Policy Gradient Descent

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2022

Today

- Recap
- Today:
- How do we learn/compute a good policy in an intractably large MDP?
- Policy gradient descent is one of the most effective methods.
- ilQR
was
our first
local seafch
methoct.

Recap

Example:
2-d car navigation
Cost function is designed such that it gets to the goal without colliding with obstacles (in red) practice: Mabel Predictive

for $t=0, \ldots$

- run iLQR tog

$$
\therefore a_{t}=\pi\left(s_{t}\right)
$$

- repeat

Example:

2-d car navigation
Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

Today:

Policy Gradient Descent

Policy Optimization

Today: Policy Gradient Deriviation

Consider parameterized policy:

$$
\pi_{\theta}(a \mid s)=\pi(a \mid s ; \theta)
$$

Today: Policy Gradient Deriviation

Consider parameterized policy:

$$
\begin{aligned}
\pi_{\theta}(a \mid s)=\pi(a \mid s ; \theta) \quad J(\theta): & =E_{s_{0} \sim \mu_{0}}\left[V^{\pi_{\theta}}\left(s_{0}\right)\right] \\
& =E\left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} \mid \mu_{0}, \pi_{\theta}\right]
\end{aligned}
$$

Today: Policy Gradient Deriviation

Consider parameterized policy:

$$
\begin{aligned}
& \pi_{\theta}(a \mid s)=\pi(a \mid s ; \theta) \\
& \max J(\theta) \\
& \theta \\
& \theta_{t+1}=\theta_{t}+\left.\eta \nabla_{\theta} J\left(\pi_{\theta}\right)\right|_{\theta=\theta_{t}} \\
& \begin{aligned}
& J(\theta):=E_{s_{0} \sim \mu_{0}}\left[V^{\pi_{\theta}}\left(s_{0}\right)\right] \\
&=E\left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} \mid \mu_{0}, \pi_{\theta}\right] \\
& \epsilon \in R
\end{aligned}
\end{aligned}
$$

Today: Policy Gradient Deriviation

Consider parameterized policy:

$$
\begin{aligned}
& \pi_{\theta}(a \mid s)=\pi(a \mid s ; \theta) J(\theta):=E_{s_{0} \sim \mu_{0}}\left[V^{\pi_{\theta}}\left(s_{0}\right)\right] \\
&=E\left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} \mid \mu_{0}, \pi_{\theta}\right] \\
& \theta_{t+1}=\theta_{t}+\left.\eta \nabla_{\theta} J\left(\pi_{\theta}\right)\right|_{\theta=\theta_{t}} \text { Main question for today's lecture: } \\
& \text { how to compute the gradient? }
\end{aligned}
$$

Outline for today

1. Recap on Gradient Descent (GD) and Stochastic Gradient Descent (SGD)
2. Warm up: computing gradient using importance weighting
3. Policy Gradient formulations

Gradient Descent

Given an objective function $J(\theta): \mathbb{R}^{d} \mapsto \mathbb{R}$, (e.g., $\left.J(\theta)=\mathbb{E}_{x, y}\left(f_{\theta}(x)-y\right)^{2}\right)$

GD minimizes the above objective function as follows:

Gradient Descent

Given an objective function $J(\theta): \mathbb{R}^{d} \mapsto \mathbb{R}$, (e.g., $\left.J(\theta)=\mathbb{E}_{x, y}\left(f_{\theta}(x)-y\right)^{2}\right)$

GD minimizes the above objective function as follows:

Initialize θ_{0}, for $\mathrm{t}=0, \ldots$:

Gradient Descent

Given an objective function $J(\theta): \mathbb{R}^{d} \mapsto \mathbb{R}$, (e.g., $\left.J(\theta)=\mathbb{E}_{x, y}\left(f_{\theta}(x)-y\right)^{2}\right)$

GD minimizes the above objective function as follows:

Initialize θ_{0}, for $\mathrm{t}=0, \ldots$:

$$
\theta_{t+1}=\theta_{t}-\eta \nabla J\left(\theta_{t}\right)
$$

Gradient Descent

Given an objective function $J(\theta): \mathbb{R}^{d} \mapsto \mathbb{R}$, (e.g., $\left.J(\theta)=\mathbb{E}_{x, y}\left(f_{\theta}(x)-y\right)^{2}\right)$
GD minimizes the above objective function as follows:

Gradient Descent

Initialize θ_{0}, for $\mathrm{t}=0, \ldots$:

$$
\theta_{t+1}=\theta_{t}-\eta \nabla J\left(\theta_{t}\right)
$$

Stochastic Gradient Descent

Given an objective function $J(\theta): \mathbb{R}^{d} \mapsto \mathbb{R}$, (e.g., $\left.J(\theta)=\mathbb{E}_{x, y}\left(f_{\theta}(x)-y\right)^{2}\right)$

SGD minimizes the above objective function as follows:

Stochastic Gradient Descent

Given an objective function $J(\theta): \mathbb{R}^{d} \mapsto \mathbb{R}$, (e.g., $\left.J(\theta)=\mathbb{E}_{x, y}\left(f_{\theta}(x)-y\right)^{2}\right)$

SGD minimizes the above objective function as follows:

Initialize θ_{0}, for $\mathrm{t}=0, \ldots$:

Stochastic Gradient Descent

Given an objective function $J(\theta): \mathbb{R}^{d} \mapsto \mathbb{R}$, (e.g., $\left.J(\theta)=\mathbb{E}_{x, y}\left(f_{\theta}(x)-y\right)^{2}\right)$

SGD minimizes the above objective function as follows:

Initialize θ_{0}, for $\mathrm{t}=0, \ldots$:

$$
\theta_{t+1}=\theta_{t}-\eta_{t} g_{t}
$$

Stochastic Gradient Descent

Given an objective function $J(\theta): \mathbb{R}^{d} \mapsto \mathbb{R}$, (e.g., $\left.J(\theta)=\mathbb{E}_{x, y}\left(f_{\theta}(x)-y\right)^{2}\right)$

SGD minimizes the above objective function as follows:

$$
\text { Initialize } \theta_{0} \text {, for } t=0, \ldots \text { : }
$$

$$
\theta_{t+1}=\theta_{t}-\eta_{t} g_{t}
$$

where $\mathbb{E}\left[g_{t}\right]=\nabla_{\theta} J\left(\theta_{t}\right)$

Stochastic Gradient Descent

Given an objective function $J(\theta): \mathbb{R}^{d} \mapsto \mathbb{R}$, (e.g., $\left.J(\theta)=\mathbb{E}_{x, y}\left(f_{\theta}(x)-y\right)^{2}\right)$

SGD minimizes the above objective function as follows:
Gradient Descent

Initialize θ_{0}, for $t=0, \ldots$:

$$
\theta_{t+1}=\theta_{t}-\eta_{t} g_{t}
$$

Stochastic Gradient Descent
where $\mathbb{E}\left[g_{t}\right]=\nabla_{\theta} J\left(\theta_{t}\right)$

Brief overview of GD/SGD:

Brief overview of GD/SGD:

- Global optima, local optima, and saddle points (by picture)

Brief overview of GD/SGD:

- Global optima, local optima, and saddle points (by picture)
- For convex functions (with certain regularity conditions, such as "smoothness"),
- GD (with an appropriate constant learning rate) converges to the global optima.
- SGD (with an appropriately decaying learning rate) converges to the global optima.

Brief overview of GD/SGD:

- Global optima, local optima, and saddle points (by picture)
- For convex functions (with certain regularity conditions, such as "smoothness"),
- GD (with an appropriate constant learning rate) converges to the global optima.
- SGD (with an appropriately decaying learning rate) converges to the global optima.
- For non-convex functions, we hope to find a local minima.

Brief overview of GD/SGD:

- Global optima, local optima, and saddle points (by picture)
- For convex functions (with certain regularity conditions, such as "smoothness"),
- GD (with an appropriate constant learning rate) converges to the global optima.
- SGD (with an appropriately decaying learning rate) converges to the global optima.
- For non-convex functions, we hope to find a local minima.
- What we can prove (under mild regularity conditions) is a little weaker:
- GD (with an appropriate constant learning rate) converges to a saddle point.
- SGD (with an appropriately decaying learning rate) converges to a saddle point.

$$
\hat{J}(0)=\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}\left(x_{i}\right)-y_{i}\right)^{2} \text { of en nice" stationary }
$$

SGD: Convergence to a Stationary Point for Nonconvex Functions

- Def of β-smooth: $\left\|\nabla_{\theta} J(\theta)-\nabla_{\theta} J\left(\theta_{0}\right)\right\|_{2} \leq \beta\left\|\theta-\theta_{0}\right\|_{2}$

SGD: Convergence to a Stationary Point for Nonconvex Functions

- Def of β-smooth: $\left\|\nabla_{\theta} J(\theta)-\nabla_{\theta} J\left(\theta_{0}\right)\right\|_{2} \leq \beta\left\|\theta-\theta_{0}\right\|_{2}$
- [Theorem] Suppose we run SGD: $\theta_{t+1}=\theta_{t}-\eta \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)$, for T steps, where $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)\right]=\nabla_{\theta} J\left(\theta_{t}\right)$ with $\eta=O(1 / \sqrt{T})$. Assume:

SGD: Convergence to a Stationary Point for Nonconvex Functions

- Def of β-smooth: $\left\|\nabla_{\theta} J(\theta)-\nabla_{\theta} J\left(\theta_{0}\right)\right\|_{2} \leq \beta\left\|\theta-\theta_{0}\right\|_{2}$

- [Theorem] Suppose we run SGD: $\theta_{t+1}=\theta_{t}-\eta \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)$, for T steps, where $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)\right]=\nabla_{\theta} J\left(\theta_{t}\right)$ with $\eta=O(1 / \sqrt{T})$. Assume:
- $J(\theta)$ is β-smooth.

SGD: Convergence to a Stationary Point for Nonconvex Functions

- Def of β-smooth: $\left\|\nabla_{\theta} J(\theta)-\nabla_{\theta} J\left(\theta_{0}\right)\right\|_{2} \leq \beta\left\|\theta-\theta_{0}\right\|_{2}$
- [Theorem] Suppose we run SGD: $\theta_{t+1}=\theta_{t}-\eta \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)$, for T steps, where $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)\right]=\nabla_{\theta} J\left(\theta_{t}\right)$ with $\eta=O(1 / \sqrt{T})$. Assume:
- $J(\theta)$ is β-smooth.
- $J(\theta)$ is bounded: $|J(\theta)| \leq M, \forall \theta$.

SGD: Convergence to a Stationary Point for Nonconvex Functions

- Def of β-smooth: $\left\|\nabla_{\theta} J(\theta)-\nabla_{\theta} J\left(\theta_{0}\right)\right\|_{2} \leq \beta\left\|\theta-\theta_{0}\right\|_{2}$
- [Theorem] Suppose we run SGD: $\theta_{t+1}=\theta_{t}-\eta \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)$, for T steps, where $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)\right]=\nabla_{\theta} J\left(\theta_{t}\right)$ with $\eta=O(1 / \sqrt{T})$. Assume:
- $J(\theta)$ is β-smooth.
- $J(\theta)$ is bounded: $|J(\theta)| \leq M, \forall \theta$.
- $\widetilde{\nabla}_{\theta} J(\theta)$ has "bounded second moment": $\mathbb{E}\left[\left\|\widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)\right\|_{2}^{2}\right] \leq \sigma^{2}$,

SGD: Convergence to a Stationary Point for Nonconvex Functions

- Def of β-smooth: $\left\|\nabla_{\theta} J(\theta)-\nabla_{\theta} J\left(\theta_{0}\right)\right\|_{2} \leq \beta\left\|\theta-\theta_{0}\right\|_{2}$
- [Theorem] Suppose we run SGD: $\theta_{t+1}=\theta_{t}-\eta \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)$, for T steps, where $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)\right]=\nabla_{\theta} J\left(\theta_{t}\right)$ with $\eta=O(1 / \sqrt{T})$. Assume:
- $J(\theta)$ is β-smooth.
- $J(\theta)$ is bounded: $|J(\theta)| \leq M, \forall \theta$.
- $\widetilde{\nabla}_{\theta} J(\theta)$ has "bounded second moment": $\mathbb{E}\left[\left\|\widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)\right\|_{2}^{2}\right] \leq \sigma^{2}$, then, in T steps, SGD will find a θ such that: $\left\|\nabla_{\theta} J(\theta)\right\|^{2} \leq O\left(\sqrt{M \beta \sigma^{2} / T}\right)$.

Outline for today

1. Recap on Gradient descent and stochastic gradient descent
2. Warm up: computing gradient using importance weighting
3. Policy Gradient formulations

Importance Sampling (and the Likelihood Ratio Method)

Importance Sampling (and the Likelihood Ratio Method)
For $J(\theta)=\mathbb{E}_{x \sim P_{\theta}}[f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

Importance Sampling (and the Likelihood Ratio Method)
For $J(\theta)=\mathbb{E}_{x \sim P_{\theta}}[f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
- $J(\theta)$ is "difficult" to compute.
- P_{θ} is "easy" to compute.
- We have a distribution ρ, that is easy to sample from and where $\max P_{\theta}(x) / \rho(x)<\infty$

$$
\begin{aligned}
\mathscr{J}(\theta) & =D \sum_{x} P_{\theta}(x) f(x)=D \sum_{x} P(x) \frac{P G(x)}{P(x)} f(x) \\
& =\sum_{x} P(x) \frac{V P_{\theta}(x)}{P(x)} f(x)=\left(E_{x \sim \rho}^{P(x)} f(x)\right.
\end{aligned}
$$

Importance Sampling (and the Likelihood Ratio Method)

For $J(\theta)=\mathbb{E}_{x \sim P_{\theta}}[f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
- $J(\theta)$ is "difficult" to compute.
- P_{θ} is "easy" to compute.
- We have a distribution ρ, that is easy to sample from and where max $P_{\theta}(x) / \rho(x)<\infty$

$$
\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)=\nabla_{\theta} \mathbb{E}_{x \sim p} \frac{P_{\theta}(x)}{\rho(x)} f(x)
$$

Importance Sampling (and the Likelihood Ratio Method)

For $J(\theta)=\mathbb{E}_{x \sim P_{\theta}}[f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
- $J(\theta)$ is "difficult" to compute.
- P_{θ} is "easy" to compute.
- We have a distribution ρ, that is easy to sample from and where max $P_{\theta}(x) / \rho(x)<\infty$

$$
\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)=\nabla_{\theta} \mathbb{E}_{x \sim \rho} \frac{P_{\theta}(x)}{\rho(x)} f(x)=\mathbb{E}_{x \sim \rho} \frac{\nabla_{\theta} P_{\theta}(x)}{\rho(x)} f(x)
$$

Importance Sampling (and the Likelihood Ratio Method)

For $J(\theta)=\mathbb{E}_{x \sim P_{\theta}}[f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
- $J(\theta)$ is "difficult" to compute.
- P_{θ} is "easy" to compute.
- We have a distribution ρ, that is easy to sample from and where max $P_{\theta}(x) / \rho(x)<\infty$

$$
\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)=\nabla_{\theta} \mathbb{E}_{x \sim \rho} \frac{P_{\theta}(x)}{\rho(x)} f(x)=\mathbb{E}_{x \sim \rho} \frac{\nabla_{\theta} P_{\theta}(x)}{\rho(x)} f(x) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\nabla_{\theta} P_{\theta}\left(x_{i}\right)}{\rho\left(x_{i}\right)} f\left(x_{i}\right)
$$

Importance Sampling (and the Likelihood Ratio Method)

For $J(\theta)=\mathbb{E}_{x \sim P_{\theta}}[f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
- $J(\theta)$ is "difficult" to compute.
- P_{θ} is "easy" to compute.
- We have a distribution ρ, that is easy to sample from and where $\max P_{\theta}(x) / \rho(x)<\infty$

$$
\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)=\nabla_{\theta} \mathbb{E}_{x \sim \rho} \frac{P_{\theta}(x)}{\rho(x)} f(x)=\mathbb{E}_{x \sim \rho} \frac{\nabla_{\theta} P_{\theta}(x)}{\rho(x)} f(x) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\nabla_{\theta} P_{\theta}\left(x_{i}\right)}{\rho\left(x_{i}\right)} f\left(x_{i}\right)
$$

To compute gradient at $\theta_{0}: \nabla_{\theta} J\left(\theta_{0}\right)$ (in short of $\left.\nabla_{\theta} J(\theta)\right|_{\theta=\theta_{0}}$)

Importance Sampling (and the Likelihood Ratio Method)

For $J(\theta)=\mathbb{E}_{x \sim P_{\theta}}[f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
- $J(\theta)$ is "difficult" to compute.
- P_{θ} is "easy" to compute.
- We have a distribution ρ, that is easy to sample from and where max $P_{\theta}(x) / \rho(x)<\infty$

$$
\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)=\nabla_{\theta} \mathbb{E}_{x \sim \rho} \frac{P_{\theta}(x)}{\rho(x)} f(x)=\mathbb{E}_{x \sim \rho} \frac{\nabla_{\theta} P_{\theta}(x)}{\rho(x)} f(x) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\nabla_{\theta} P_{\theta}\left(x_{i}\right)}{\rho\left(x_{i}\right)} f\left(x_{i}\right)
$$

To compute gradient at $\theta_{0}: \nabla_{\theta} J\left(\theta_{0}\right)$ (in short of $\left.\nabla_{\theta} J(\theta)\right|_{\theta=\theta_{0}}$)
By setting the sampling distribution $\rho=P_{\theta_{0}}$

Importance Sampling (and the Likelihood Ratio Method)

For $J(\theta)=\mathbb{E}_{x \sim P_{\theta}}[f(x)]$, our goal is to accurately compute $\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.

- Suppose:
- $J(\theta)$ is "difficult" to compute.
- P_{θ} is "easy" to compute.

- We have a distribution ρ, that is easy to sample from and where max $P_{\theta}(x) / \rho(x)<\infty$

$$
\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)=\nabla_{\theta} \mathbb{E}_{x \sim \rho} \frac{P_{\theta}(x)}{\rho(x)} f(x)=\mathbb{E}_{x \sim \rho} \frac{\nabla_{\theta} P_{\theta}(x)}{\rho(x)} f(x) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\nabla_{\theta} P_{\theta}\left(x_{i}\right)}{\rho\left(x_{i}\right)} f\left(x_{i}\right)
$$

To compute gradient at $\theta_{0}: \nabla_{\theta} J\left(\theta_{0}\right)$ (in short of $\left.\nabla_{\theta} J(\theta)\right|_{\theta=\theta_{0}}$)

$$
\begin{aligned}
& \text { By setting the sampling distribution } \rho=P_{\theta_{0}} \\
& \nabla_{\theta} J\left(\theta_{0}\right)=\mathbb{E}_{x \sim P_{\theta_{0}}}\left[\nabla_{\theta} \ln P_{\theta_{0}}(x) \cdot f(x)\right]
\end{aligned}
$$

Importance Sampling (and the Likelihood Ratio Method)

Importance Sampling (and the Likelihood Ratio Method)
To compute gradient at $\theta_{0}: \nabla_{\theta} J\left(\theta_{0}\right)$ (in short of $\left.\nabla_{\theta} J(\theta)\right|_{\theta=\theta_{0}}$)

Importance Sampling (and the Likelihood Ratio Method)

To compute gradient at $\theta_{0}: \nabla_{\theta} J\left(\theta_{0}\right)$ (in short of $\left.\nabla_{\theta} J(\theta)\right|_{\theta=\theta_{0}}$)
By setting the sampling distribution $\rho=P_{\theta_{0}}$

Importance Sampling (and the Likelihood Ratio Method)

To compute gradient at $\theta_{0}: \nabla_{\theta} J\left(\theta_{0}\right)$ (in short of $\left.\nabla_{\theta} J(\theta)\right|_{\theta=\theta_{0}}$)
By setting the sampling distribution $\rho=P_{\theta_{0}}$

$$
\nabla_{\theta} J\left(\theta_{0}\right)=\mathbb{E}_{x \sim \rho} \frac{\nabla_{\theta} P_{\theta_{0}}(x)}{\rho(x)} f(x)=\mathbb{E}_{x \sim P_{\theta_{0}}}\left[\nabla_{\theta} \ln P_{\theta_{0}}(x) \cdot f(x)\right]
$$

Example and Intuition

$$
\left.\nabla_{\theta} J(\theta)\right|_{\theta=\theta_{0}}=\mathbb{E}_{x \sim P_{\theta_{0}}} \nabla_{\theta} \ln P_{\theta_{0}}(x) \cdot f(x)
$$

Example and Intuition

$$
\left.\nabla_{\theta} J(\theta)\right|_{\theta=\theta_{0}}=\mathbb{E}_{x \sim P_{\theta_{0}}} \nabla_{\theta} \ln P_{\theta_{0}}(x) \cdot f(x)
$$

Example and Intuition

$$
\left.\nabla_{\theta} J(\theta)\right|_{\theta=\theta_{0}}=\mathbb{E}_{x \sim P_{\theta_{0}}} \nabla_{\theta} \ln P_{\theta_{0}}(x) \cdot f(x)
$$

$$
\theta_{1}=\theta_{0}+\eta \nabla_{\theta} J\left(\theta_{0}\right)
$$

Update distribution (via updating θ) such that P_{θ} has high probability mass at regions where $f(x)$ is large

Example and Intuition

$$
\left.\nabla_{\theta} J(\theta)\right|_{\theta=\theta_{0}}=\mathbb{E}_{x \sim P_{\theta_{0}}} \nabla_{\theta} \ln P_{\theta_{0}}(x) \cdot f(x)
$$

$$
\theta_{1}=\theta_{0}+\eta \nabla_{\theta} J\left(\theta_{0}\right)
$$

Update distribution (via updating θ) such that P_{θ} has high probability mass at regions where $f(x)$ is large

Using same idea, now let's move on to RL...

Outline for today

1. Recap on Gradient descent and stochastic gradient descent
2. Warm up: computing gradient using importance weighting
3. Policy Gradient formulations

Policy Gradient: Examples of Policy Parameterization (discrete actions)

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:
$\theta_{s, a} \in \mathbb{R}, \forall s, a \in S \times A$

Policy Gradient: Examples of Policy Parameterization (discrete actions)

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:
$\theta_{s, a} \in \mathbb{R}, \forall s, a \in S \times A$
$\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta_{s, a}\right)}{\sum_{a^{\prime}} \exp \left(\theta_{s, a^{\prime}}\right)}$

Policy Gradient: Examples of Policy Parameterization (discrete actions)

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

1. Softmax Policy for
2. Softmax linear Policy discrete MDPs:
$\theta_{s, a} \in \mathbb{R}, \forall s, a \in S \times A$
$\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta_{s, a}\right)}{\sum_{a^{\prime}} \exp \left(\theta_{s, a^{\prime}}\right)}$ (We will try this in HW2)

Policy Gradient: Examples of Policy Parameterization (discrete actions)

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:
$\theta_{s, a} \in \mathbb{R}, \forall s, a \in S \times A$
$\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta_{s, a}\right)}{\sum_{a^{\prime}} \exp \left(\theta_{s, a^{\prime}}\right)}$
2. Softmax linear Policy (We will try this in HW2)

Feature vector $\phi(s, a) \in \mathbb{R}^{d}$, and parameter $\theta \in \mathbb{R}^{d}$

Policy Gradient: Examples of Policy Parameterization (discrete actions)

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:
$\theta_{s, a} \in \mathbb{R}, \forall s, a \in S \times A$
$\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta_{s, a}\right)}{\sum_{a^{\prime}} \exp \left(\theta_{s, a^{\prime}}\right)}$
2. Softmax linear Policy (We will try this in HW2)

Feature vector $\phi(s, a) \in \mathbb{R}^{d}$, and parameter $\theta \in \mathbb{R}^{d}$

$$
\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta^{\top} \phi(s, a)\right)}{\sum_{a^{\prime}} \exp \left(\theta^{\top} \phi\left(s, a^{\prime}\right)\right)}
$$

Policy Gradient: Examples of Policy Parameterization (discrete actions)

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:
$\theta_{s, a} \in \mathbb{R}, \forall s, a \in S \times A$
$\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta_{s, a}\right)}{\sum_{a^{\prime}} \exp \left(\theta_{s, a^{\prime}}\right)}$
2. Softmax linear Policy (We will try this in HW2)

Feature vector $\phi(s, a) \in \mathbb{R}^{d}$, and parameter $\theta \in \mathbb{R}^{d}$

$$
\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta^{\top} \phi(s, a)\right)}{\sum_{a^{\prime}} \exp \left(\theta^{\top} \phi\left(s, a^{\prime}\right)\right)}
$$

3. Neural Policy:

Policy Gradient: Examples of Policy Parameterization (discrete actions)

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:
$\theta_{s, a} \in \mathbb{R}, \forall s, a \in S \times A$
$\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta_{s, a}\right)}{\sum_{a^{\prime}} \exp \left(\theta_{s, a^{\prime}}\right)}$
2. Softmax linear Policy (We will try this in HW2)

Feature vector $\phi(s, a) \in \mathbb{R}^{d}$, and parameter $\theta \in \mathbb{R}^{d}$

$$
\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta^{\top} \phi(s, a)\right)}{\sum_{a^{\prime}} \exp \left(\theta^{\top} \phi\left(s, a^{\prime}\right)\right)}
$$

3. Neural Policy:

Neural network $f_{\theta}: S \times A \mapsto \mathbb{R}$

Policy Gradient: Examples of Policy Parameterization (discrete actions)

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

1. Softmax Policy for discrete MDPs:
$\theta_{s, a} \in \mathbb{R}, \forall s, a \in S \times A$
$\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta_{s, a}\right)}{\sum_{a^{\prime}} \exp \left(\theta_{s, a^{\prime}}\right)}$
2. Softmax linear Policy (We will try this in HW2)

Feature vector $\phi(s, a) \in \mathbb{R}^{d}$, and parameter $\theta \in \mathbb{R}^{d}$
$\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta^{\top} \phi(s, a)\right)}{\sum_{a^{\prime}} \exp \left(\theta^{\top} \phi\left(s, a^{\prime}\right)\right)}$
3. Neural Policy:

Neural network

$$
f_{\theta}: S \times A \mapsto \mathbb{R}
$$

$$
\pi_{\theta}(a \mid s)=\frac{\exp \left(f_{\theta}(s, a)\right)}{\sum_{a^{\prime}} \exp \left(f_{\theta}\left(s, a^{\prime}\right)\right)}
$$

Derivation of Policy Gradient: REINFORCE

$$
\begin{gathered}
\tau=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots\right\} \\
\rho_{\theta}(\tau)=\mu\left(s_{0}\right) \pi_{\theta}\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \pi_{\theta}\left(a_{1} \mid s_{1}\right) \ldots
\end{gathered}
$$

Derivation of Policy Gradient: REINFORCE

$$
\begin{gathered}
\tau=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots\right\} \\
\rho_{\theta}(\tau)=\mu\left(s_{0}\right) \pi_{\theta}\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \pi_{\theta}\left(a_{1} \mid s_{1}\right) \ldots \\
J\left(\pi_{\theta}\right)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \underbrace{\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right)\right]}_{R(\tau)}
\end{gathered}
$$

Derivation of Policy Gradient: REINFORCE

$$
\begin{gathered}
\tau=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots\right\} \\
\rho_{\theta}(\tau)=\mu\left(s_{0}\right) \pi_{\theta}\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \pi_{\theta}\left(a_{1} \mid s_{1}\right) \ldots \\
J\left(\pi_{\theta}\right)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \underbrace{\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right)\right]}_{R(\tau)} \\
\nabla_{\theta} J\left(\pi_{\theta_{0}}\right)=\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\nabla_{\theta} \ln \rho_{\theta_{0}}(\tau) R(\tau)\right]
\end{gathered}
$$

Derivation of Policy Gradient: REINFORCE

$$
\begin{aligned}
& \tau=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots\right\} \\
& \rho_{\theta}(\tau)=\mu\left(s_{0}\right) \pi_{\theta}\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \pi_{\theta}\left(a_{1} \mid s_{1}\right) \ldots \\
& \begin{array}{l}
J\left(\pi_{\theta}\right)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \underbrace{\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right)\right]}_{h=0} \\
\nabla_{\theta} J\left(\pi_{\theta_{0}}\right)=\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\nabla_{\theta} \ln \rho_{\theta_{0}}(\tau) R(\tau)\right]
\end{array} \\
& =\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\nabla _ { \theta } \left(\begin{array}{c}
\mu \\
\left.\left.\ln ^{\mu}\left(s_{0}\right)+\ln \pi_{\theta_{0}}\left(a_{0} \mid s_{0}\right)+\ln P\left(s_{1} \backslash s_{0}, a_{0}\right)+\ldots\right) R(\tau)\right]
\end{array}\right.\right.
\end{aligned}
$$

Derivation of Policy Gradient: REINFORCE

$$
\begin{gathered}
\tau=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots\right\} \\
\rho_{\theta}(\tau)=\mu\left(s_{0}\right) \pi_{\theta}\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \pi_{\theta}\left(a_{1} \mid s_{1}\right) \ldots \\
J\left(\pi_{\theta}\right)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \underbrace{\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right)\right]}_{R=1} \\
\left.\nabla_{\theta} J\left(\pi_{\theta_{0}}\right)\right|_{\theta=\Theta_{0}} ^{\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\nabla_{\theta} \ln \rho_{\theta_{0}}(\tau) R(\tau)\right]} \\
=\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\nabla_{\theta}\left(\ln \rho\left(s_{0}\right)+\ln \pi_{\theta_{0}}\left(a_{0} \mid s_{0}\right)+\ln P\left(s_{1} \mid s_{0}, a_{0}\right)+\ldots\right) R(\tau)\right] \\
=\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\nabla_{\theta}\left(\ln \pi_{\theta_{0}}\left(a_{0} \mid s_{0}\right)+\ln \pi_{\theta_{0}}\left(a_{1} \mid s_{1}\right) \ldots\right) R(\tau)\right]
\end{gathered}
$$

Derivation of Policy Gradient: REINFORCE

$$
\begin{aligned}
& \tau=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots\right\} \\
& \rho_{\theta}(\tau)=\mu\left(s_{0}\right) \pi_{\theta}\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \pi_{\theta}\left(a_{1} \mid s_{1}\right) \ldots \\
& J\left(\pi_{\theta}\right)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \underbrace{\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right)\right]}_{R(\tau)} \\
& \nabla_{\theta} J\left(\pi_{\theta_{0}}\right)=\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\nabla_{\theta} \ln \rho_{\theta_{0}}(\tau) R(\tau)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\nabla_{\theta}\left(\ln \rho\left(s_{0}\right)+\ln \pi_{\theta_{0}}\left(a_{0} \mid s_{0}\right)+\ln P\left(s_{1} \mid s_{0}, a_{0}\right)+\ldots\right) R(\tau)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\nabla_{\theta}\left(\ln \pi_{\theta_{0}}\left(a_{0} \mid s_{0}\right)+\ln \pi_{\theta_{0}}\left(a_{1} \mid s_{1}\right) \ldots\right) R(\tau)\right]=\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta_{0}}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right]
\end{aligned}
$$

Derivation of Policy Gradient: REINFORCE

$$
\begin{gathered}
\tau=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots\right\} \\
\rho_{\theta}(\tau)=\mu\left(s_{0}\right) \pi_{\theta}\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \pi_{\theta}\left(a_{1} \mid s_{1}\right) \ldots \\
J\left(\pi_{\theta}\right)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}^{\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right)\right]} \\
\nabla_{\theta} J\left(\pi_{\theta_{0}}\right)=\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\nabla_{\theta} \ln \rho_{\theta_{0}}(\tau) R(\tau)\right]
\end{gathered} \begin{gathered}
\begin{array}{c}
\text { Adjust policy such that } \\
\text { larger reward traj has } \\
\text { higher likelihood }
\end{array} \\
=\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\nabla_{\theta}\left(\ln \rho\left(s_{0}\right)+\ln \pi_{\theta_{0}}\left(a_{0} \mid s_{0}\right)+\ln P\left(s_{1} \mid s_{0}, a_{0}\right)+\ldots\right) R(\tau)\right] \\
=\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\nabla_{\theta}\left(\ln \pi_{\theta_{0}}\left(a_{0} \mid s_{0}\right)+\ln \pi_{\theta_{0}}\left(a_{1} \mid s_{1}\right) \ldots\right) R(\tau)\right]=\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta_{0}}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right]
\end{gathered}
$$

Summary so far for Policy Gradients

We derived the most basic PG formulation:

$$
\nabla J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right]
$$

Summary so far for Policy Gradients

We derived the most basic PG formulation:

$$
\nabla J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right]
$$

Increase the likelihood of sampling an trajectory with high total reward

Obtaining a sample $\widetilde{\nabla}_{\theta} J(\theta)$ for REINFORCE (for this approach)

$$
\begin{aligned}
& \nabla J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right], \text { where } R(\tau)=\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right) \\
& v_{\theta} \text { on } s_{\theta} \sim \mu \text { to get } \sim \\
& \nabla_{\theta}(b)=\left(\sum_{h=0}^{\infty} \nabla_{\theta} \lg \pi_{\theta}\left(a_{h} \mid s_{n}\right)\right)\left(\sum_{h=0}^{\infty} r_{h}^{h}\right)
\end{aligned}
$$

For finite horizon MDP (sometimes used with PG):

$$
\nabla J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right]
$$

$$
\text { where } R(\tau)=\sum_{h=0}^{H-1} r\left(s_{h}, a_{h}\right)
$$

For finite horizon MDP (sometimes used with PG):

$$
\begin{gathered}
\nabla J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right] \\
\text { where } R(\tau)=\sum_{h=0}^{H-1} r\left(s_{h}, a_{h}\right)
\end{gathered}
$$

Increase the likelihood of sampling an trajectory with high total reward

A improved PG formulation, for sampling (for the discounted setting)

$$
\nabla J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right]
$$

A improved PG formulation, for sampling (for the discounted setting)

$$
\begin{aligned}
\nabla J(\theta)= & \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty}\left(\nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \sum_{t=h}^{\infty} \gamma^{t} r_{t}\right)\right]\right.
\end{aligned}
$$

A improved PG formulation, for sampling (for the discounted setting)

$$
\begin{aligned}
\nabla J(\theta)= & \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \sum_{t=h}^{\infty} \gamma^{t} r_{t}\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \gamma^{h} Q^{\pi_{\theta}}\left(s_{h}, a_{h}\right)\right)\right]
\end{aligned}
$$

A improved PG formulation, for sampling (for the discounted setting)

$$
\begin{aligned}
\nabla J(\theta)= & \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \sum_{t=h}^{\infty} \gamma^{t} r_{t}\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \gamma^{h} Q^{\pi_{\theta}}\left(s_{h}, a_{h}\right)\right)\right]
\end{aligned}
$$

Intuition: Change action distribution at h only affects rewards later on...)

A improved PG formulation, for sampling (for the discounted setting)

$$
\begin{aligned}
\nabla J(\theta)= & \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \sum_{t=h}^{\infty} \gamma^{t} r_{t}\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \gamma^{h} Q^{\pi_{\theta}}\left(s_{h}, a_{h}\right)\right)\right]
\end{aligned}
$$

Intuition: Change action distribution at h only affects rewards later on...)
Exercise: Show this simplified version is equivalent to REINFORCE

A improved PG formulation, for sampling (for the discounted setting)
$\nabla J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \sum_{t=h}^{\infty} \gamma^{t} r_{t}\right)\right]$

Further simplification on PG (e.g., for finite horizon)

$$
\nabla J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \cdot \sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right)\right)\right]
$$

Further simplification on PG (e.g., for finite horizon)

$$
\nabla J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \cdot \sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right)\right)\right]
$$

(Change action distribution at h only affects rewards later on...)

Further simplification on PG (e.g., for finite horizon)

$$
\nabla J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \cdot \sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right)\right)\right]
$$

(Change action distribution at h only affects rewards later on...)

Exercise:

Show this simplified version is equivalent to REINFORCE

Summary for today

1. Importance Weighting (the likelihood ratio method)
2. The Policy Gradient:

REINFORCE (a direct application of the likelihood ratio method)
$\nabla J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right]$
3. SGAscent With unbiased estimate of $\nabla_{\theta} J(\theta)$, SGA(hopefully) converges to a local optimal policy.

1-minute feedback form: https://bit.ly/3RHtlxy

