

Policy Gradient Descent

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2022

Today

- Recap
- Today:
 - How do we learn/compute a good policy in an intractably large MDP?
 - Policy gradient descent is one of the most effective methods.
 - eilar was our first local seapch method.

Recap

Example:

2-d car navigation

Cost function is designed such that it gets to the goal without colliding with obstacles (in red) actice: Mole Predictive Contr

Example:

2-d car navigation

Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

Today: Policy Gradient Descent

Policy Optimization

[AlphaZero, Silver et.al, 17]

[OpenAl Five, 18]

[OpenAI,19]

Consider parameterized policy:

 $\pi_{\theta}(a \,|\, s) = \pi(a \,|\, s; \theta)$

Consider parameterized policy:

 $\pi_{\theta}(a \,|\, s) = \pi(a \,|\, s; \theta)$

$$J(\theta) := E_{s_0 \sim \mu_0} \left[V^{\pi_{\theta}}(s_0) \right]$$
$$= E \left[\sum_{h=0}^{\infty} \gamma^h r_h \Big| \mu_0, \pi_{\theta} \right]$$

Consider parameterized policy:

Consider parameterized policy:

 $\pi_{\theta}(a \,|\, s) = \pi(a \,|\, s; \theta)$

$$J(\theta) := E_{s_0 \sim \mu_0} \left[V^{\pi_{\theta}}(s_0) \right]$$
$$= E \left[\sum_{h=0}^{\infty} \gamma^h r_h \Big| \mu_0, \pi_{\theta} \right]$$

 $\theta_{t+1} = \theta_t + \eta \nabla_\theta J(\pi_\theta) \big|_{\theta = \theta_t}$

Main question for today's lecture: how to compute the gradient?

Outline for today

1. Recap on Gradient Descent (GD) and Stochastic Gradient Descent (SGD)

2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations

Given an objective function $J(\theta) : \mathbb{R}^d \mapsto \mathbb{R}$, (e.g., $J(\theta) = \mathbb{E}_{x,y}(f_{\theta}(x) - y)^2$)

GD minimizes the above objective function as follows:

Given an objective function $J(\theta) : \mathbb{R}^d \mapsto \mathbb{R}$, (e.g., $J(\theta) = \mathbb{E}_{x,y}(f_{\theta}(x) - y)^2$)

GD minimizes the above objective function as follows:

Initialize θ_0 , for t = 0, ... :

Given an objective function $J(\theta) : \mathbb{R}^d \mapsto \mathbb{R}$, (e.g., $J(\theta) = \mathbb{E}_{x,y}(f_{\theta}(x) - y)^2$)

GD minimizes the above objective function as follows:

Initialize θ_0 , for t = 0, ... :

 $\theta_{t+1} = \theta_t - \eta \, \nabla J(\theta_t)$

Given an objective function
$$J(\theta) : \mathbb{R}^d \mapsto \mathbb{R}$$
, (e.g., $J(\theta) = \mathbb{E}_{x,y}(f_{\theta}(x) - y)^2$)

Gradient Descent

GD minimizes the above objective function as follows:

Initialize θ_0 , for t = 0, ... :

 $\theta_{t+1} = \theta_t - \eta \, \nabla J(\theta_t)$

Given an objective function $J(\theta) : \mathbb{R}^d \mapsto \mathbb{R}$, (e.g., $J(\theta) = \mathbb{E}_{x,y}(f_{\theta}(x) - y)^2$)

SGD minimizes the above objective function as follows:

Given an objective function $J(\theta) : \mathbb{R}^d \mapsto \mathbb{R}$, (e.g., $J(\theta) = \mathbb{E}_{x,y}(f_{\theta}(x) - y)^2$)

SGD minimizes the above objective function as follows:

Initialize θ_0 , for t = 0, ... :

Given an objective function $J(\theta) : \mathbb{R}^d \mapsto \mathbb{R}$, (e.g., $J(\theta) = \mathbb{E}_{x,y}(f_{\theta}(x) - y)^2$)

SGD minimizes the above objective function as follows:

Initialize θ_0 , for t = 0, ... :

$$\theta_{t+1} = \theta_t - \eta_t g_t$$

Given an objective function $J(\theta) : \mathbb{R}^d \mapsto \mathbb{R}$, (e.g., $J(\theta) = \mathbb{E}_{x,y}(f_{\theta}(x) - y)^2$)

SGD minimizes the above objective function as follows:

Initialize θ_0 , for t = 0, ... :

$$\theta_{t+1} = \theta_t - \eta_t g_t$$

where $\mathbb{E}[g_t] = \nabla_{\theta} J(\theta_t)$

Given an objective function
$$J(\theta) : \mathbb{R}^d \mapsto \mathbb{R}$$
, (e.g., $J(\theta) = \mathbb{E}_{x,y}(f_{\theta}(x) - y)^2$)

Gradient Descent

Stochastic Gradient Descent

SGD minimizes the above objective function as follows:

Initialize θ_0 , for t = 0, ... :

$$\theta_{t+1} = \theta_t - \eta_t g_t$$

where $\mathbb{E}[g_t] = \nabla_{\theta} J(\theta_t)$

"soddle, point"

stationar-

• Global optima, local optima, and saddle points (by picture)

- Longe

100

Min

- Global optima, local optima, and saddle points (by picture)
- For convex functions (with certain regularity conditions, such as "smoothness"),
 - GD (with an appropriate constant learning rate) converges to the global optima.
 - SGD (with an appropriately decaying learning rate) converges to the global optima.

- Global optima, local optima, and saddle points (by picture)
- For convex functions (with certain regularity conditions, such as "smoothness"),
 - GD (with an appropriate constant learning rate) converges to the global optima.
 - SGD (with an appropriately decaying learning rate) converges to the global optima.
- For non-convex functions, we hope to find a local minima.

- Global optima, local optima, and saddle points (by picture)
- For convex functions (with certain regularity conditions, such as "smoothness"),
 - GD (with an appropriate constant learning rate) converges to the global optima.
 - SGD (with an appropriately decaying learning rate) converges to the global optima.
- For non-convex functions, we hope to find a local minima.
- What we can prove (under mild regularity conditions) is a little weaker:
 - GD (with an appropriate constant learning rate) converges to a saddle point.
- SGD (with an appropriately decaying learning rate) converges to a saddle point. Some sort $f(0) = \int_{0}^{\infty} \int_{0$

• Def of β -smooth: $\|\nabla_{\theta} J(\theta) - \nabla_{\theta} J(\theta_0)\|_2 \le \beta \|\theta - \theta_0\|_2$

• Def of β -smooth: $\|\nabla_{\theta} J(\theta) - \nabla_{\theta} J(\theta_0)\|_2 \le \beta \|\theta - \theta_0\|_2$

• [**Theorem**] Suppose we run SGD: $\theta_{t+1} = \theta_t - \eta \widetilde{\nabla}_{\theta} J(\theta_t)$, for *T* steps, where $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J(\theta_t)\right] = \nabla_{\theta} J(\theta_t)$ with $\eta = O(1/\sqrt{T})$. Assume:

 $\mathcal{M}_{\epsilon} = \mathcal{O}\left(\frac{1}{1\epsilon}\right)$

• Def of β -smooth: $\|\nabla_{\theta} J(\theta) - \nabla_{\theta} J(\theta_0)\|_2 \le \beta \|\theta - \theta_0\|_2$

• [**Theorem**] Suppose we run SGD: $\theta_{t+1} = \theta_t - \eta \widetilde{\nabla}_{\theta} J(\theta_t)$, for *T* steps, where $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J(\theta_t)\right] = \nabla_{\theta} J(\theta_t)$ with $\eta = O(1/\sqrt{T})$. Assume: • $J(\theta)$ is β -smooth.

• Def of β -smooth: $\|\nabla_{\theta} J(\theta) - \nabla_{\theta} J(\theta_0)\|_2 \le \beta \|\theta - \theta_0\|_2$

- [**Theorem**] Suppose we run SGD: $\theta_{t+1} = \theta_t \eta \widetilde{\nabla}_{\theta} J(\theta_t)$, for T steps, where $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J(\theta_t)\right] = \nabla_{\theta} J(\theta_t)$ with $\eta = O(1/\sqrt{T})$. Assume:
 - $J(\theta)$ is β -smooth.

•
$$J(\theta)$$
 is bounded: $|J(\theta)| \le M, \forall \theta$.

• Def of β -smooth: $\|\nabla_{\theta} J(\theta) - \nabla_{\theta} J(\theta_0)\|_2 \leq \beta \|\theta - \theta_0\|_2$

- [**Theorem**] Suppose we run SGD: $\theta_{t+1} = \theta_t \eta \, \widetilde{\nabla}_{\theta} J(\theta_t)$, for *T* steps, where $\mathbb{E}\left[\widetilde{\nabla}_{\theta}J(\theta_t)\right] = \nabla_{\theta}J(\theta_t)$ with $\eta = O(1/\sqrt{T})$. Assume:
 - $J(\theta)$ is β -smooth.

 - $J(\theta)$ is bounded: $|J(\theta)| \le M, \forall \theta$. $\widetilde{\nabla}_{\theta} J(\theta)$ has "bounded second moment": $\mathbb{E}\left[\|\widetilde{\nabla}_{\theta} J(\theta_t)\|_2^2\right] \le \sigma^2$,

• Def of β -smooth: $\|\nabla_{\theta} J(\theta) - \nabla_{\theta} J(\theta_0)\|_2 \le \beta \|\theta - \theta_0\|_2$

• [**Theorem**] Suppose we run SGD: $\theta_{t+1} = \theta_t - \eta \nabla_{\theta} J(\theta_t)$, for *T* steps, where $\mathbb{E}\left[\widetilde{\nabla}_{\theta}J(\theta_{t})\right] = \nabla_{\theta}J(\theta_{t})$ with $\eta = O(1/\sqrt{T})$. Assume: • $J(\theta)$ is β -smooth. • $J(\theta)$ is bounded: $|J(\theta)| \le M$, $\forall \theta$. • $\nabla_{\theta} J(\theta)$ has "bounded second moment": $\mathbb{E}\left[\|\widetilde{\nabla}_{\theta} J(\theta_t)\|_2^2\right] \le \sigma^2$, then, in *T* steps, SGD will find a θ such that: $\|\nabla_{\theta} J(\theta)\|^2 \le O\left(\sqrt{M\beta\sigma^2/T}\right)$ 175011 = (-___

Outline for today

1. Recap on Gradient descent and stochastic gradient descent

2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations

Importance Sampling (and the Likelihood Ratio Method)

Importance Sampling (and the Likelihood Ratio Method)

For $J(\theta) = \mathbb{E}_{x \sim P_{\theta}}[f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

Importance Sampling (and the Likelihood Ratio Method)

For $J(\theta) = \mathbb{E}_{x \sim P_{\theta}} [f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
 - $J(\theta)$ is "difficult" to compute.
 - P_{θ} is "easy" to compute.
 - We have a distribution ρ , that is easy to sample from and where $\max P_{\theta}(x)/\rho(x) < \infty$

$$\overline{PT(G)} = \overline{PZ} P_{G}(X) - S(X) = \overline{PZ} P(X) \frac{PG(X)}{P(X)} + \frac{PG(X)}{$$

For $J(\theta) = \mathbb{E}_{x \sim P_{\theta}} [f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
 - $J(\theta)$ is "difficult" to compute.
 - P_{θ} is "easy" to compute.
 - We have a distribution ρ , that is easy to sample from and where $\max P_{\theta}(x)/\rho(x) < \infty$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim \rho} \frac{P_{\theta}(x)}{\rho(x)} f(x)$$

For $J(\theta) = \mathbb{E}_{x \sim P_{\theta}} [f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
 - $J(\theta)$ is "difficult" to compute.
 - P_{θ} is "easy" to compute.
 - We have a distribution ρ , that is easy to sample from and where $\max P_{\theta}(x)/\rho(x) < \infty$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim \rho} \frac{P_{\theta}(x)}{\rho(x)} f(x) = \mathbb{E}_{x \sim \rho} \frac{\nabla_{\theta} P_{\theta}(x)}{\rho(x)} f(x)$$

For $J(\theta) = \mathbb{E}_{x \sim P_{\theta}} [f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
 - $J(\theta)$ is "difficult" to compute.
 - P_{θ} is "easy" to compute.
 - We have a distribution ρ , that is easy to sample from and where $\max P_{\theta}(x)/\rho(x) < \infty$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim \rho} \frac{P_{\theta}(x)}{\rho(x)} f(x) = \mathbb{E}_{x \sim \rho} \frac{\nabla_{\theta} P_{\theta}(x)}{\rho(x)} f(x) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\nabla_{\theta} P_{\theta}(x_i)}{\rho(x_i)} f(x_i)$$

Xinp

For $J(\theta) = \mathbb{E}_{x \sim P_{\theta}} [f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
 - $J(\theta)$ is "difficult" to compute.
 - P_{θ} is "easy" to compute.
 - We have a distribution ρ , that is easy to sample from and where $\max P_{\theta}(x)/\rho(x) < \infty$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim \rho} \frac{P_{\theta}(x)}{\rho(x)} f(x) = \mathbb{E}_{x \sim \rho} \frac{\nabla_{\theta} P_{\theta}(x)}{\rho(x)} f(x) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\nabla_{\theta} P_{\theta}(x_i)}{\rho(x_i)} f(x_i)$$

To compute gradient at θ_0 : $\nabla_{\theta} J(\theta_0)$ (in short of $\nabla_{\theta} J(\theta) |_{\theta = \theta_0}$)

For $J(\theta) = \mathbb{E}_{x \sim P_{\theta}}[f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
 - $J(\theta)$ is "difficult" to compute.
 - P_{θ} is "easy" to compute.
 - We have a distribution ρ , that is easy to sample from and where $\max P_{\theta}(x)/\rho(x) < \infty$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim \rho} \frac{P_{\theta}(x)}{\rho(x)} f(x) = \mathbb{E}_{x \sim \rho} \frac{\nabla_{\theta} P_{\theta}(x)}{\rho(x)} f(x) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\nabla_{\theta} P_{\theta}(x_i)}{\rho(x_i)} f(x_i)$$

To compute gradient at θ_0 : $\nabla_{\theta} J(\theta_0)$ (in short of $\nabla_{\theta} J(\theta) |_{\theta = \theta_0}$)

By setting the sampling distribution $\rho = P_{\theta_0}$

For $J(\theta) = \mathbb{E}_{x \sim P_{\theta}}[f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
 - $J(\theta)$ is "difficult" to compute.
 - P_{θ} is "easy" to compute.
 - We have a distribution ρ , that is easy to sample from and where $\max P_{\theta}(x)/\rho(x) < \infty$

Por = Vylack)

 $P_{\leftrightarrow}(\lambda)$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim \rho} \frac{P_{\theta}(x)}{\rho(x)} f(x) = \mathbb{E}_{x \sim \rho} \frac{\nabla_{\theta} P_{\theta}(x)}{\rho(x)} f(x) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\nabla_{\theta} P_{\theta}(x_i)}{\rho(x_i)} f(x_i)$$

To compute gradient at θ_0 : $\nabla_{\theta} J(\theta_0)$ (in short of $\nabla_{\theta} J(\theta) |_{\theta=\theta_0}$) ψ

By setting the sampling distribution $\rho = P_{\theta_{\alpha}}$

$$\nabla_{\theta} J(\theta_0) = \mathbb{E}_{x \sim P_{\theta_0}} \left[\nabla_{\theta} \ln P_{\theta_0}(x) \cdot f(x) \right]$$

Importance Sampling (and the Likelihood Ratio Method)

To compute gradient at θ_0 : $\nabla_{\theta} J(\theta_0)$ (in short of $\nabla_{\theta} J(\theta) |_{\theta=\theta_0}$)

To compute gradient at θ_0 : $\nabla_{\theta} J(\theta_0)$ (in short of $\nabla_{\theta} J(\theta) |_{\theta = \theta_0}$)

By setting the sampling distribution $\rho = P_{\theta_0}$

To compute gradient at θ_0 : $\nabla_{\theta} J(\theta_0)$ (in short of $\nabla_{\theta} J(\theta) |_{\theta = \theta_0}$)

By setting the sampling distribution $\rho = P_{\theta_0}$

$$\nabla_{\theta} J(\theta_0) = \mathbb{E}_{x \sim \rho} \frac{\nabla_{\theta} P_{\theta_0}(x)}{\rho(x)} f(x) = \mathbb{E}_{x \sim P_{\theta_0}} \left[\nabla_{\theta} \ln P_{\theta_0}(x) \cdot f(x) \right]$$

$$\nabla_{\theta} J(\theta) \big|_{\theta = \theta_0} = \mathbb{E}_{x \sim P_{\theta_0}} \nabla_{\theta} \ln P_{\theta_0}(x) \cdot f(x)$$

Update distribution (via updating θ) such that P_{θ} has high probability mass at regions where f(x) is large

17

$$\nabla_{\theta} J(\theta) \big|_{\theta = \theta_0} = \mathbb{E}_{x \sim P_{\theta_0}} \nabla_{\theta} \ln P_{\theta_0}(x) \cdot f(x)$$

Update distribution (via updating θ) such that P_{θ} has high probability mass at regions where f(x) is large

Using same idea, now let's move on to RL...

Outline for today

1. Recap on Gradient descent and stochastic gradient descent

2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations

Recall that we consider parameterized policy $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:

 $\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$

Recall that we consider parameterized policy $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:

$$\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$$
$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$$

Recall that we consider parameterized policy $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:

$$\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$$
$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$$

2. Softmax linear Policy (We will try this in HW2)

Recall that we consider parameterized policy $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:

 $\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$ $\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$

2. Softmax linear Policy (We will try this in HW2)

Feature vector $\phi(s, a) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

Recall that we consider parameterized policy $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:

 $\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$ $\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$

2. Softmax linear Policy (We will try this in HW2)

Feature vector $\phi(s, a) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$$

Recall that we consider parameterized policy $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:

 $\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$ $\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$

2. Softmax linear Policy (We will try this in HW2)

Feature vector $\phi(s, a) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$$

3. Neural Policy:

Recall that we consider parameterized policy $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:

 $\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$ $\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$

2. Softmax linear Policy (We will try this in HW2)

Feature vector $\phi(s, a) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$$

3. Neural Policy:

Neural network $f_{\theta}: S \times A \mapsto \mathbb{R}$

Recall that we consider parameterized policy $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:

 $\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$ $\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$

2. Softmax linear Policy (We will try this in HW2)

Feature vector $\phi(s, a) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

 $\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$

Neural network $f_{\theta}: S \times A \mapsto \mathbb{R}$

$$\pi_{\theta}(a \mid s) = \frac{\exp(f_{\theta}(s, a))}{\sum_{a'} \exp(f_{\theta}(s, a'))}$$

 $\tau = \{s_0, a_0, s_1, a_1, ...\}$ $P_{6}(2) = P_{6}(5) \circ f \qquad \pi_{6}(2) = P_{6}(2) \circ f \qquad \pi_{6}(2) \circ f \qquad \pi_{6}(2) = P_{6}(2) \circ$ $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\pi_{\theta}(a_1 \mid s_1)\dots$

 $\tau = \{s_0, a_0, s_1, a_1, \dots\}$ $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\pi_{\theta}(a_1 \mid s_1)\dots$ $J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \underbrace{\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h)\right]}_{R(\tau)}$

$$\tau = \{s_0, a_0, s_1, a_1, \dots\}$$

$$\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\pi_{\theta}(a_1 \mid s_1)\dots$$

$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \underbrace{\left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h)\right]}_{\substack{h=0}}$$

$$\nabla_{\theta} J(\pi_{\theta_0}) = \mathbb{E}_{\tau \sim \rho_{\theta_0}(\tau)} \begin{bmatrix} \mathcal{R}(\tau) \\ \nabla_{\theta} \ln \rho_{\theta_0}(\tau) \mathcal{R}(\tau) \end{bmatrix}$$

$$\tau = \{s_{0}, a_{0}, s_{1}, a_{1}, ...\}$$

$$\rho_{\theta}(\tau) = \mu(s_{0})\pi_{\theta}(a_{0} | s_{0})P(s_{1} | s_{0}, a_{0})\pi_{\theta}(a_{1} | s_{1})...$$

$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \right]$$

$$\nabla_{\theta} J(\pi_{\theta_{0}}) = \mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)} \left[\nabla_{\theta} \ln \rho_{\theta_{0}}(\tau) R(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)} \left[\nabla_{\theta} \left(\ln \rho(s_{0}) + \ln \pi_{\theta_{0}}(a_{0} | s_{0}) + \ln P(s_{1} | s_{0}, a_{0}) + ... \right) R(\tau) \right]$$

$$\tau = \{s_{0}, a_{0}, s_{1}, a_{1}, ...\}$$

$$\rho_{\theta}(\tau) = \mu(s_{0})\pi_{\theta}(a_{0} | s_{0})P(s_{1} | s_{0}, a_{0})\pi_{\theta}(a_{1} | s_{1})...$$

$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \right]$$

$$\nabla_{\theta} J(\pi_{\theta_{0}}) = \mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)} \left[\nabla_{\theta} \ln \rho_{\theta_{0}}(\tau) R(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)} \left[\nabla_{\theta} \left(\ln \rho(s_{0}) + \ln \pi_{\theta_{0}}(a_{0} | s_{0}) + \ln P(s_{1} | s_{0}, a_{0}) + ... \right) R(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)} \left[\nabla_{\theta} \left(\ln \pi_{\theta_{0}}(a_{0} | s_{0}) + \ln \pi_{\theta_{0}}(a_{1} | s_{1})... \right) R(\tau) \right]$$

$$\tau = \{s_{0}, a_{0}, s_{1}, a_{1}, ...\}$$

$$\rho_{\theta}(\tau) = \mu(s_{0})\pi_{\theta}(a_{0} | s_{0})P(s_{1} | s_{0}, a_{0})\pi_{\theta}(a_{1} | s_{1})...$$

$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \right]$$

$$\nabla_{\theta} J(\pi_{\theta_{0}}) = \mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)} \left[\nabla_{\theta} \ln \rho_{\theta_{0}}(\tau)R(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)} \left[\nabla_{\theta} \left(\ln \rho(s_{0}) + \ln \pi_{\theta_{0}}(a_{0} | s_{0}) + \ln P(s_{1} | s_{0}, a_{0}) + ... \right) R(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)} \left[\nabla_{\theta} \left(\ln \pi_{\theta_{0}}(a_{0} | s_{0}) + \ln \pi_{\theta_{0}}(a_{1} | s_{1})... \right) R(\tau) \right] = \mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta_{0}}(a_{h} | s_{h}) \right) R(\tau) \right]$$

$$\tau = \{s_0, a_0, s_1, a_1, \dots\}$$

$$\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\pi_{\theta}(a_1 \mid s_1)\dots$$

$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \right]$$

$$\nabla_{\theta} J(\pi_{\theta_0}) = \mathbb{E}_{\tau \sim \rho_{\theta_0}(\tau)} \left[\nabla_{\theta} \ln \rho_{\theta_0}(\tau)R(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta_0}(\tau)} \left[\nabla_{\theta} \left(\ln \rho(s_0) + \ln \pi_{\theta_0}(a_0 \mid s_0) + 1 \right) \right]$$

Adjust policy such that larger reward traj has higher likelihood

$$= \mathbb{E}_{\tau \sim \rho_{\theta_0}(\tau)} \left[\nabla_{\theta} \left(\ln \rho(s_0) + \ln \pi_{\theta_0}(a_0 | s_0) + \ln P(s_1 | s_0, a_0) + \dots \right) R(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta_0}(\tau)} \left[\nabla_{\theta} \left(\ln \pi_{\theta_0}(a_0 | s_0) + \ln \pi_{\theta_0}(a_1 | s_1) \dots \right) R(\tau) \right] = \mathbb{E}_{\tau \sim \rho_{\theta_0}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta_0}(a_h | s_h) \right) R(\tau) \right]$$

Summary so far for Policy Gradients

We derived the most basic PG formulation:

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_h \,|\, s_h) \right) R(\tau) \right]$$

Summary so far for Policy Gradients

We derived the most basic PG formulation:

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_h \,|\, s_h) \right) R(\tau) \right]$$

Increase the likelihood of sampling an trajectory with high total reward

Obtaining a sample $\widetilde{\nabla}_{\theta} J(\theta)$ for REINFORCE (for this approach)

For finite horizon MDP (sometimes used with PG):

$$\mathcal{T}(G) = \mathbb{E} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \right) R(\tau) \right]$$

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \right) R(\tau) \right]$$

where
$$R(\tau) = \sum_{h=0}^{H-1} r(s_h, a_h)$$

For finite horizon MDP (sometimes used with PG):

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \right) R(\tau) \right]$$

where
$$R(\tau) = \sum_{h=0}^{H-1} r(s_h, a_h)$$

Increase the likelihood of sampling an trajectory with high total reward

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \right) R(\tau) \right]$$

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \right) R(\tau) \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \left(\nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \sum_{t=h}^{\infty} \gamma^{t} r_{t} \right) \right]$$

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \right) R(\tau) \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \sum_{t=h}^{\infty} \gamma^{t} r_{t} \right) \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \gamma^{h} Q^{\pi_{\theta}}(s_{h}, a_{h}) \right) \right]$$

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \right) R(\tau) \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \sum_{t=h}^{\infty} \gamma^{t} r_{t} \right) \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \gamma^{h} Q^{\pi_{\theta}}(s_{h}, a_{h}) \right) \right]$$

Intuition: Change action distribution at h only affects rewards later on...)

 ∇

$$J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \right) R(\tau) \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \sum_{t=h}^{\infty} \gamma^{t} r_{t} \right) \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \gamma^{h} Q^{\pi_{\theta}}(s_{h}, a_{h}) \right) \right]$$

Intuition: Change action distribution at h only affects rewards later on...)

Exercise: Show this simplified version is equivalent to REINFORCE

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \sum_{t=h}^{\infty} \gamma^t r_t \right) \right]$$

Further simplification on PG (e.g., for finite horizon)

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \cdot \sum_{\tau=h}^{H-1} r(s_{\tau}, a_{\tau}) \right) \right]$$

Further simplification on PG (e.g., for finite horizon)

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \cdot \sum_{\tau=h}^{H-1} r(s_{\tau}, a_{\tau}) \right) \right]$$

(Change action distribution at h only affects rewards later on...)

Further simplification on PG (e.g., for finite horizon)

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \cdot \sum_{\tau=h}^{H-1} r(s_{\tau}, a_{\tau}) \right) \right]$$

(Change action distribution at h only affects rewards later on...)

Exercise:

Show this simplified version is equivalent to REINFORCE

Summary for today

- 1. Importance Weighting (the likelihood ratio method)
- 2. The Policy Gradient:

REINFORCE (a direct application of the likelihood ratio method)

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}(a_h \,|\, s_h) \right) R(\tau) \right]$$

3. SGAscent With unbiased estimate of $\nabla_{\theta} J(\theta)$, SGA(hopefully) converges to a local optimal policy.

1-minute feedback form: https://bit.ly/3RHtlxy

