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Today

 Recap
* |n the bandit setting, we were learning.
 Now we are starting with computation (of the optimal policy).

 Joday:
* |s there a simple way to characterize the optimal policy?
* The Bellman Optimality Equations
* The state-action visitation distribution



Recap



The Objective

o A “stationary” policymr: S+ A
e “stationary” means not history dependent
e we could also consider  to be random and a function of the history
« Sampling a trajectory: from a given policy 7 starting at state s
e Fort=0,1,2,...00
» Take action a, = 7(s,)
» Observe reward 7, = (s, a,)
» Transition to (and observe) s, where s, | ~ P( - |5, a,)
o Objective: given state starting state s,

find a policy & that maximizes our expected, discounted future reward:

max E |7(sy, ag) + yr(s;, a;) + y°r(s,, ar) + ... .. ‘SO = s, ﬂ]

JU



Infinite horizon Discounted Setting

M= {S,A,P,r,v}

P:SXA- AW), r:S5xA-|[0,1], ye€]0,1)

Policy z:S+— A

Quantities that allow us to reason policy’s long-term effect:

Value function V*(s) = E lz y'r(s,, a,) | sy = s, 72']

h=0

Q function Q*(s,a) = E lz yhr(sh, a,)
h=0

5

(89, dg) = (5, a), 71']



o0

Vi(s) = E

h=0

Bellman Consistency Equations:

Z yhr(sh, a,) | sg = s, n]

Vﬂ(S) — ]/'(S, ﬂ(S)) —+ }/ _S’NP(-‘S,JZ(S))V]Z(S,)

O"(s,a) = l Z yhr(sh, a) | (g, ap) = (5, a), 7[]
h=0

Q%(s,a) =r(s,a) +y

6

_S’NP( -|s,a) Vﬂ(S ,)




Notation

For a distribution D over a finite set X,

-P( - |5, a) is a distribution, where P(s’| s, a) specifies the probability
of the transition (s, a) — s’
*We will use notation:

And, iIf we are short on space and when it is clear, sometimes:



lToday:

Optimality in Markov Decision Processes



Property 1 of an Optimal Policy 7*

Even if we consider policies which are randomized and history dependent, the policy which
optimizes the the value (starting from any state s) is deterministic and memoryless.

e Defs:
 “NonStat+Rand”: the set of all non-stationary (history dependent), randomized policies.
e “Stat+Det”: the set of all deterministic, stationary (memoryless), policies.

 For any s, we have that:

T . T
Max;eNonStat+Rand V" () = max, cstat+Det V" (5)
[see theorem 1.7 in AUJKS—no need to understand the proof]

» Part of the reason why: the transition function P(s,, | s,, a,) is no a function of .

So knowledge of s, implies that using the history doesn’t alter the next state distribution.
* (Until we say otherwise) we limit ourselves to only consider det. stationary policies.



Property 2 of an Optimal Policy 7*

 The optimal value at state s is defined as:
V*(s) = max V*(s)
T

Note the above permits the optimizing policy to be a function of the starting state s.
 There always exists a deterministic policy ¥ such that, for all states s,

V7 (s) = V*(s)

[see theorem 1.7 in AJKS —no need to understand the proof

* There is an optimal policy that simultaneously dominates all &, from any starting state.

* |ntuition:
Vﬂ(S) — ]"(S, ﬂ'(S)) —+ }/ES’NP(°|S,7T(S))[V7T(S,)]

< r(s, 7(S)) + YEg . p(.(s.a(s) [ max V(s ,)]

T
(= after reaching any state s’, we can ignore how we got to s’ and instead choose the next

action at s’ to optimize the long term future only as a function of )



Example of Optimal Policy 7*

Consider the following deterministic MDP w/ 3 states & 2 actions

Let’s say y € (0,1)
What’s the optimal policy?

7*(s) = A, Vs

VA(@) = —L— VA b) = —— V¥ (e) = —

1 —y 1 —y 1 —y

What about policy 7z(s) = B, Vs
V*(a) =0,V*(b) = 0,V*(c) =0

Reward: r(b,A) = 1, & O everywhere else



Summary so far:

Every discounted MDP has some deterministic optimal policy, that
dominates all other policies, everywhere

V*(s) > V*(s),Vr,Vs

So we have, V* = V7 and O* = Q”*.
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Bellman Optimality Equations

Theorem 1: V* satisfies the following Bellman Equations:
V*(s) = max [r(s, a) + YEg ps.a)V ()|, Vs
A

Also, if 7(s) = arg max Q™ (s, a), then 7 is an optimal policy.
a
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Intuition for the Bellman Equations
V*(s) = max [r(s, a) + yEg p. S,a)V*(S’)] Vs
a

Q: If we know the optimal value at s’, 5", i.e.,
V*(s"), V*(s"), what we do at s?

1. Try a’, we get a a 2. Try a”’, we get

O*(s,a’) :=r(s,a’) + yV*(s') @ O*(s,a”) :=r(s,a”) + yV*(s")

V*(s) = max {Q:(S, a’), Q*(s,a")}

/ //

a’,a



Proof of the Bellman Equations

We want to prove

Proof:

 Denote:
w(s):= arg max[r(s,a) + yEy_p. (5.0 V()]

a

= arg max Q*(s, a)

e |t suffices to show , which would complete the proof.
* TJo see this completes the proof,

» optimality of V* implies V’A’(S) < V*(s).
* and so:

V*(s) < VZ(s) < V*(s).
* Thus V’AT(S) = V*(s) and 7 is optimal.
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Completing the proof: showing

. Recall: 7(s):= argmax[r(s,a) +y "S'NP(.\s,a)V*(S,)]
a

* We have:
V*(s) = r(s, 7(s)) + YE g p(s axsp) V()

< max lr(s, a)+y —S,NP(S,G)V*(S’)]

)

— r(Sa ;T\(S)) + y _S’NP(S,E(S))[V*(S/)]
* Proceeding recursively,

< r(s, ;T\(S)) TV —s'~P(s,7(5)) llf'(S,, ;Z\(S,)) TY _S”NP(S’,%\(S’))V*(S”)]

S F(S, ;Z'\(S)) n y _S'Np(s,jf(s)) [F(S’, ;Z'\(S,)) -+ 4 _s”NP(s’,fr\(S’)) lr(S//, ;Z'\(S”)) -+ 14 _s”’NP(s”,ﬁ(s”))V*(S/”)]]

< E [r(s, 2(s)) + yr(s’, B(s)) + ... | 7] = VE(s)
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Summary so far:

Theorem 1: Bellman Optimality

V*(s) = max lr(s, a) + YEy p(is.a0)V )|, Vs

Next:
Any function V that satisfies Bellman Optimality, MUST be equal to V*
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Bellman Equations, Claim 2

Theorem 2: Forany V: § — R, if

V(s) = max (r(s,a) + yEy _p(.15.0V(s ')] , Vs, then V= V>

Bellman Opt allows us to focus on just one step,
.e., to check if V.= V*, we only need to check if the above equation holds.
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Proving Theorem 2

» Define the “maximal component distance” between V and V*:
IV = V*||, = max | V(s) — V*(s)]
\)

* For V which satisfies the Bellman equations,
suppose we could show that

—> the proof is complete because
IV =Vl 7IV=V*l < PIIV=V*l < ... < lim y¥|[V = V||, =0

k— o0
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Proof Continued...

« For V which satisfies the Bellman equations, we want to show

. Technial observation: | max f(x) — max g(x) | < max | f(x) — g(x) |
X X X

e Using that V satisfies the Bellman equations, we have, for any s,

| V(s) = V*(s)| = |max (r(s, @) + yE,_p(s.)V(s)) = max (r(s,a) + yEg_pi ) V*(5))

a A

< max (F(S, CZ) Ty _S,NP(S,CI)V(S,)) R (I”(S, CZ) Ty _S’NP(S,CZ)V*(S,))

a

— )/maX _S/NP(S,CZ)[V(S,) — V*(S/)]

a

S }/ max _S,NP(S’a) | V(S,) T V*(S,) |

a

< ymax max | V(s") — V*(s') |

A \)

= ymax | V(s") = V*(s)|

— }/HV_ V*Hoo
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Summary Today

1. V* satisfies Bellman Optimality:
V*(s) = max |r(s,a) + Ey,_pi.) V(s

a

2. If V satisfies Bellman Optimality Equations, V(s) = max

da
then V = V*.

1-minute feedback form: https://bit.ly/3RHtIxy

[r(s, a) +



https://bit.ly/3RHtlxy

