pi}(a)=0, V^{\pi}(b)=0, V^{\pi}(c)=0
$$

Summary so far:

Every discounted MDP has some deterministic optimal policy, that dominates all other policies, everywhere

$$
V^{\star}(s) \geq V^{\pi}(s), \forall \pi, \forall s
$$

So we have, $V^{\star}=V^{\pi^{\star}}$ and $Q^{\star}=Q^{\pi^{\star}}$.

Bellman Optimality Equations

Theorem 1: V^{\star} satisfies the following Bellman Equations:

$$
V^{\star}(s)=\max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} V^{\star}\left(s^{\prime}\right)\right], \forall s
$$

Also, if $\widehat{\pi}(s)=\arg \max Q^{\star}(s, a)$, then $\widehat{\pi}$ is an optimal policy.

Intuition for the Bellman Equations

$$
V^{\star}(s)=\max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} V^{\star}\left(s^{\prime}\right)\right], \forall s
$$

Q: If we know the optimal value at $s^{\prime}, s^{\prime \prime}$, i.e.,

$$
V^{\star}\left(s^{\prime}\right), V^{\star}\left(s^{\prime \prime}\right), \text { what we do at } s ?
$$

Proof of the Bellman Equations

We want to prove $V^{\star}(s)=\max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} V^{\star}\left(s^{\prime}\right)\right]$.
Proof:

- Denote:

$$
\begin{aligned}
\widehat{\pi}(s) & =\arg \max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} V^{\star}\left(s^{\prime}\right)\right] \\
& =\arg \max _{a} Q^{\star}(s, a)
\end{aligned}
$$

- It suffices to show $V^{\star}(s) \leq V^{\hat{\pi}}(s)$, which would complete the proof.
- To see this completes the proof,
- optimality of V^{\star} implies $V^{\hat{\pi}}(s) \leq V^{\star}(s)$.
- and so:

$$
V^{\star}(s) \leq V^{\hat{\pi}}(s) \leq V^{\star}(s)
$$

- Thus $V^{\hat{\pi}}(s)=V^{\star}(s)$ and $\hat{\pi}$ is optimal.

Completing the proof: showing $V^{\star}(s) \leq V^{\hat{\pi}}(s)$

- Recall: $\widehat{\pi}(s):=\arg \max \left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} V^{\star}\left(s^{\prime}\right)\right]$
- We have:

$$
\begin{aligned}
V^{\star}(s) & =r\left(s, \pi^{\star}(s)\right)+\gamma \mathbb{E}_{s^{\prime} \sim P\left(s, \pi^{\star}(s)\right)} V^{\star}\left(s^{\prime}\right) \\
& \leq \max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V^{\star}\left(s^{\prime}\right)\right] \\
& =r(s, \widehat{\pi}(s))+\gamma \mathbb{E}_{s^{\prime} \sim P(s, \hat{\pi}(s))}\left[V^{\star}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- Proceeding recursively,

$$
\begin{aligned}
& \leq r(s, \widehat{\pi}(s))+\gamma \mathbb{E}_{s^{\prime} \sim P(s, \hat{\pi}(s))}\left[r\left(s^{\prime}, \hat{\pi}\left(s^{\prime}\right)\right)+\gamma \mathbb{E}_{s^{\prime \prime} \sim P\left(s^{\prime}, \hat{\pi}\left(s^{\prime}\right)\right)} V^{\star}\left(s^{\prime \prime}\right)\right] \\
& \leq r(s, \widehat{\pi}(s))+\gamma \mathbb{E}_{s^{\prime} \sim P(s, \hat{\pi}(s))}\left[r\left(s^{\prime}, \widehat{\pi}\left(s^{\prime}\right)\right)+\gamma \mathbb{E}_{s^{\prime \prime} \sim P\left(s^{\prime}, \hat{\pi}\left(s^{\prime}\right)\right)}\left[r\left(s^{\prime \prime}, \widehat{\pi}\left(s^{\prime \prime}\right)\right)+\gamma \mathbb{E}_{s^{\prime \prime \prime} \sim P\left(s^{\prime \prime}, \hat{\pi}\left(s^{\prime \prime}\right)\right)} V^{\star}\left(s^{\prime \prime \prime}\right)\right]\right] \\
& \leq \mathbb{E}\left[r(s, \widehat{\pi}(s))+\gamma r\left(s^{\prime}, \widehat{\pi}\left(s^{\prime}\right)\right)+\ldots \mid \hat{\pi}\right]=V^{\hat{\pi}}(s)
\end{aligned}
$$

Summary so far:

Theorem 1: Bellman Optimality

$$
V^{\star}(s)=\max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} V^{\star}\left(s^{\prime}\right)\right], \forall s
$$

Next:
Any function V that satisfies Bellman Optimality, MUST be equal to V^{\star}

Bellman Equations, Claim 2

Theorem 2: For any $V: S \rightarrow \mathbb{R}$, if
$V(s)=\max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} V\left(s^{\prime}\right)\right], \forall s$, then $V=V^{\star}$.

Bellman Opt allows us to focus on just one step,
i.e., to check if $V=V^{\star}$, we only need to check if the above equation holds.

Proving Theorem 2

- Define the "maximal component distance" between V and V^{\star} :

$$
\left\|V-V^{\star}\right\|_{\infty}=\max \left|V(s)-V^{\star}(s)\right|
$$

- For V which satisfies the Bellman equations, suppose we could show that $\left\|V-V^{\star}\right\|_{\infty} \leq \gamma\left\|V-V^{\star}\right\|_{\infty}$.
\Longrightarrow the proof is complete because

$$
\left\|V-V^{\star}\right\|_{\infty} \leq \gamma\left\|V-V^{\star}\right\|_{\infty} \leq \gamma^{2}\left\|V-V^{\star}\right\|_{\infty} \leq \ldots \leq \lim _{k \rightarrow \infty} \gamma^{k}\left\|V-V^{\star}\right\|_{\infty}=0
$$

Proof Continued...

- For V which satisfies the Bellman equations, we want to show $\left\|V-V^{\star}\right\|_{\infty} \leq \gamma\left\|V-V^{\star}\right\|_{\infty}$.
- Technial observation: $|\max f(x)-\max g(x)| \leq \max |f(x)-g(x)|$

$x \quad x \quad x$

- Using that V satisfies the Bellman equations, we have, for any s,

$$
\begin{aligned}
\left|V(s)-V^{\star}(s)\right| & =\left|\max _{a}\left(r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V\left(s^{\prime}\right)\right)-\max _{a}\left(r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V^{\star}\left(s^{\prime}\right)\right)\right| \\
& \leq \max _{a}\left|\left(r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V\left(s^{\prime}\right)\right)-\left(r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V^{\star}\left(s^{\prime}\right)\right)\right| \\
& =\gamma \max _{a}\left|\mathbb{E}_{s^{\prime} \sim P(s, a)}\left[V\left(s^{\prime}\right)-V^{\star}\left(s^{\prime}\right)\right]\right| \\
& \leq \gamma \max _{a} \mathbb{E}_{s^{\prime} \sim P(s, a)}\left|V\left(s^{\prime}\right)-V^{\star}\left(s^{\prime}\right)\right| \\
& \leq \gamma \max _{a} \max _{s^{\prime}}\left|V\left(s^{\prime}\right)-V^{\star}\left(s^{\prime}\right)\right| \\
& =\gamma \max _{s^{\prime}}\left|V\left(s^{\prime}\right)-V^{\star}\left(s^{\prime}\right)\right| \\
& =\gamma\left\|V-V^{\star}\right\|_{\infty}
\end{aligned}
$$

Summary Today

1. V^{\star} satisfies Bellman Optimality:
$V^{\star}(s)=\max _{a}\left[r(s, a)+\mathbb{E}_{s^{\prime} \sim P(s, a)} V^{\star}\left(s^{\prime}\right)\right]$
2. If V satisfies Bellman Optimality Equations, $V(s)=\max _{a}\left[r(s, a)+\mathbb{E}_{s^{\prime} \sim P(s, a)} V\left(s^{\prime}\right)\right]$, then $V=V^{\star}$.

1-minute feedback form: https://bit.ly/3RHt|xy

