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Today

• Recap  

• Today:

• An Iterative Algorithm: Value Iteration  

• Visitation distributions
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Recap
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Infinite horizon Discounted Setting

ℳ = {S, A, P, r, γ}
P : S × A ↦ Δ(S), r : S × A → [0,1], γ ∈ [0,1)

Policy π : S ↦ A

Value function Vπ(s) = ' [
∞

∑
h=0

γhr(sh, ah) s0 = s, π]
Q function Qπ(s, a) = ' [

∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), π]

Quantities that allow us to reason policy’s long-term effect:
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Bellman Consistency Equations:

Vπ(s) = r(s, π(s)) + γ's′ ∼P(⋅|s,π(s))Vπ(s′ )

Qπ(s, a) = r(s, a) + γ's′ ∼P(⋅|s,a)Vπ(s′ )
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Summary so far:

Every discounted MDP has some deterministic optimal policy , 
that dominates all other policies, everywhere

π⋆

Vπ⋆(s) ≥ Vπ(s), ∀π, ∀s
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Summary so far:

Every discounted MDP has some deterministic optimal policy , 
that dominates all other policies, everywhere

π⋆

So we have,  and  .V⋆ = Vπ⋆ Q⋆ = Qπ⋆

Vπ⋆(s) ≥ Vπ(s), ∀π, ∀s
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Bellman (Optimality) Equations
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Bellman (Optimality) Equations

•  satisfies Bellman Equations: 
	 	
V⋆

V⋆(s) = max
a [r(s, a) + γ's′ ∼P(s,a)V⋆(s′ )]

7



Bellman (Optimality) Equations

•  satisfies Bellman Equations: 
	 	
V⋆

V⋆(s) = max
a [r(s, a) + γ's′ ∼P(s,a)V⋆(s′ )]

•If V satisfies the Bellman Equations, 
	 	 ,  

then . 

V(s) = max
a [r(s, a) + γ's′ ∼P(s,a)V(s′ )]

V = V⋆
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Bellman (Optimality) Equations

•  satisfies Bellman Equations: 
	 	
V⋆

V⋆(s) = max
a [r(s, a) + γ's′ ∼P(s,a)V⋆(s′ )]

•If V satisfies the Bellman Equations, 
	 	 ,  

then . 

V(s) = max
a [r(s, a) + γ's′ ∼P(s,a)V(s′ )]

V = V⋆

•The optimal policy is: 
	 	 π⋆(s) = arg max

a [r(s, a) + γ's′ ∼P(s,a)V⋆(s′ )]
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Today:

Value Iteration
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Question for Today:  

Given an MDP  ,  

how can we (approximately) find ?


 

ℳ = (S, A, P, r, γ)
π⋆
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Example of Optimal Policy π⋆

Consider the following deterministic MDP w/ 3 states & 2 actions

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0

π⋆(s) = A, ∀s

V⋆(a) = γ
1 − γ

, V⋆(b) = 1
1 − γ

, V⋆(c) = γ
1 − γ



What about this one…

Let’s design an algorithm that 
computes  for any given MDPV⋆/Q⋆
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Can we efficiently compute in a optimal policy?  
(polynomial in and other relevant quantities)|S | , |A | ,

• Suppose we can efficiently compute  for any given .

• Brute force search would to find  would still take  time. 

• Can we construct an interactive algorithm based on  the BEs?

•Will it converge? 

•What is the computation time to get an approximate solution?

Vπ(s) π : S ↦ A
π⋆ |A ||S|

12

specify PT Sa

how big is p
how long does ittake to read m
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Detour: fix-point solution

Consider x⋆ = f(x⋆), f : [a, b] ↦ [a, b]

A naive approach to find x⋆ :
Initialize , repeat: x0 ∈ [a, b] xt+1 = f(xt)
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Detour: fix-point solution

Consider x⋆ = f(x⋆), f : [a, b] ↦ [a, b]

A naive approach to find x⋆ :
Initialize , repeat: x0 ∈ [a, b] xt+1 = f(xt)

If  is a contraction mapping, 

i.e., , for some , then:


f
∀x, x′ | f(x) − f(x′ ) | ≤ γ |x − x′ | , γ ∈ [0,1)

xt → x⋆,  as t → ∞

13
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Define Bellman Operator :1

•Any function  can also be viewed as a vector in .

• Define , where 
	 	 


• Bellman equations in terms of : 
	 	 	

V : S ↦ ℝ V ∈ ℝ|S|

1 : ℝ|S| ↦ ℝ|S|

(1V)(s) := max
a [r(s, a) + 's′ ∼P(s,a)V(s′ )]

1
1V = V

14

Bellman Equations: V(s) = max
a [r(s, a) + 's′ ∼P(s,a)V(s′ )]y

Visser
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Value Iteration Algorithm:

1. Initialization:  V0 : ∥V0∥∞ ∈ [0, 1
1 − γ ]

2. Iterate until convergence: Vt+1 ← 1Vt

15
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Value Iteration Algorithm:

1. Initialization:  V0 : ∥V0∥∞ ∈ [0, 1
1 − γ ]

2. Iterate until convergence: Vt+1 ← 1Vt

Guarantee of VI: 

We will see this fix-point iteration converges, i.e., Vt → V⋆, as t → ∞
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Alternative Version: Bellman Operator  on  
(HW2 Q2 is the Q-version of the Bellman Equations)

1 Q

Given a function , 


,


Q : S × A ↦ ℝ

1Q : S × A ↦ ℝ

(1Q)(s, a) := r(s, a) + γ's′ ∼P(⋅|s,a) max
a′ ∈A

Q(s′ , a′ ), ∀s, a ∈ S × A
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What is the Per-Iteration Computational Complexity?

17

• Making the update  explicit:

• Define : 
 	 


•Set : 
	  

Vt+1 ← 1Vt

Qt+1

∀s, a Qt+1(s, a) = r(s, a) + γ∑
s′ ∈S

P(s′ |s, a)Vt(s′ )

Vt+1

∀s Vt+1(s) = max
a

Qt+1(s, a)
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What is the Per-Iteration Computational Complexity?

17

• Making the update  explicit:

• Define : 
 	 


•Set : 
	  

Vt+1 ← 1Vt

Qt+1

∀s, a Qt+1(s, a) = r(s, a) + γ∑
s′ ∈S

P(s′ |s, a)Vt(s′ )

Vt+1

∀s Vt+1(s) = max
a

Qt+1(s, a)

•What is the order of the number of basic arithmetic operations?

095 Operation

I
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What is the Per-Iteration Computational Complexity?

17

• Making the update  explicit:

• Define : 
 	 


•Set : 
	  

Vt+1 ← 1Vt

Qt+1

∀s, a Qt+1(s, a) = r(s, a) + γ∑
s′ ∈S

P(s′ |s, a)Vt(s′ )

Vt+1

∀s Vt+1(s) = max
a

Qt+1(s, a)

•What is the order of the number of basic arithmetic operations?
	 O( |S |2 |A | )

to let

0 1159141
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With matrix multiplication?
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• Making the update  explicit:

• Define :  
 	 


•Set : 
	

Vt+1 ← 1Vt

Qt+1

∀s, a Qt+1(s, a) = r(s, a) + γ∑
s′ ∈S

P(s′ |s, a)Vt(s′ )

Vt+1

∀s Vt+1(s) = max
a

Qt+1(s, a)



With matrix multiplication?

18

• Making the update  explicit:

• Define :  
 	 


•Set : 
	

Vt+1 ← 1Vt

Qt+1

∀s, a Qt+1(s, a) = r(s, a) + γ∑
s′ ∈S

P(s′ |s, a)Vt(s′ )

Vt+1

∀s Vt+1(s) = max
a

Qt+1(s, a)
•In terms of matrix multiplication,  
let us view  as a vector,  and  as a matrix 	 	 	r r ∈ ℝ|S|⋅|A| P P ∈ ℝ|S|⋅|A|×|S|
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With matrix multiplication?

18

• Making the update  explicit:

• Define :  
 	 


•Set : 
	

Vt+1 ← 1Vt

Qt+1

∀s, a Qt+1(s, a) = r(s, a) + γ∑
s′ ∈S

P(s′ |s, a)Vt(s′ )

Vt+1

∀s Vt+1(s) = max
a

Qt+1(s, a)
•In terms of matrix multiplication,  
let us view  as a vector,  and  as a matrix 	 	 	r r ∈ ℝ|S|⋅|A| P P ∈ ℝ|S|⋅|A|×|S|

	 	 Qt+1 = r + γPVt

C



Outline:

1: An Iterative Algorithm: Value Iteration  

(a fix-point iteration algorithm again)

2: Convergence? How fast? 

(Via the contraction argument again! )
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Convergence of Value Iteration:

Lemma [contraction]: Given any , we have:
V, V′ 

∥1V − 1V′ ∥∞ ≤ γ∥V − V′ ∥∞
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Proof:
| (5V)(s) − (1V′ )(s) | = max

a
{r(s, a) + γ's′ ∼P(s,a)V(s′ )} − max

a
{r(s, a) + γ's′ ∼P(s,a)V′ (s′ )}
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Convergence of Value Iteration:
Lemma [contraction]: Given any , we have:
Q, Q′ 

∥1Q − 1Q′ ∥∞ ≤ γ∥Q − Q′ ∥∞
Proof:

| (5V)(s) − (1V′ )(s) | = max
a

{r(s, a) + γ's′ ∼P(s,a)V(s′ )} − max
a

{r(s, a) + γ's′ ∼P(s,a)V′ (s′ )}
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Convergence of Value Iteration:
Lemma [Convergence]: Given , we have:
V0

∥Vt − V⋆∥∞ ≤ γt∥V0 − V⋆∥∞

∥Vt − V⋆∥∞ = ∥1Vt−1 − 1V⋆∥∞ ≤ γ∥Vt−1 − V⋆∥∞

24

Proof:



Convergence of Value Iteration:
Lemma [Convergence]: Given , we have:
V0

∥Vt − V⋆∥∞ ≤ γt∥V0 − V⋆∥∞

∥Vt − V⋆∥∞ = ∥1Vt−1 − 1V⋆∥∞ ≤ γ∥Vt−1 − V⋆∥∞

… ≤ γt+1∥V0 − V⋆∥∞

24

Proof:

an



Computational Complexity of VI

25

VI will return a  s.t.  in no more than,  

 iterations.

V ∥V − V⋆∥∞ ≤ ϵ
ln( V0 − V⋆

∞/ϵ)
ln(1/γ) ≤

ln( V0 − V⋆
∞/ϵ)

(1 − γ)
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Computational Complexity of VI

25

VI will return a  s.t.  in no more than,  

 iterations.

V ∥V − V⋆∥∞ ≤ ϵ
ln( V0 − V⋆

∞/ϵ)
ln(1/γ) ≤

ln( V0 − V⋆
∞/ϵ)

(1 − γ)
 
So the computational complexity for an -accurate solution is ϵ

O( |S |2 |A |
1 − γ

ln ( 1
ϵ(1 − γ) ))

IVY'll
Fr

I Ylinear time



The Quality of Policy:
Theorem: For any , let , then V πt(s) = arg max

a [r(s, a) + 's′ ∼P(s,a)V(s′ )]
Vπt(s) ≥ V⋆(s) − 2γ

1 − γ
∥V − V⋆∥∞

see fixed
slides

MPP4
recap slid
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The Quality of Policy:

Proof:

• To prove the theorem, it suffice to show that: 
∥Vπt − V⋆∥ ≤ 2γ

1 − γ
∥V − V⋆∥∞

Theorem: For any , let , then V πt(s) = arg max
a [r(s, a) + 's′ ∼P(s,a)V(s′ )]

Vπt(s) ≥ V⋆(s) − 2γ
1 − γ

∥V − V⋆∥∞

see slides
for proof

not necessary



Understanding the sampling

“Occupancy measures” are a helpful concept
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Discounted State (action) Occupancy Measures

Assume we start at , following  to step , what’s probability of seeing a trajectory:

?

s0 π h
(s0, a0, s1, a1, …, sh, ah)



Discounted State (action) Occupancy Measures

Assume we start at , following  to step , what’s probability of seeing a trajectory:

?

s0 π h
(s0, a0, s1, a1, …, sh, ah)

Let’s write  as a delta distribution, i.e., π π(a |s) = {1, a = π(s),
0, else



Discounted State (action) Occupancy Measures

Assume we start at , following  to step , what’s probability of seeing a trajectory:

?

s0 π h
(s0, a0, s1, a1, …, sh, ah)

Let’s write  as a delta distribution, i.e., π π(a |s) = {1, a = π(s),
0, else

a1

s0 s1 s2

a0

…

…



Discounted State (action) Occupancy Measures

Assume we start at , following  to step , what’s probability of seeing a trajectory:

?

s0 π h
(s0, a0, s1, a1, …, sh, ah)

Let’s write  as a delta distribution, i.e., π π(a |s) = {1, a = π(s),
0, else

a1

s0 s1 s2

a0

…

…

ℙπ(s0, a0, …, sh, ah)



Discounted State (action) Occupancy Measures

Assume we start at , following  to step , what’s probability of seeing a trajectory:

?

s0 π h
(s0, a0, s1, a1, …, sh, ah)

Let’s write  as a delta distribution, i.e., π π(a |s) = {1, a = π(s),
0, else

a1

s0 s1 s2

a0

…

… = π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)P(s2 |s1, a1)…P(sh |sh−1, ah−1)π(ah |sh)

ℙπ(s0, a0, …, sh, ah)



State-action distribution at time step h

a1

s0 s1 s2

a0

…

… = π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)P(s2 |s1, a1)…P(sh |sh−1, ah−1)π(ah |sh)

ℙπ(a0, …, sh, ah |s0, π)

Q: what’s the probability of  visiting state ( ,a) at time step h?π s

holds for

I stock policy
as well



State-action distribution at time step h

ℙπ
h(sh, ah |s0, π) = ∑

a0,s1,a1,…,sh−1,ah−1

ℙπ(a0, …, sh−1, ah−1sh = s, ah = a |s0, π)

a1

s0 s1 s2

a0

…

… = π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)P(s2 |s1, a1)…P(sh |sh−1, ah−1)π(ah |sh)

ℙπ(a0, …, sh, ah |s0, π)

Q: what’s the probability of  visiting state ( ,a) at time step h?π s
Pr x ERE g



Discounted Average State-action distribution

Probability of  visiting  at , starting from π (s, a) h s0

dπ
s0

(s, a) = (1 − γ)
∞

∑
h=0

γhℙπ
h(s, a; s0)

Can you show that this is a valid distribution?



Discounted Average State-action distribution

Probability of  visiting  at , starting from π (s, a) h s0

dπ
s0

(s, a) = (1 − γ)
∞

∑
h=0

γhℙπ
h(s, a; s0)

Can you show that this is a valid distribution?

Vπ(s0) = 1
1 − γ ∑

s,a
dπ

s0
(s, a)r(s, a)
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dπ
s0
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Discounted Average State-action distribution

Probability of  visiting  at , starting from π (s, a) h s0

dπ
s0

(s, a) = (1 − γ)
∞

∑
h=0

γhℙπ
h(s, a; s0)

Can you show that this is a valid distribution?

Vπ(s0) = 1
1 − γ ∑

s,a
dπ

s0
(s, a)r(s, a)

Can you show the above is true?

HW0 questions!

ℙπ
h(sh, ah |s0, π) = ∑

a0,s1,a1,…,sh−1,ah−1

ℙπ(s0, a0, …, sh−1, ah−1sh = s, ah = a)



Summary Today
• Value iteration: an iterative algorithm with a “linear” convergence rate. 

• The concept of an “occupancy measure”.

1-minute feedback form: https://bit.ly/3RHtlxy 
42

https://bit.ly/3RHtlxy

