Value Iteration

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2022

Today

- Recap
- Today:
- An Iterative Algorithm: Value Iteration
- Visitation distributions

Recap

Infinite horizon Discounted Setting

$$
\begin{gathered}
\mathscr{M}=\{S, A, P, r, \gamma\} \\
P: S \times A \mapsto \Delta(S), \quad r: S \times A \rightarrow[0,1], \quad \gamma \in[0,1) \\
\text { Policy } \pi: S \mapsto A
\end{gathered}
$$

Quantities that allow us to reason policy's long-term effect:
Value function $V^{\pi}(s)=\mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right) \mid s_{0}=s, \pi\right]$
Q function $Q^{\pi}(s, a)=\mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right) \mid\left(s_{0}, a_{0}\right)=(s, a), \pi\right]$

Bellman Consistency Equations:

$$
\begin{aligned}
& V^{\pi}(s)=r(s, \pi(s))+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, \pi(s))} V^{\pi}\left(s^{\prime}\right) \\
& Q^{\pi}(s, a)=r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} V^{\pi}\left(s^{\prime}\right)
\end{aligned}
$$

Summary so far:

Every discounted MDP has some deterministic optimal policy π^{\star}, that dominates all other policies, everywhere

$$
V^{\pi^{\star}}(s) \geq V^{\pi}(s), \forall \pi, \forall s
$$

Summary so far:

Every discounted MDP has some deterministic optimal policy π^{\star}, that dominates all other policies, everywhere

$$
V^{\pi^{\star}}(s) \geq V^{\pi}(s), \forall \pi, \forall s
$$

So we have, $V^{\star}=V^{\pi^{\star}}$ and $Q^{\star}=Q^{\pi^{\star}}$.

Bellman (Optimality) Equations

Bellman (Optimality) Equations

- V^{\star} satisfies Bellman Equations:

$$
V^{\star}(s)=\max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V^{\star}\left(s^{\prime}\right)\right]
$$

Bellman (Optimality) Equations

- V^{\star} satisfies Bellman Equations:

$$
V^{\star}(s)=\max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V^{\star}\left(s^{\prime}\right)\right]
$$

-If V satisfies the Bellman Equations,

$$
V(s)=\max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V\left(s^{\prime}\right)\right],
$$

then $V=V^{\star}$.

Bellman (Optimality) Equations

- V^{\star} satisfies Bellman Equations:

$$
V^{\star}(s)=\max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V^{\star}\left(s^{\prime}\right)\right]
$$

-If V satisfies the Bellman Equations,

$$
V(s)=\max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V\left(s^{\prime}\right)\right],
$$

then $V=V^{\star}$.
-The optimal policy is:

$$
\pi^{\star}(s)=\arg \max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V^{\star}\left(s^{\prime}\right)\right]
$$

Today:
 Value Iteration

Question for Today:

Given an MDP $\mathscr{M}=(S, A, P, r, \gamma)$, how can we (approximately) find π^{\star} ?

Example of Optimal Policy π^{\star}

Consider the following deterministic MDP w/ 3 states \& 2 actions

$$
\begin{aligned}
\pi^{\star}(s) & =A, \forall s \\
V^{\star}(a)=\frac{\gamma}{1-\gamma}, V^{\star}(b) & =\frac{1}{1-\gamma}, V^{\star}(c)=\frac{\gamma}{1-\gamma}
\end{aligned}
$$

Reward: $r(b, A)=1, \& 0$ everywhere else

What about this one...

Let's design an algorithm that computes V^{\star} / Q^{\star} for any given MDP

Can we efficiently compute in a optimal policy?

- Suppose we can efficiently compute $V^{\pi}(s)$ for any given $\pi: S \mapsto A$.
- Brute force search would to find π^{\star} would still take $|A|^{|S|}$ time.
- Can we construct an interactive algorithm based on the BEs?
-Will it converge?
-What is the computation time to get an approximate solution?

Detour: fix-point solution

$$
\text { Consider } x^{\star}=f\left(x^{\star}\right), \quad f:[a, b] \mapsto[a, b]
$$

> A naive approach to find $x^{\star}:$ Initialize $x^{0} \in[a, b]$, repeat: $x^{t+1}=f\left(x^{t}\right)$

Detour: fix-point solution

$$
\text { Consider } x^{\star}=f\left(x^{\star}\right), \quad f:[a, b] \mapsto[a, b] \quad x^{\not t+1}=f\left(x^{\star}\right)
$$

A naive approach to find x^{\star} :
Initialize $x^{0} \in[a, b]$, repeat: $x^{t+1}=f\left(x^{t}\right)$

$$
=f^{(-t)}\left(x^{0}\right)
$$

If f is a contraction mapping, i.e., $\forall x, x^{\prime},\left|f(x)-f\left(x^{\prime}\right)\right| \leq \gamma\left|x-x^{\prime}\right|$, for some $\gamma \in[0,1)$, then:

$$
\left|x^{t}-x^{\star}\right|=\left\lvert\, \begin{aligned}
& x^{t} \rightarrow x^{\star}, \text { as } t \rightarrow \infty \\
& f\left(x^{t-1}\right)-f\left(x^{*}\right)|\leq \gamma| x^{t-1}-x^{\star} \mid
\end{aligned}\right.
$$

Define Bellman Operator \mathscr{T} :
Bellman Equations: $V(s)=\max _{a}\left[r(s, a) \hat{H}\left(\mathbb{E}_{s^{\prime} \sim P(s, a)} V\left(s^{\prime}\right)\right] \vec{V}=\left[\begin{array}{c}V(1) \\ V(|s|)\end{array}\right]\right.$
-Any function $V: S \mapsto \mathbb{R}$ can also be viewed as a vector in $V \in \mathbb{R}^{|S|}$.

- Define $\mathscr{T}: \mathbb{R}^{|S|} \mapsto \mathbb{R}^{|S|}$, where

$$
(\mathscr{T} V)(s):=\max _{a}\left[r(s, a)+\mathbb{E}_{s^{\prime} \sim P(s, a)} V\left(s^{\prime}\right)\right]
$$

- Bellman equations in terms of \mathscr{T} :

$$
\mathscr{T} V=V
$$

Value Iteration Algorithm:

$$
|\vec{x}|_{\infty}=\max _{0}\left|x_{i}\right|
$$

we know

Value Iteration Algorithm:

Guarantee of VI:

We will see this fix-point iteration converges, i.e., $V^{t} \rightarrow V^{\star}$, as $t \rightarrow \infty$

Alternative Version: Bellman Operator \mathscr{T} on Q

(HW2 Q2 is the Q-version of the Bellman Equations)
Given a function $Q: S \times A \mapsto \mathbb{R}$,

$$
\begin{gathered}
\mathscr{T} Q: S \times A \mapsto \mathbb{R} \\
(\mathscr{T} Q)(s, a):=r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} \max _{a^{\prime} \in A} Q\left(s^{\prime}, a^{\prime}\right), \forall s, a \in S \times A
\end{gathered}
$$

What is the Per-Iteration Computational Complexity?

- Making the update $V^{t+1} \leftarrow \mathscr{T} V^{t}$ explicit:
- Define Q^{t+1} :

$$
\forall s, a \quad Q^{t+1}(s, a)=r(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) V^{t}\left(s^{\prime}\right)
$$

- Set V^{t+1} :

$$
\forall s \quad V^{t+1}(s)=\max Q^{t+1}(s, a)
$$

What is the Per-Iteration Computational Complexity?

- Making the update $V^{t+1} \leftarrow \mathscr{T} V^{t}$ explicit:
o(is)) operations,
- Define Q^{t+1} :

$$
\forall s, a Q^{t+1}(s, a)=r(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) V^{t}\left(s^{\prime}\right)
$$

- Set V^{t+1} :

$$
\forall s \quad V^{t+1}(s)=\max Q^{t+1}(s, a)
$$

 a
-What is the order of the number of basic arithmetic operations?

What is the Per-Iteration Computational Complexity?

tole 1

- Making the update $V^{t+1} \leftarrow \mathscr{T} V^{t}$ explicit:
- Define Q^{t+1} :

$$
\forall s, a \quad Q^{t+1}(s, a)=r(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) V^{t}\left(s^{\prime}\right)
$$

- Set V^{t+1} :

$$
\forall s \quad V^{t+1}(s)=\max Q^{t+1}(s, a)
$$

-What is the order of the number of basic arithmetic operations?

$$
O\left(|S|^{2}|A|\right)
$$

With matrix multiplication?

- Making the update $V^{t+1} \leftarrow \mathscr{T} V^{t}$ explicit:
- Define Q^{t+1} :

$$
\forall s, a \quad Q^{t+1}(s, a)=r(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) V^{t}\left(s^{\prime}\right)
$$

- Set V^{t+1} :

$$
\forall s \quad V^{t+1}(s)=\max _{a} Q^{t+1}(s, a)
$$

With matrix multiplication?

- Making the update $V^{t+1} \leftarrow \mathscr{T} V^{t}$ explicit:
- Define Q^{t+1} :

$$
\forall s, a \quad Q^{t+1}(s, a)=r(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) V^{t}\left(s^{\prime}\right)
$$

- Set V^{t+1} :

$$
\forall s \quad V^{t+1}(s)=\max Q^{t+1}(s, a)
$$

-In terms of matrix multiplication, $=P\left(s^{5}(5-a)\right.$ let us view \vec{r} as a vector, $r \in \mathbb{R}^{|S| \cdot|A|}$ and P as a matrix $P \in \mathbb{R}^{|S| \cdot|A| \times|S|}$

With matrix multiplication?

- Making the update $V^{t+1} \leftarrow \mathscr{T} V^{t}$ explicit:
- Define Q^{t+1} :

$$
\forall s, a Q^{t+1}(s, a)=r(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) V^{t}\left(s^{\prime}\right)
$$

- Set V^{t+1} :

$$
\forall s \quad V^{t+1}(s)=\max Q^{t+1}(s, a)
$$

-In terms of matrix multiplication, let us view r as a vector, $r \in \mathbb{R}^{|S| \cdot|A|}$ and P as a matrix $P \in \mathbb{R}^{|S| \cdot|A| \times|S|}$

$$
Q^{t+1}=r+\gamma P V^{t}
$$

Outline:

1: An Iterative Algorithm: Value Iteration (a fix-point iteration algorithm again)

[^0]
Convergence of Value Iteration:

Lemma [contraction]: Given any V, V^{\prime}, we have:

$$
\left\|\mathscr{T} V-\mathscr{T} V^{\prime}\right\|_{\infty} \leq \gamma\left\|V-V^{\prime}\right\|_{\infty}
$$

Proof:

$$
\begin{aligned}
& =\gamma \max \left|\underset{s^{\prime} \sim p(s, a)}{E} V\left(s^{\prime}\right)-V^{\prime}\left(s^{\prime}\right) \quad\right| \\
& \leq \gamma \max _{a} E_{w}\left(v\left(s^{r}\right)-v\left(s^{r}\right)\right) \\
& \leq \gamma \max _{a} \max _{s}\left|V(s)-V^{\prime}(s)\right|=\gamma\left|V-V^{-}\right|_{\infty}
\end{aligned}
$$

Convergence of Value Iteration:

Lemma [contraction]: Given any Q, Q^{\prime}, we have:

$$
\left\|\mathscr{T} Q-\mathscr{T} Q^{\prime}\right\|_{\infty} \leq \gamma\left\|Q-Q^{\prime}\right\|_{\infty}
$$

Proof:

$\left|(\mathscr{V} V)(s)-\left(\mathscr{T} V^{\prime}\right)(s)\right|=\left|\max _{a}\left\{r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V\left(s^{\prime}\right)\right\}-\max _{a}\left\{r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V^{\prime}\left(s^{\prime}\right)\right\}\right|$

Convergence of Value Iteration:

$$
\begin{aligned}
& \text { Lemma [Convergence]: Given } V^{0} \text {, we have: } \\
& \qquad\left\|V^{t}-V^{\star}\right\|_{\infty} \leq \gamma^{t}\left\|V^{0}-V^{\star}\right\|_{\infty}
\end{aligned}
$$

Proof:

$$
\left\|V^{t}-V^{\star}\right\|_{\infty}=\left\|\mathscr{T} V^{t-1}-\mathscr{T} V^{\star}\right\|_{\infty} \leq \gamma\left\|V^{t-1}-V^{\star}\right\|_{\infty}
$$

Convergence of Value Iteration:

$$
\begin{aligned}
& \text { Lemma [Convergence]: Given } V^{0} \text {, we have: } \\
& \qquad\left\|V^{t}-V^{\star}\right\|_{\infty} \leq \gamma^{t}\left\|V^{0}-V^{\star}\right\|_{\infty}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\left\|V^{t}-V^{\star}\right\|_{\infty}= & \left\|\mathscr{T} V^{t-1}-\mathscr{T} V^{\star}\right\|_{\infty} \leq \gamma\left\|V^{t-1}-V^{\star}\right\|_{\infty} \\
& \ldots \leq \gamma^{t+\star \hbar}\left\|V^{0}-V^{\star}\right\|_{\infty}
\end{aligned}
$$

Computational Complexity of VI

$$
\gamma^{\dot{t}}\left|v^{0}-v^{x}\right|_{\infty} \leq \varepsilon
$$

VI will return a V s.t. $\left\|V-V^{\star}\right\|_{\infty} \leq \epsilon$ in no more than,

$$
\frac{\ln \left(\left\|V^{0}-V^{\star}\right\|_{\infty} / \epsilon\right)}{\ln (1 / \gamma)} \leq \frac{\ln \left(\left\|V^{0}-V^{\star}\right\|_{\infty} / \epsilon\right)}{(1-\gamma)} \text { iterations. }
$$

$$
-\log \gamma=-\lg (1-l(1-\gamma))
$$

Computational Complexity of VI

VI will return a V s.t. $\left\|V-V^{\star}\right\|_{\infty} \leq \epsilon$ in no more than, $\frac{\ln \left(\left\|V^{0}-V^{\star}\right\|_{\infty} / \epsilon\right)}{\ln (1 / \gamma)} \leq \frac{\ln \left(\left\|V^{0}-V^{\star}\right\|_{\infty} / \epsilon\right)}{(1-\gamma)}$ iterations.

So the computational complexity for an ϵ-accurate solution is $O\left(\frac{|S|^{2}|A|}{1-\gamma} \ln \left(\frac{1}{\epsilon(1-\gamma)}\right)\right)$ Tiueqr tine

The Quality of Policy:

- see fixed

Theorem: For any V, let $\pi^{(h)}(s)=\arg \max _{a}\left[r(s, a)+\mathbb{E}_{s^{\prime} \sim P(s, a)} V\left(s^{\prime}\right)\right]$, then slices

$$
\begin{aligned}
& V^{\pi}(s) \geq V^{\star}(s)-\frac{2 \gamma}{1-\gamma}\left\|V-V^{\star}\right\|_{\infty}+ \\
& \in \lll<(r \gamma)
\end{aligned}
$$

$$
+M P P 4
$$

recap sides

VI finds. policy π sit.

$$
\begin{aligned}
& \left(V^{\pi}-\left.V^{x}\right|_{\infty} \leqslant \varepsilon\right. \\
& \text { in iterations } \frac{\log \left(\frac{1}{\varepsilon(1-\gamma)^{2}}\right)}{1-\gamma}
\end{aligned}
$$

The Quality of Policy:

Theorem: For any V, let $\pi^{*}(s)=\arg \max _{a}\left[r(s, a)+\mathbb{E}_{s^{\prime} \sim P(s, a)} V\left(s^{\prime}\right)\right]$, then

$$
V^{\pi^{\infty}}(s) \geq V^{\star}(s)-\frac{2 \gamma}{1-\gamma}\left\|V-V^{\star}\right\|_{\infty}
$$

Proof:

- To prove the theorem, it suffice to show that:

$$
\left\|V^{\pi^{\infty}}-V^{\star}\right\|_{\infty} \leq \frac{2 \gamma}{1-\gamma}\left\|V-V^{\star}\right\|_{\infty}
$$

necessary

Understanding the sampling

"Occupancy measures" are a helpful concept

Discounted State (action) Occupancy Measures

Assume we start at s_{0}, following π to step h, what's probability of seeing a trajectory:

$$
\left(s_{0}, a_{0}, s_{1}, a_{1}, \ldots, s_{h}, a_{h}\right) ?
$$

Discounted State (action) Occupancy Measures

Assume we start at s_{0}, following π to step h, what's probability of seeing a trajectory:

$$
\left(s_{0}, a_{0}, s_{1}, a_{1}, \ldots, s_{h}, a_{h}\right) ?
$$

Let's write π as a delta distribution, i.e., $\pi(a \mid s)= \begin{cases}1, & a=\pi(s), \\ 0, & \text { else }\end{cases}$

Discounted State (action) Occupancy Measures

Assume we start at s_{0}, following π to step h, what's probability of seeing a trajectory:

$$
\left(s_{0}, a_{0}, s_{1}, a_{1}, \ldots, s_{h}, a_{h}\right) ?
$$

Let's write π as a delta distribution, i.e., $\pi(a \mid s)= \begin{cases}1, & a=\pi(s), \\ 0, & \text { else }\end{cases}$

Discounted State (action) Occupancy Measures

Assume we start at s_{0}, following π to step h, what's probability of seeing a trajectory:

$$
\left(s_{0}, a_{0}, s_{1}, a_{1}, \ldots, s_{h}, a_{h}\right) ?
$$

Let's write π as a delta distribution, i.e., $\pi(a \mid s)= \begin{cases}1, & a=\pi(s), \\ 0, & \text { else }\end{cases}$

$$
\mathbb{P}^{\pi}\left(s_{0}, a_{0}, \ldots, s_{h}, a_{h}\right)
$$

Discounted State (action) Occupancy Measures

Assume we start at s_{0}, following π to step h, what's probability of seeing a trajectory:

$$
\left(s_{0}, a_{0}, s_{1}, a_{1}, \ldots, s_{h}, a_{h}\right) ?
$$

Let's write π as a delta distribution, i.e., $\pi(a \mid s)= \begin{cases}1, & a=\pi(s), \\ 0, & \text { else }\end{cases}$

$$
\begin{aligned}
& \mathbb{P}^{\pi}\left(s_{0}, a_{0}, \ldots, s_{h}, a_{h}\right) \\
& =\pi\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \pi\left(a_{1} \mid s_{1}\right) P\left(s_{2} \mid s_{1}, a_{1}\right) \ldots P\left(s_{h} \mid s_{h-1}, a_{h-1}\right) \pi\left(a_{h} \mid s_{h}\right)
\end{aligned}
$$

State-action distribution at time step h

$$
\mathbb{P}^{\pi}\left(a_{0}, \ldots, s_{h}, a_{h} \mid s_{0}, \pi\right)
$$

$$
=\pi\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \pi\left(a_{1} \mid s_{1}\right) P\left(s_{2} \mid s_{1}, a_{1}\right) \ldots P\left(s_{h} \mid s_{h-1}, a_{h-1}\right) \pi\left(a_{h} \mid s_{h}\right)
$$

Q: what's the probability of π visiting state (s, a) at time step h ?

State-action distribution at time step h

$$
\mathbb{P}^{\pi}\left(a_{0}, \ldots, s_{h}, a_{h} \mid s_{0}, \pi\right)
$$

$$
=\pi\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \pi\left(a_{1} \mid s_{1}\right) P\left(s_{2} \mid s_{1}, a_{1}\right) \ldots P\left(s_{h} \mid s_{h-1}, a_{h-1}\right) \pi\left(a_{h} \mid s_{h}\right)
$$

$$
P r(x)=\sum_{y \in Q r} \operatorname{Pr}_{y}(x y)
$$

Q: what's the probability of π visiting state (s, a) at time step h ?

$$
\mathbb{P}_{h}^{\pi}\left(s_{h}, a_{h} \mid s_{0}, \pi\right)=\sum_{a_{0}, s_{1}, a_{1}, \ldots, s_{h-1}, a_{h-1}} \mathbb{P}^{\pi}\left(a_{0}, \ldots, s_{h-1}, a_{h-1} s_{h}=s, a_{h}=a \mid s_{0}, \pi\right)
$$

Discounted Average State-action distribution

Probability of π visiting (s, a) at h, starting from s_{0}

$$
d_{s_{0}}^{\pi}(s, a)=(1-\gamma) \sum_{h=0}^{\infty} \gamma^{h} \mathbb{P}_{h}^{\pi}\left(s, a ; s_{0}\right)
$$

Can you show that this is a valid distribution?

Discounted Average State-action distribution

Probability of π visiting (s, a) at h, starting from s_{0}

$$
d_{s_{0}}^{\pi}(s, a)=(1-\gamma) \sum_{h=0}^{\infty} \gamma^{h} \mathbb{P}_{h}^{\pi}\left(s, a ; s_{0}\right)
$$

Can you show that this is a valid distribution?

$$
V^{\pi}\left(s_{0}\right)=\frac{1}{1-\gamma} \sum_{s, a} d_{s_{0}}^{\pi}(s, a) r(s, a)
$$

Discounted Average State-action distribution

Probability of π visiting (s, a) at h, starting from s_{0}

$$
d_{s_{0}}^{\pi}(s, a)=(1-\gamma) \sum_{h=0}^{\infty} \gamma^{h} \mathbb{P}_{h}^{\pi}\left(s, a ; s_{0}\right)
$$

Can you show that this is a valid distribution?

$$
V^{\pi}\left(s_{0}\right)=\frac{1}{1-\gamma} \sum_{s, a} d_{s_{0}}^{\pi}(s, a) r(s, a)
$$

Can you show the above is true?

Discounted Average State-action distribution

Probability of π visiting (s, a) at h, starting from s_{0}

$$
d_{s_{0}}^{\pi}(s, a)=(1-\gamma) \sum_{h=0}^{\infty} \gamma^{h} \mathbb{P}_{h}^{\pi}\left(s, a ; s_{0}\right)
$$

Can you show that this is a valid distribution?

$$
V^{\pi}\left(s_{0}\right)=\frac{1}{1-\gamma} \sum_{s, a} d_{s_{0}}^{\pi}(s, a) r(s, a)
$$

HW0 questions!

Can you show the above is true?

Discounted Average State-action distribution

Probability of π visiting (s, a) at h, starting from s_{0}

$$
\begin{gathered}
\mathbb{P}_{h}^{\pi}\left(s_{h}, a_{h} \mid s_{0}, \pi\right)=\sum_{a_{0}, s_{1}, a_{1}, \ldots, s_{h-1}, a_{h-1}} \mathbb{P}^{\pi}\left(s_{0}, a_{0}, \ldots, s_{h-1}, a_{h-1} s_{h}=s, a_{h}=a\right) \\
d_{s_{0}}^{\pi}(s, a)=(1-\gamma) \sum_{h=0}^{\infty} \gamma^{h} \mathbb{P}_{h}^{\pi}\left(s, a ; s_{0}\right)
\end{gathered}
$$

Can you show that this is a valid distribution?

$$
V^{\pi}\left(s_{0}\right)=\frac{1}{1-\gamma} \sum_{s, a} d_{s_{0}}^{\pi}(s, a) r(s, a)
$$

Can you show the above is true?

Summary Today

- Value iteration: an iterative algorithm with a "linear" convergence rate.
- The concept of an "occupancy measure".

1-minute feedback form: https://bit.|y/3RHtlxy

[^0]: 2: Convergence? How fast?
 (Via the contraction argument again!)

