Policy Evaluation & Policy Iteration

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2022

Today

- HW2 posted
- Recap
- Today:
 - Value Iteration works directly with a vector V which converging to V^* . Is there an iterative algorithm that more directly works with policies?
 - Part 1: policy evaluation.
 - Part 2: policy iteration.

Recap

Define Bellman Operator \mathcal{T} :

Bellman Equations:
$$V(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s') \right]$$

- •Any function $V:S\mapsto\mathbb{R}$ can also be viewed as a vector in $V\in\mathbb{R}^{|S|}$.
- Define $\mathcal{T}: \mathbb{R}^{|S|} \mapsto \mathbb{R}^{|S|}$, where

$$(\mathcal{T}V)(s) := \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s') \right]$$

• Bellman equations in terms of \mathcal{T} :

$$\mathcal{I}V = V$$

Value Iteration Algorithm:

1. Initialization:
$$V^0: ||V^0||_{\infty} \in \left[0, \frac{1}{1-\gamma}\right]$$

2. Iterate until convergence: $V^{t+1} \leftarrow \mathcal{I}V^t$

What is the Per-Iteration Computational Complexity?

- Making the update $V^{t+1} \leftarrow \mathcal{I}V^t$ explicit:
 - Define Q^{t+1} :

$$\forall s, a \ Q^{t+1}(s, a) = r(s, a) + \gamma \sum_{s' \in S} P(s' | s, a) V^t(s')$$

•Set V^{t+1} :

$$\forall s \ V^{t+1}(s) = \max_{a} Q^{t+1}(s, a)$$

•What is the order of the number of basic arithmetic operations? $O(|S|^2|A|)$

Convergence of Value Iteration:

Lemma [contraction]: Given any
$$V, V'$$
, we have: $\|\mathcal{T}V - \mathcal{T}V'\|_{\infty} \le \gamma \|V - V'\|_{\infty}$

Lemma [Convergence]: Given
$$V^0$$
, we have: $||V^t - V^\star||_{\infty} \le \gamma^t ||V^0 - V^\star||_{\infty}$

Computational Complexity of VI

(for approximating V^*)

Runtime: VI will return a V^t s.t. $||V^t - V^*||_{\infty} \le \epsilon$ in no more than

$$\frac{\ln(\parallel V^0 - V^\star \parallel_{\infty}/\epsilon)}{(1 - \gamma)}$$
 iterations.

So the computational complexity for an ϵ -accurate solution is

$$O\left(\frac{|S|^2|A|}{1-\gamma}\ln\left(\frac{1}{\epsilon(1-\gamma)}\right)\right)$$

But what about the policy we find with VI?

Theorem: For any
$$V$$
, let $\pi(s) = \arg\max_{a} \left[r(s,a) + \mathbb{E}_{s'\sim P(s,a)} V(s') \right]$, then
$$V^{\pi}(s) \geq V^{\star}(s) - \frac{2\gamma}{1-\gamma} \|V - V^{\star}\|_{\infty}$$

Runtime: After
$$\frac{\ln\left(2/\left((1-\gamma)^2\epsilon\right)\right)}{1-\gamma}$$
 iterations of VI, we have: $V^{\pi^t}(s) \geq V^*(s) - \epsilon$,

and, the total runtime of VI is:

$$O\left(\frac{|S|^2|A|}{1-\gamma}\ln\left(1/\left((1-\gamma)^2\epsilon\right)\right)\right)$$

We replace $\epsilon \leftarrow (1-\gamma)\epsilon/2$, then VI will return V^t s.t. $\|V^t - V^\star\|_{\infty} \leq (1-\gamma)\epsilon/2$. Thus, $V^{\pi^t}(s) \geq V^\star(s) - \frac{2\gamma}{1-\gamma} \|V^t - V^\star\|_{\infty} \geq V^\star(s) - \epsilon$

Today:

Let's start with Policy Evaluation

Given MDP $\mathcal{M} = (S, A, r, P, \gamma)$ & a policy $\pi: S \mapsto A$, how do we compute $V^{\pi}(s)$?

Exact Policy Evaluation

• V^{π} satisfies the Bellman consistency conditions:

$$\forall s, V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s \sim P(s, \pi(s))} V^{\pi}(s')$$

or, equivalently,

$$\forall s, V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} P(s' \mid s, \pi(s)) V^{\pi}(s')$$

• This gives us |S| linear constraints.

• Exact algorithm: Find V that solves the following linear system:

$$\forall s, V(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} P(s' | s, \pi(s)) V(s')$$

• Theorem: This system of linear equations has a unique solution, which is V^{π} .

Exact Policy Evaluation: Matrix Version

- Define: $R \in \mathbb{R}^{|S|}$, where $R_s^\pi = r(s,\pi(s))$, and $P^\pi \in \mathbb{R}^{|S| \times |S|}$, where $P_{s,s'}^\pi = P(s' \mid s,\pi(s))$
- •So we want to find $V \in \mathbb{R}^{|S|}$, s.t. $V = R^\pi + \gamma P^\pi V$

- Algo: compute $V=(I-\gamma P^\pi)^{-1}R^\pi$ One can show that $I-\gamma P^\pi$ is full rank (thus invertible).
- Runtime: This approach runs in time $O(|S|^3)$.

Is there an iterative version?

(that is faster, but approximate?)

- Algorithm (Iterative PE):

 1. Initialization: $V^0: \|V^0\|_{\infty} \in \left[0, \frac{1}{1-\gamma}\right]$ 2. Iterate until convergence: $V^{t+1} \leftarrow R^{\pi} + \gamma P^{\pi} V^t$

What's the computational complexity per iteration?

Contraction of Iterative PE

Theorem: After t iterations, we have:

$$||V^t - V^{\pi}||_{\infty} \le \gamma^t ||V^0 - V^{\pi}||_{\infty}$$

Proof: (really the same as before)

$$\begin{aligned} \left| V^{t+1}(s) - V^{\pi}(s) \right| &= \left| r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, \pi(s))} V^{t}(s') - \left(r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, \pi(s))} V^{\pi}(s') \right) \right| \\ &= \gamma \left| \left| \mathbb{E}_{s' \sim P(\cdot \mid s, \pi(s))} V^{t}(s') - \mathbb{E}_{s' \sim P(\cdot \mid s, \pi(s))} V^{\pi}(s') \right| \right| \\ &\leq \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, \pi(s))} \left| V^{t}(s') - V^{\pi}(s') \right| \\ &\leq \gamma \left\| V^{t} - V^{\pi} \right\|_{\infty} \end{aligned}$$

Runtime Comparison:

• Runtime of Iterative PE: After $\ln \left(\| V^0 - V^\pi \|_{\infty} / \epsilon \right) / (1 - \gamma)$ iterations of iterative PE, we have $\| V^t - V^\pi \|_{\infty} \le \epsilon$.

Thus, the total runtime is:
$$O\left(\frac{|S|^2}{1-\gamma}\ln(1/((1-\gamma)\epsilon))\right)$$
.

• Contrast this to the exact algo which is $O(S^3)$.

Outline:

Part 1: Policy Evaluation

Part 2: Policy Iteration

Policy Iteration (PI)

- Initialization: choose a policy $\pi^0: S \mapsto A$
- For t = 0, 1, ...
 - 1. Policy Evaluation: compute $V^{\pi^l}(s)$ and $Q^{\pi^l}(s,a)$, where $Q^{\pi^l}(s,a) = r(s,a) + \gamma \sum_{i=1}^{n} P(s'|s,a) V^{\pi^l}(s')$

s'

2. Policy Improvement: set

$$\pi^{t+1}(s) := \arg\max_{a} Q^{\pi^t}(s, a)$$

What's the computational complexity per iteration?

$$O(|S|^3 + |S|^2 |A|)$$

What about convergence?

Two Properties of Policy Iteration:

1. Monotonic improvement:

$$V^{\pi^{t+1}}(s) \geq V^{\pi^t}(s)$$

2. Convergence to V^* :

$$\left\| V^{\star} - V^{\pi^{t+1}} \right\|_{\infty} \leq \gamma \left\| V^{\star} - V^{\pi^{t}} \right\|_{\infty}$$

Monotonic Improvement of Pl

Lemma: We have $V^{\pi^{t+1}}(s) \ge V^{\pi^t}(s)$.

Proof:

• First, let us show that $\mathcal{T}V^{\pi^t} \geq V^{\pi^t}$.

$$\mathcal{T}V^{\pi^t}(s) = \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\pi^t}(s') \right]$$

$$\geq r(s, \pi^t(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^t(s))} V^{\pi^t}(s')$$

$$= V^{\pi^t}$$

Monotonic Improvement Proof

• By construction of π^{t+1} : $\mathcal{T}V^{\pi^t}(s) = r(s, \pi^{t+1}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{t+1}(s))} V^{\pi^t}(s')$

Using last two claims:

$$V^{\pi^{t+1}}(s) - V^{\pi^{t}}(s) \ge V^{\pi^{t+1}}(s) - \mathcal{T}V^{\pi^{t}}(s)$$

$$= \gamma \mathbb{E}_{s' \sim P(s, \pi^{t+1}(s))} \left[V^{\pi^{t+1}}(s') - V^{\pi^{t}}(s') \right]$$

· Recursing,

$$V^{\pi^{t+1}}(s) - V^{\pi^{t}}(s) \ge \gamma \mathbb{E}_{s' \sim P(s, \pi^{t+1}(s))} \left[V^{\pi^{t+1}}(s') - V^{\pi^{t}}(s') \right]$$

$$\ge \gamma^{2} \mathbb{E}_{s' \sim P(s, \pi^{t+1}(s))} \left[\mathbb{E}_{s'' \sim P(s', \pi^{t+1}(s'))} \left[V^{\pi^{t+1}}(s'') - V^{\pi^{t}}(s'') \right] \right]$$

$$\vdots$$

Convergence to V^{\star}

Theorem: For PI,
$$\|V^* - V^{\pi^{t+1}}\|_{\infty} \leq \gamma \|V^* - V^{\pi^t}\|_{\infty}$$

Proof:

- First, let us show that $V^{\pi^{t+1}}(s) \ge \mathcal{I}V^{\pi^t}(s)$
 - As we observed in our previous proof:

$$V^{\pi^{t+1}}(s) - \mathcal{T}V^{\pi^t}(s) = \gamma \mathbb{E}_{s' \sim P(s, \pi^{t+1}(s))} \left[V^{\pi^{t+1}}(s') - V^{\pi^t}(s') \right]$$

- The claim is completed since $V^{\pi^{t+1}}(s') V^{\pi^t}(s') \ge 0$ by monotonicity.
- Now the proof follows using the contraction of the $\mathcal T$ operator:

$$V^{\star}(s) - V^{\pi^{t+1}}(s) \leq V^{\star}(s) - \mathcal{T}V^{\pi^{t}}(s)$$
$$\leq \gamma \|V^{\star} - V^{\pi^{t}}\|_{\infty}$$

Runtime of PI:

Runtime of PI:

After
$$\frac{\ln\left(\parallel V^{\pi^0} - V^{\star} \parallel_{\infty}/\epsilon\right)}{1 - \gamma}$$
 iterations of PI, we have: $V^{\pi^t}(s) \geq V^{\star}(s) - \epsilon$.

Thus, the total runtime of PI is:

$$O\left(\frac{|S|^3 + |S|^2 |A|}{1 - \gamma} \ln\left(1/\left((1 - \gamma)\epsilon\right)\right)\right).$$

Comparison of VI and PI:

- Per iteration complexity of VI is less than that of PI.
- PI and VI have the same upper bound on the # of iterations.
- •In practice, PI reaches a better policy more quickly than VI. (see HW "Comments on Computational Complexity" for theoretical justification)

1-minute feedback form: https://bit.ly/3RHtlxy

