
Optimality in 
Markov Decision Processes 

 
Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning 

Fall 2022

1

Today

• Recap

• In the bandit setting, we were learning.

• Now we are starting with computation (of the optimal policy). 

• Today:

• Is there a simple way to characterize the optimal policy?

• The Bellman Optimality Equations

• The state-action visitation distribution

2

Recap

3

The Objective
• A “stationary” policy

• “stationary” means not history dependent

• we could also consider to be random and a function of the history

• Sampling a trajectory: from a given policy starting at state :

• For

• Take action

• Observe reward

• Transition to (and observe) where

• Objective: given state starting state ,  
find a policy that maximizes our expected, discounted future reward: 
 

 

π : S ↦ A

π
π s0

t = 0,1,2,…∞
at = π(st)

rt = r(st, at)
st+1 st+1 ∼ P(⋅ |st, at)

s
π

max
π

𝔼 [r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + … . . s0 = s, π]
4

Infinite horizon Discounted Setting

ℳ = {S, A, P, r, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ A

Value function Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, π]
Q function Qπ(s, a) = 𝔼 [

∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), π]

Quantities that allow us to reason policy’s long-term effect:

5

Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, π]

Bellman Consistency Equations:

Vπ(s) = r(s, π(s)) + γ𝔼s′￼∼P(⋅|s,π(s))Vπ(s′￼)

Qπ(s, a) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), π]
Qπ(s, a) = r(s, a) + γ𝔼s′￼∼P(⋅|s,a)Vπ(s′￼)

6

Notation

•For a distribution over a finite set , 
	

• is a distribution, where specifies the probability
of the transition

•We will use notation: 
	

And, if we are short on space and when it is clear, sometimes: 
	

D 𝒳
Ex∼D[f(x)] = ∑

x∈𝒳

D(x)f(x)

P(⋅ |s, a) P(s′￼|s, a)
(s, a) → s′￼

Es′￼∼P(⋅|s,a)[f(s′￼)] = ∑
s′￼∈S

P(s′￼|s, a)f(s′￼)

Es′￼∼P(s,a)[f(s′￼)] = ∑
s′￼∈S

P(s′￼|s, a)f(s′￼)

7

Today:

Optimality in Markov Decision Processes

8

Property 1 of an Optimal Policy π⋆

• Defs:

• “NonStat+Rand”: the set of all non-stationary (history dependent), randomized policies.

• “Stat+Det”: the set of all deterministic, stationary (memoryless), policies.

• For any , we have that: 
	 	  
[see theorem 1.7 in AJKS—no need to understand the proof]

s
maxπ∈NonStat+RandVπ(s) = maxπ∈Stat+DetVπ(s)

• Part of the reason why: the transition function is no a function of . 
So knowledge of implies that using the history doesn’t alter the next state distribution.

• (Until we say otherwise) we limit ourselves to only consider det. stationary policies.

P(st+1 |st, at) t
st

Even if we consider policies which are randomized and history dependent, the policy which
optimizes the the value (starting from any state) is deterministic and memoryless.s

9

Property 2 of an Optimal Policy π⋆

• The optimal value at state is defined as: 
	 	 	  

Note the above permits the optimizing policy to be a function of the starting state .

• There always exists a deterministic policy such that, for all states ,

	 	 	  
[see theorem 1.7 in AJKS—no need to understand the proof]

s
V⋆(s) = max

π
Vπ(s)

s
π⋆ s

Vπ⋆(s) = V⋆(s)

• There is an optimal policy that simultaneously dominates all , from any starting state.

• Intuition: 

	 	  

(after reaching any state , we can ignore how we got to and instead choose the next
action at to optimize the long term future only as a function of)

π

Vπ(s) = r(s, π(s)) + γEs′￼∼P(⋅|s,π(s))[Vπ(s′￼)]

≤ r(s, π(s)) + γEs′￼∼P(⋅|s,π(s))[max
π̃

Vπ̃(s′￼)]
⟹ s′￼ s′￼

s′￼ s′￼

10

Example of Optimal Policy π⋆

Consider the following deterministic MDP w/ 3 states & 2 actions

a

b

c

A

B

A B

A

B

Reward: , & everywhere elser(b, A) = 1 0

Let’s say

What’s the optimal policy?

γ ∈ (0,1)

π⋆(s) = A, ∀s

V⋆(a) =
γ

1 − γ
, V⋆(b) =

1
1 − γ

, V⋆(c) =
γ

1 − γ

What about policy π(s) = B, ∀s

Vπ(a) = 0,Vπ(b) = 0,Vπ(c) = 0

11

Summary so far:

Every discounted MDP has some deterministic optimal policy, that
dominates all other policies, everywhere

So we have, and .V⋆ = Vπ⋆ Q⋆ = Qπ⋆

V⋆(s) ≥ Vπ(s), ∀π, ∀s

12

Theorem 1: satisfies the following Bellman Equations: 
	  

Also, if , then is an optimal policy.

V⋆

V⋆(s) = max
a [r(s, a) + γ𝔼s′￼∼P(⋅|s,a)V⋆(s′￼)], ∀s

̂π (s) = arg max
a

Q⋆(s, a) ̂π

Bellman Optimality Equations

13

Intuition for the Bellman Equations
 V⋆(s) = max

a [r(s, a) + γ𝔼s′￼∼P(⋅|s,a)V⋆(s′￼)], ∀s

s

s′￼ s′￼′￼

a′￼ a′￼′￼

Q: If we know the optimal value at , i.e.,
, what we do at ?

s′￼, s′￼′￼

V⋆(s′￼), V⋆(s′￼′￼) s

1. Try , we get a′￼

Q⋆(s, a′￼) := r(s, a′￼) + γV⋆(s′￼)
2. Try , we get a′￼′￼

Q⋆(s, a′￼′￼) := r(s, a′￼′￼) + γV⋆(s′￼′￼)

V⋆(s) = max
a′￼,a′￼′￼

{Q⋆(s, a′￼), Q⋆(s, a′￼′￼)}
14

Proof of the Bellman Equations

We want to prove . 

Proof:

• Denote: 

• It suffices to show , which would complete the proof.

• To see this completes the proof,

• optimality of implies .

• and so: 

	 .

• Thus and is optimal.

V⋆(s) = max
a [r(s, a) + γ𝔼s′￼∼P(⋅|s,a)V⋆(s′￼)]

̂π (s):= arg max
a

[r(s, a) + γ𝔼s′￼∼P(⋅|s,a)V⋆(s′￼)]

= arg max
a

Q⋆(s, a)

V⋆(s) ≤ V ̂π (s)

V⋆ V ̂π (s) ≤ V⋆(s)

V⋆(s) ≤ V ̂π (s) ≤ V⋆(s)
V ̂π (s) = V⋆(s) ̂π

15

Completing the proof: showing V⋆(s) ≤ V ̂π (s)

• Recall:

• We have: 

• Proceeding recursively, 

̂π (s):= arg max
a

[r(s, a) + γ𝔼s′￼∼P(⋅|s,a)V⋆(s′￼)]

V⋆(s) = r(s, π⋆(s)) + γ𝔼s′￼∼P(s,π⋆(s))V⋆(s′￼)

≤ max
a [r(s, a) + γ𝔼s′￼∼P(s,a)V⋆(s′￼)]

= r(s, ̂π (s)) + γ𝔼s′￼∼P(s, ̂π (s))[V⋆(s′￼)]

≤ r(s, ̂π (s)) + γ𝔼s′￼∼P(s, ̂π (s)) [r(s′￼, ̂π (s′￼)) + γ𝔼s′￼′￼∼P(s′￼, ̂π (s′￼))V⋆(s′￼′￼)]
≤ r(s, ̂π (s)) + γ𝔼s′￼∼P(s, ̂π (s)) [r(s′￼, ̂π (s′￼)) + γ𝔼s′￼′￼∼P(s′￼, ̂π (s′￼)) [r(s′￼′￼, ̂π (s′￼′￼)) + γ𝔼s′￼′￼′￼∼P(s′￼′￼, ̂π (s′￼′￼))V⋆(s′￼′￼′￼)]]
≤ 𝔼 [r(s, ̂π (s)) + γr(s′￼, ̂π (s′￼)) + … | ̂π] = V ̂π (s)

16

Summary so far:

V⋆(s) = max
a [r(s, a) + γ𝔼s′￼∼P(⋅|s,a)V⋆(s′￼)], ∀s

Theorem 1: Bellman Optimality

Next:

Any function that satisfies Bellman Optimality, MUST be equal to V V⋆

17

Theorem 2: For any , if 
, then .

V : S → ℝ
V(s) = max

a [r(s, a) + γ𝔼s′￼∼P(⋅|s,a)V(s′￼)], ∀s V = V⋆

Bellman Equations, Claim 2

Bellman Opt allows us to focus on just one step,  
i.e., to check if we only need to check if the above equation holds.V = V⋆,

18

Proving Theorem 2

• Define the “maximal component distance” between and :  
	 	

• For which satisfies the Bellman equations,  
suppose we could show that . 

 the proof is complete because 

V V⋆

∥V − V⋆∥∞ = max
s

|V(s) − V⋆(s) |

V
∥V − V⋆∥∞ ≤ γ∥V − V⋆∥∞

⟹
∥V − V⋆∥∞ ≤ γ∥V − V⋆∥∞ ≤ γ2∥V − V⋆∥∞ ≤ … ≤ lim

k→∞
γk∥V − V⋆∥∞ = 0

19

Proof Continued…
• For which satisfies the Bellman equations, we want to show .

• Technial observation:

• Using that satisfies the Bellman equations, we have, for any ,

V ∥V − V⋆∥∞ ≤ γ∥V − V⋆∥∞

| max
x

f(x) − max
x

g(x) | ≤ max
x

| f(x) − g(x) |

V s

|V(s) − V⋆(s) | = max
a

(r(s, a) + γ𝔼s′￼∼P(s,a)V(s′￼)) − max
a

(r(s, a) + γ𝔼s′￼∼P(s,a)V⋆(s′￼))

≤ max
a

(r(s, a) + γ𝔼s′￼∼P(s,a)V(s′￼)) − (r(s, a) + γ𝔼s′￼∼P(s,a)V⋆(s′￼))
= γ max

a
𝔼s′￼∼P(s,a)[V(s′￼) − V⋆(s′￼)]

≤ γ max
a

𝔼s′￼∼P(s,a) |V(s′￼) − V⋆(s′￼) |

≤ γ max
a

max
s′￼

|V(s′￼) − V⋆(s′￼) |

= γ max
s′￼

|V(s′￼) − V⋆(s′￼) |

= γ∥V − V⋆∥∞
20

Summary Today

1. satisfies Bellman Optimality:
V⋆

V⋆(s) = max
a [r(s, a) + 𝔼s′￼∼P(s,a)V⋆(s′￼)]

2. If V satisfies Bellman Optimality Equations, ,  

then .

V(s) = max
a [r(s, a) + 𝔼s′￼∼P(s,a)V(s′￼)]

V = V⋆

1-minute feedback form: https://bit.ly/3RHtlxy
21

https://bit.ly/3RHtlxy

