Value Iteration

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2022

Today

- Recap
- Today:
 - An Iterative Algorithm: Value Iteration
 - Visitation distributions

Recap

Infinite horizon Discounted Setting

$$\mathcal{M} = \{S, A, P, r, \gamma\}$$
$$P : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0,1], \quad \gamma \in [0,1)$$
$$\mathsf{Policy} \ \pi : S \mapsto A$$

Quantities that allow us to reason policy's long-term effect:

Value function
$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| s_{0} = s, \pi\right]$$

Q function $Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| (s_{0}, a_{0}) = (s, a), \pi\right]$

Bellman Consistency Equations:

$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, \pi(s))} V^{\pi}(s')$$

$$Q^{\pi}(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\pi}(s')$$

Summary so far:

Every discounted MDP has some deterministic optimal policy π^{\star} , that dominates all other policies, everywhere

 $V^{\pi^{\star}}(s) \ge V^{\pi}(s), \forall \pi, \forall s$

Summary so far:

Every discounted MDP has some deterministic optimal policy π^* , that dominates all other policies, everywhere

 $V^{\pi^{\star}}(s) \ge V^{\pi}(s), \forall \pi, \forall s$

So we have, $V^{\star} = V^{\pi^{\star}}$ and $Q^{\star} = Q^{\pi^{\star}}$.

• V^{\star} satisfies Bellman Equations: $V^{\star}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right]$

•
$$V^*$$
 satisfies Bellman Equations:
 $V^*(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^*(s') \right]$
• If V satisfies the Bellman Equations,
 $V(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s') \right]$,
then $V = V^*$.

•The optimal policy is:

$$\pi^{\star}(s) = \arg\max_{a} \left[r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V^{\star}(s') \right]$$

Today: Value Iteration

Question for Today:

Given an MDP $\mathcal{M} = (S, A, P, r, \gamma)$, how can we (approximately) find π^* ?

Example of Optimal Policy π^{\star}

Consider the following **deterministic** MDP w/ 3 states & 2 actions

What about this one...

Let's design an algorithm that computes V^{\star}/Q^{\star} for any given MDP

Can we efficiently compute in a optimal policy? (polynomial in |S|, |A|, and other relevant quantities) how big r > P? (by forg fores if r > O(STA))

specify P(55)5g)

- Suppose we can efficiently compute $V^{\pi}(s)$ for any given $\pi: S \mapsto A$.
 - Brute force search would to find π^* would still take $|A|^{|S|}$ time.
- Can we construct an interactive algorithm based on the BEs?
 Will it converge?
 - •What is the computation time to get an approximate solution?

Detour: fix-point solution

Consider $x^* = f(x^*), \quad f: [a, b] \mapsto [a, b]$

A naive approach to find x^* : Initialize $x^0 \in [a, b]$, repeat: $x^{t+1} = f(x^t)$

Detour: fix-point solution

A naive approach to find x^* : Initialize $x^0 \in [a, b]$, repeat: $x^{t+1} = f(x^t)$

= f (41) (x)

If f is a contraction mapping, i.e., $\forall x, x', |f(x) - f(x')| \le \gamma |x - x'|$, for some $\gamma \in [0,1)$, then: $x^t \to x^*$, as $t \to \infty$ $\langle x^t - x^* \rangle = (f(x^{t-1}) - f(x^*)) | \le \gamma |x - x^*|$

 $V(s) \in \mathbb{R}$ Define Bellman Operator \mathcal{T} : Bellman Equations: $V(s) = \max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(s, a)} V(s') \right] \quad \forall r(s, a) = \int_{V(s, a)} V(s') \left[\frac{1}{V(s)} \right]$ •Any function $V: S \mapsto \mathbb{R}$ can also be viewed as a vector in $V \in \mathbb{R}^{|S|}$. • Define $\mathcal{T}: \mathbb{R}^{|S|} \mapsto \mathbb{R}^{|S|}$. where $(\mathcal{T}V)(s) := \max_{a} \left[r(s,a) + \mathcal{E}_{s' \sim P(s,a)} V(s') \right]$ • Bellman equations in terms of \mathcal{T} : 2-Bellman Operator $\mathcal{T}V = V$

Value Iteration Algorithm:

1. Initialization:
$$V^0 : ||V^0||_{\infty} \in \left[0, \frac{1}{1-\gamma}\right]$$

2. Iterate until convergence: $V^{t+1} \leftarrow \mathcal{T}V^t$

Guarantee of VI:

We will see this fix-point iteration converges, i.e., $V^t \to V^*$, as $t \to \infty$

Alternative Version: Bellman Operator \mathcal{T} on Q (HW2 Q2 is the Q-version of the Bellman Equations)

Given a function $Q: S \times A \mapsto \mathbb{R}$,

 $\mathcal{T}Q: S \times A \mapsto \mathbb{R},$

 $(\mathscr{T}Q)(s,a) := r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a' \in A} Q(s',a'), \forall s, a \in S \times A$

What is the Per-Iteration Computational Complexity? TV(S) = max 2r(Sa) + YE V(S) } a SinPlsa)

- Making the update $V^{t+1} \leftarrow \mathcal{T}V^t$ explicit:
 - q eR IST. 141 • Define Q^{t+1} : $\forall s, a \ Q^{t+1}(s, a) = r(s, a) + \gamma \sum P(s' \mid s, a) V^t(s')$ *s′*∈*S* $E_{s' \times P | s \in V} V^{t} (s^{-})$ •Set V^{t+1} : $\forall s \ V^{t+1}(s) = \max Q^{t+1}(s, a)$

What is the Per-Iteration Computational Complexity?

- Making the update $V^{t+1} \leftarrow \mathcal{T}V^t$ explicit:
- O(IS)) opentions • Define Q^{t+1} : $\forall s, a \ Q^{t+1}(s, a) = r(s, a) + \gamma \sum P(s' \mid s, a) V^t(s')$ $s' \in S$ •Set V^{t+1} : $\forall s \ V^{t+1}(s) = \max Q^{t+1}(s, a) \qquad \bigcirc (A)) \circ \rho = - f_{ons}$

•What is the order of the number of basic arithmetic operations?

What is the Per-Iteration Computational Complexity? $4 \sqrt{2}$

- Making the update $V^{t+1} \leftarrow \mathcal{T}V^t$ explicit:
 - Define Q^{t+1} : $\forall s, a \ Q^{t+1}(s, a) = r(s, a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^t(s')$ • Set V^{t+1} : $\forall s \ V^{t+1}(s) = \max_{a} Q^{t+1}(s, a)$ $C\left(\left[\leq \right] \left[A \right] \right)$

•What is the order of the number of basic arithmetic operations? $O(|S|^2 |A|)$

With matrix multiplication?

- Making the update $V^{t+1} \leftarrow \mathcal{T}V^t$ explicit:
 - Define Q^{t+1} : $\forall s, a \ Q^{t+1}(s, a) = r(s, a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^t(s')$ • Set V^{t+1} : $\forall s \ V^{t+1}(s) = \max_{a} Q^{t+1}(s, a)$

With matrix multiplication?

- Making the update $V^{t+1} \leftarrow \mathcal{T}V^t$ explicit:
- Define Q^{t+1} : $\forall s, a \ Q^{t+1}(s, a) = r(s, a) + \gamma \sum P(s' | s, a) V^{t}(s')$ $P_{(5,n)}, s' = P(s'(5, q))$ $s' \in S$ •Set V^{t+1} . $\forall s \ V^{t+1}(s) = \max Q^{t+1}(s, a)$ pours column. •In terms of matrix multiplication, let us view \vec{r} as a vector, $r \in \mathbb{R}^{|S| \cdot |A|}$ and P as a matrix $P \in \mathbb{R}^{|S| \cdot |A| \times |S|}$ $\searrow \quad \bigcirc \quad \overleftarrow{c} \quad \overleftarrow{\tau} \quad$

With matrix multiplication?

- Making the update $V^{t+1} \leftarrow \mathcal{T}V^t$ explicit:
- Define Q^{t+1} : $\gg \forall s, a \ Q^{t+1}(s, a) = r(s, a) + \gamma \sum P(s' \mid s, a) V^t(s')$ $s' \in S$ •Set V^{t+1} . $\forall s \ V^{t+1}(s) = \max Q^{t+1}(s, a)$ •In terms of matrix multiplication, let us view r as a vector, $r \in \mathbb{R}^{|S| \cdot |A|}$ and P as a matrix $P \in \mathbb{R}^{|S| \cdot |A| \times |S|}$ $Q^{t+1} = r + \gamma P V^t$

Outline:

1: An Iterative Algorithm: Value Iteration (a fix-point iteration algorithm again)

2: Convergence? How fast? (Via the <u>contraction</u> argument again!)

Convergence of Value Iteration:

Lemma [contraction]: Given any V, V', we have: $\|\mathscr{T}V - \mathscr{T}V'\|_{\infty} \leq \gamma \|V - V'\|_{\infty}$

 $|(\mathcal{T}V)(s) - (\mathcal{T}V')(s)| = \left| \max_{a} \left\{ r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V(s') \right\} - \max_{a} \left\{ r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V'(s') \right\} \right|$ Proof: Max In(Salt & Francis V(sr) - (n(Salt& F V(Sr))) = & max [E V(s) - V(s) - V(s)] $\leq \gamma \max_{a} E_{w} \left[V(S^{r}) - V(S^{r}) \right]$

Convergence of Value Iteration: *Lemma [contraction]*: Given any Q, Q', we have: $\|\mathscr{T}Q - \mathscr{T}Q'\|_{\infty} \leq \gamma \|Q - Q'\|_{\infty}$

Proof:

$$\left| (\mathcal{V}V)(s) - (\mathcal{T}V')(s) \right| = \left| \max_{a} \left\{ r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V(s') \right\} - \max_{a} \left\{ r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V'(s') \right\} \right|$$

Convergence of Value Iteration:

Lemma [Convergence]: Given V^0 , we have: $\|V^t - V^{\star}\|_{\infty} \le \gamma^t \|V^0 - V^{\star}\|_{\infty}$

Proof:

$$\|V^{t} - V^{\star}\|_{\infty} = \|\mathscr{T}V^{t-1} - \mathscr{T}V^{\star}\|_{\infty} \le \gamma \|V^{t-1} - V^{\star}\|_{\infty}$$

Convergence of Value Iteration:

Lemma [Convergence]: Given V^0 , we have: $\|V^t - V^\star\|_{\infty} \le \gamma^t \|V^0 - V^\star\|_{\infty}$

$$\|V^{t} - V^{\star}\|_{\infty} = \|\mathscr{T}V^{t-1} - \mathscr{T}V^{\star}\|_{\infty} \le \gamma \|V^{t-1} - V^{\star}\|_{\infty}$$

$$\ldots \leq \gamma^{t+\gamma} \|V^0 - V^\star\|_{\infty}$$

$$\begin{array}{c} \text{Computational Complexity of VI} \\ \begin{array}{c} & & \\$$

· SEE fixed The Quality of Policy: **Theorem:** For any V, let $\pi^{\bullet}(s) = \arg \max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(s, a)} V(s') \right]$, then if $v \in \mathcal{O}$ is $V^{\pi^{\circ}}(s) \ge V^{\star}(s) - \frac{2\gamma}{1-\gamma} \|V - V^{\star}\|_{\infty} + \frac{MDP}{VP} + \frac{2\gamma}{1-\gamma} \|V - V^{\star}\|_{\infty}$ $E \mathcal{E} (FY)$ finds, a policy TT S.t. VI $|V^{T} - V^{*}|_{to} \leq \mathcal{Z}$ in # iterstices log (scirb)

The Quality of Policy:

Theorem: For any V, let $\pi^{\bullet}(s) = \arg \max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(s, a)} V(s') \right]$, then $V^{\pi^{\bullet}}(s) \ge V^{\star}(s) - \frac{2\gamma}{1-\gamma} \|V - V^{\star}\|_{\infty}$

> see slides to, proof

(not necessary)

Proof:

• To prove the theorem, it suffice to show that:

$$\|V^{\pi^{\flat}} - V^{\star}\| \leq \frac{2\gamma}{1 - \gamma} \|V - V^{\star}\|_{\infty}$$

Understanding the sampling

"Occupancy measures" are a helpful concept

Assume we start at s_0 , following π to step h, what's probability of seeing a trajectory:

 $(s_0, a_0, s_1, a_1, \dots, s_h, a_h)$?

Assume we start at s_0 , following π to step h, what's probability of seeing a trajectory: $(s_0, a_0, s_1, a_1, \dots, s_h, a_h)$?

Let's write
$$\pi$$
 as a delta distribution, i.e., $\pi(a \mid s) = \begin{cases} 1, & a = \pi(s), \\ 0, & \text{else} \end{cases}$

Assume we start at s_0 , following π to step h, what's probability of seeing a trajectory: $(s_0, a_0, s_1, a_1, \dots, s_h, a_h)$?

Let's write
$$\pi$$
 as a delta distribution, i.e., $\pi(a \mid s) = \begin{cases} 1, & a = \pi(s), \\ 0, & \text{else} \end{cases}$

Assume we start at s_0 , following π to step h, what's probability of seeing a trajectory: $(s_0, a_0, s_1, a_1, \dots, s_h, a_h)$?

Let's write
$$\pi$$
 as a delta distribution, i.e., $\pi(a \mid s) = \begin{cases} 1, & a = \pi(s), \\ 0, & \text{else} \end{cases}$

Assume we start at s_0 , following π to step h, what's probability of seeing a trajectory: $(s_0, a_0, s_1, a_1, \dots, s_h, a_h)$?

Let's write
$$\pi$$
 as a delta distribution, i.e., $\pi(a \mid s) = \begin{cases} 1, & a = \pi(s), \\ 0, & \text{else} \end{cases}$

$$\mathbb{P}^{\pi}(s_0, a_0, \dots, s_h, a_h)$$

... = $\pi(a_0 | s_0) P(s_1 | s_0, a_0) \pi(a_1 | s_1) P(s_2 | s_1, a_1) \dots P(s_h | s_{h-1}, a_{h-1}) \pi(a_h | s_h)$

Q: what's the probability of π visiting state (*s*,a) at time step h?

State-action distribution at time step h

$$\mathbb{P}^{\pi}(a_0,\ldots,s_h,a_h\,|\,s_0,\pi)$$

 $= \pi(a_0 | s_0) P(s_1 | s_0, a_0) \pi(a_1 | s_1) P(s_2 | s_1, a_1) \dots P(s_h | s_{h-1}, a_{h-1}) \pi(a_h | s_h)$

Q: what's the probability of π visiting state (*s*,a) at time step h?

$$\mathbb{P}_{h}^{\pi}(s_{h}, a_{h} \mid s_{0}, \pi) = \sum_{a_{0}, s_{1}, a_{1}, \dots, s_{h-1}, a_{h-1}} \mathbb{P}^{\pi}(a_{0}, \dots, s_{h-1}, a_{h-1} s_{h} = s, a_{h} = a \mid s_{0}, \pi)$$

Probability of π visiting (s, a) at h, starting from s_0

$$d_{s_0}^{\pi}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s,a;s_0)$$

Can you show that this is a valid distribution?

Probability of π visiting (s, a) at h, starting from s_0

$$d_{s_0}^{\pi}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s,a;s_0)$$

Can you show that this is a valid distribution?
$$V^{\pi}(s_0) = \frac{1}{1-\gamma} \sum_{s,a} d_{s_0}^{\pi}(s,a) r(s,a)$$

s,a

Probability of π visiting (s, a) at h, starting from s_0

$$d_{s_0}^{\pi}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s,a;s_0)$$

Can you show that this is a valid distribution?
$$V^{\pi}(s_0) = \frac{1}{1-\gamma} \sum_{s,a} d_{s_0}^{\pi}(s,a) r(s,a)$$

Can you show the above is true?

Probability of π visiting (s, a) at h, starting from s_0

$$d_{s_0}^{\pi}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^h \mathbb{P}_h^{\pi}(s,a;s_0)$$

Can you show that this is a valid distribution?
$$V^{\pi}(s_0) = \frac{1}{1-\gamma} \sum_{s,a} d_{s_0}^{\pi}(s,a)r(s,a)$$
 HW0 questions

Can you show the above is true?

Probability of π visiting (s, a) at h, starting from s_0

$$\mathbb{P}_{h}^{\pi}(s_{h}, a_{h} | s_{0}, \pi) = \sum_{a_{0}, s_{1}, a_{1}, \dots, s_{h-1}, a_{h-1}} \mathbb{P}^{\pi}(s_{0}, a_{0}, \dots, s_{h-1}, a_{h-1}s_{h} = s, a_{h} = a)$$

$$d_{s_{0}}^{\pi}(s, a) = (1 - \gamma) \sum_{h=0}^{\infty} \gamma^{h} \mathbb{P}_{h}^{\pi}(s, a; s_{0})$$
Can you show that this is a valid distribution?

$$V^{\pi}(s_0) = \frac{1}{1 - \gamma} \sum_{s,a} d^{\pi}_{s_0}(s, a) r(s, a)$$

HW0 questions!

Can you show the above is true?

Summary Today

- Value iteration: an iterative algorithm with a "linear" convergence rate.
- The concept of an "occupancy measure".

1-minute feedback form: https://bit.ly/3RHtlxy

