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Policy Gradient Descent

CS/Stat 184: Introduction to Reinforcement Learning
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Today

 Recap

« Today:
« How do we learn/compute a good policy in an intractably large MDP?
* Policy gradient descent is one of the most effective methods.
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Example:
2-d car navigation
Cost function is designed such that it gets to the goal without colliding with obstacles (in red)




Today:

Policy Gradient Descent



Policy Optimization
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Today: Policy Gradient Deriviation

Consider parameterized policy:

ry(al|s) = n(als;0)
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Today: Policy Gradient Deriviation

Consider parameterized policy:

ry(als) = n(als;0)

Ht+1 = Qt + ﬂV@J(ﬂg) |9:9t

J©O) :=E, . |V™sy)]

— E[ Z yhrh ‘,uo, 71'9]
h=0

Main question for today’s lecture:
how to compute the gradient?



Outline for today

1. Recap on Gradient Descent (GD) and Stochastic Gradient Descent (SGD)
2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations
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Given an objective function J(0) : R? > R, (e.g., J(O) = [Ex,y(fg(x) —v))

GD minimizes the above objective function as follows:
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Gradient Descent

Given an objective function J(0) : R? > R, (e.g., J(O) = [Ex,y(fg(x) —v))
T
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N L : Gradient Descent
GD minimizes the above objective function as follows:
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Stochastic Gradient Descent
Given an objective function J(0) : R? > R, (e.g., J(O) = [Ex,y(fg(x) —v))

SGD minimizes the above objective function as follows:
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Stochastic Gradient Descent
Given an objective function J(0) : R? > R, (e.g., J(O) = [Ex,y(fg(x) —v))

SGD minimizes the above objective function as follows:
Initialize 6, fort=0, ... :
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Stochastic Gradient Descent

Given an objective function J(0) : R? > R, (e.g., J(O) = E, y(fox) — ¥)?)

L L : Gradient Descent
SGD minimizes the above objective function as follows:

Initialize 6, fort=0, ... : +

0.1=06—ng

Stochastic Gradient Descent

=

where E[g,] = V,J(0)
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Brief overview of GD/SGD:
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Brief overview of GD/SGD:

Global optima, local optima, and saddle points (by picture)

For convex functions (with certain regularity conditions, such as “smoothness”),
« GD (with an appropriate constant learning rate) converges to the
« SGD (with an appropriately decaying learning rate) converges to the global optlma

For non-convex functions, we hope to find a local minima.

* GD (with an appropriate constant learning rate) converges to a saddle point.

What we can prove (under mild regularity conditions) is a little weaker:
« SGD (with an appropriately decaying learning rate) converges to a sagé{ point.

~ ﬁOM«e Sor .
N - J/ Z 5 A Snzce ¢ ST,
3 (o) (Pe(<)= 4\ oied

(=«

11



SGD: Convergence to a Stationary Point for Nonconvex Functions

« Def of #f-smooth:
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SGD: Convergence to a Stationary Point for Nonconvex Functions
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SGD: Convergence to a Stationary Point for Nonconvex Functions

M=o

« [Theorem] Suppose we run SGD: 0,, | = 0, — ;779](@), for T steps,

where [E [VQJ(@)] = V,J(6,) with ILEQM ). Assume:
« J(0) is f-smooth.

« Def of f-smooth: ||V, J(0) — V. J(O)||> < S0 — 6]l
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SGD: Convergence to a Stationary Point for Nonconvex Functions

e Def of fi-smooth: ||V, J(0) — V,J(0,)|, < pll6 — 6|,

« [Theorem] Suppose we run SGD: 0,, | = 0, — ;779](@), for T steps,
where E [VQJ(@)] = V,J(0,) withn = O(l/ﬁ). Assume:
« J(O) is f-smooth.
« J(0) is bounded: [J(O)| <M, V0.
. 79./((9) has “bounded second moment”: [E [||79J(9[)||%] < o2

—_— 9

then, in T steps, SGD will find a @ such that: ||V9J((9)||2 <0 <\ | MpBo?IT >
N /)/
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Outline for today

1. Recap on Gradient descent and stochastic gradient descent
2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations
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Importance Sampling (and the Likelihood Ratio Method)
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Importance Sampling (and the Likelihood Ratio Method)

For J(0) = [Ex~P9 [f(x)], our goal is to accurately compute V, /() = V £ _ P, f(x).

e Suppose:
« J(0) is “difficult” to compute.
« Pyis “easy” to compute.
. We have a distribution p, that is easy to sample from and where maX Pyx)/p(x) < o0
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Importance Sampling (and the Likelihood Ratio Method)

For J(0)) = [EXNPH [f(x)], our goal is to accurately compute V /() = VH[EXNPH (x).
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Importance Sampling (and the Likelihood Ratio Method)

For J(0)) = [EXNPH [f(x)], our goal is to accurately compute V, /() = V £ _ P, f(x).

e Suppose:
« J(0) is “difficult” to compute.
« Pyis “easy” to compute.
. We have a distribution p, that is easy to sample from and where max Py(x)/p(x) < oo

Py(x) VoPy(x)
= [E _—
/0 =Eey p(x)

VoJ(0) = VyE, p fx) = V,E,., o

1 < VyoPy(x)
fo) ~— Z} A

To compute gradient at 8y: V,J(6,) (in short of V,J(0) |9=90)
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Importance Sampling (and the Likelihood Ratio Method)

For J(0)) = [EXNPH [f(x)], our goal is to accurately compute V /() = VeExw% (x).

e Suppose:
« J(0) is “difficult” to compute.
« Pyis “easy” to compute.
. We have a distribution p, that is easy to sample from and where max Py(x)/p(x) < oo

N
( Vg Py(x) ) ~ lz VP 0.(7%) fx)

VJ(0) = VE, _p f(x) = V,E - E,., e

To compute gradient at 8y: V,J(6,) (in short of V,J(0) |9=90)

By setting the sampling distribution p = P@()
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Importance Sampling (and the Likelihood Ratio Method)

For J(0)) = [EXNPH [f(x)], our goal is to accurately compute V /() = Vﬁ[EXNPH f(x).

o Zhe) o Vo)
« J(0) is “difficult” to compute. 6/ -

. P,is “easy” to compute. Fe O
. We have a distribution p, that is easy to sample from and where max Py(x)/p(x) < oo

N
( M RNEY Y L

VJ(0) = VE, _p f(x) = V,E - E,., 0

To compute gradient at 6y:  V,J(6) (in short of V,J(0) | ,_ -0 | )y
AL
Bry\settlng the sampling distribution p = P, é & x: )%

/ VoJ0) = Eyp, lvgln P, (%) - fx)
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Importance Sampling (and the Likelihood Ratio Method)
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Importance Sampling (and the Likelihood Ratio Method)

To compute gradient at 0y: V,J(6,) (in short of V,J(0) |9=90)

VQPQO(X)
Vol(0y) = E,., 20 f) =E.p, | Voln Py (x) - f(x)
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Example and Intuition

VoJ(©O)lg_g, = Esnr, Voln P () - fx)

Jx), 01 =0y + 1V ()

Update distribution (via updating 6) such that

—\ P, has high probability mass at regions

P, where f(x) is large
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Example and Intuition

VoJ(©O)lg_g, = Esnr, Voln P () - fx)

Jx), 01 =0y + 1V ()

Update distribution (via updating 6) such that

—\ P, has high probability mass at regions

P, where f(x) is large

Using same idea, now let’s move on to RL...

17



Outline for today

1. Recap on Gradient descent and stochastic gradient descent
2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations
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Policy Gradient: Examples of Policy Parameterization (discrete actions)
Recall that we consider parameterized policy zy( - |s) € A(A), Vs
1. Softmax Policy for
discrete MDPs:

0, ERVs,ae SXA
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Policy Gradient: Examples of Policy Parameterization (discrete actions)

Recall that we consider parameterized policy zy( - |s) € A(A), Vs

_ 2. Softmax linear Policy | 3. Neural Policy:
1. Softmax Policy for (We will try this in HW?2)
discrete MDPs:
Feature vector ¢p(s,a) € R and Neural network
0 R,V ESXA
sa & 1, VS, d parameter € R4 Jo: SXA-R
exp(6; ,)
myals) = | .
0000 | expOd(.0)
’ > exp(0T (s, a))
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Policy Gradient: Examples of Policy Parameterization (discrete actions)

Recall that we consider parameterized policy zy( - |s) € A(A), Vs

1. Softmax Policy for
discrete MDPs:

0, ERVs,ae SXA
exp(6; ,)

ﬂe(a | S) N Zaf exp(es,a’)

2. Softmax linear Policy
(We will try this in HW2)

Feature vector ¢(s, a) € RY and

parameter § € R¢

exp(0 ' ¢(s, @)

rg(a |s) =

19

Y., exp(0T¢(s, a"))

3. Neural Policy:

Neural network

Jo: SXA-R

exp(fy(s, a))

mya |s) =

2. exp(fo(s, a’))
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Derivation of Policy Gradient: REINFORCE

T= {So,ao,sl,al, }

po(t) = u(so)mg(ag | so)P(sy | 8o, ag)mg(ay | s7). ..

J(”H) — [Ezwpg(r) [2 ]/hl"(Sh, ah>]

h=0

R(7)
V,J(z, )[ Evopgo [Vgln pgo(f)R(f)]

TNp (T) [ lnp(So) + In 72'90(610 | So) + In P(Sl | S0s Clo) + .. ) R(T)]

E ooy (9 [ ln 74, (do | 50) + In 7 (ay | 5,).. )R(r)]
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Derivation of Policy Gradient: REINFORCE

T = {8y, ag, 51, Ay - .- }

po(t) = u(so)mg(ag | so)P(sy | So, ag)me(ay | s1). ..

J(”H) — [E*L'Npg(r) [2 ]/hl"(Sh, ah>]

h=0

R(7)
V(1) = Eropo o [Vgln pgo(T)R(T)]

=E.op o [ v, (1n p(so) + In 7 (ag | 5p) + In Ps, | 55, ) + ... ) R(r)]
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Derivation of Policy Gradient: REINFORCE

T= {So,ao,sl,al, }

po(t) = u(so)mg(ag | so)P(sy | 8o, ag)mg(ay | s7). ..

larger reward traj has

Adjust policy such that
higher likelihood

J(mp) =E. )0 [2 vir(s,, ay)

h=0

R(7)
V(1) = Eropo o [Vgln pQO(T)R(T)]

=E.op o [ v, <ln p(so) + In 7 (ag | 5p) + In Ps, | 55, ) + ... ) R(r)]

= HETN,OQO(T) [V@(ln 7[90(610 | So) + In ﬂeo(al | Sl)‘ . ) R(T)] = [ETN/)H()(T) < Z Vﬁln ﬂ'e()(ah | S/7)> R(T)
h=0
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Summary so far for Policy Gradients

We derived the most basic PG formulation:
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Summary so far for Policy Gradients

We derived the most basic PG formulation:

Increase the likelihood of sampling an trajectory with high total reward
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Obtaining a sample 76,]((9) for REINFORCE (for this approach)

, Wwhere R(7) = Z yhr(sh, a,)
h=0

VJO) =E,_, [( Y Volnzya,| sh)> R(z)
h=0

eV T o So — A o 4t b

NN —

CVo(8) = (2 74Tt L )) =y
WS o
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o 7 |
Jey = E [ o V\(S‘“/q‘ﬂ\ Jfa ﬂ‘éj
H-1
VJ©O) =E,., < Y Vylnzya| sh)> R(7)
h=0

For finite horizon MDP (scgetimes used with PG):

H-1

where R(7) = Z r(sy, ap)

h=0
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For finite horizon MDP (sometimes used with PG):

H-1
VJ(@) = [ETN/)H(T) ( 2 Valn ﬂg(ah | S/1)> R(T)

h=0
H-1
where R(7) = Z r(sy, ap)
h=0

Increase the likelihood of sampling an trajectory with high total reward
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A improved PG formulation, for sampling (for the discounted setting)

VJO) =E,., [( D Vylnzya,| sh)> R(T)]

h=0
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A improved PG formulation, for sampling (for the discounted setting)

VJO) =E,., [( D Vylnzya,| sh)> R(T):|

h=0

- [ETN/)H(T) <
h

M8

oln mp(ay, | s,) z y'r )}
t=h

0
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A improved PG formulation, for sampling (for the discounted setting)

VJIO) =E,., [( D' Vylnzy(a,| sh)> R(T)}
h=0

TN[) (7) |:< z Vﬁln ﬂe(ah | Sh) z }/t},.t>:|
t=h

=0

=

TN/)a(r) [( Z Volnzy(ay | Sh)VhQﬂg(Sha ah>>}

h=0
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A improved PG formulation, for sampling (for the discounted setting)

VJO) =E,., < D Vylnzya,| sh)> R(7)

h=0

[Erfvp@(r) < z Vﬁln ﬂe(ah | Sh) z }/Zrt>
t=h

=0

>

TN/) (7) ( z an ﬂ-@(ah | Sh)thﬂ@(Sh’ ah)>

Intuition: Change action distribution at /4 only affects rewards later on...)
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A improved PG formulation, for sampling (for the discounted setting)

VIO =E,.,q < Y Vyinnya,| sh)> R(z)

h=0

TN[) (1) < Z Vﬁln ﬂﬁ(ah | Sh) Z }/Zrt>
t=h

h=0
= Erpyo < Z Voln zy(ay | 5,)7"Q%(s), ah)>
h=0

Intuition: Change action distribution at /4 only affects rewards later on...)

Exercise: Show this simplified version is equivalent to REINFORCE



A improved PG formulation, for sampling (for the discounted setting)

VJ(Q) = [ETN[)H(T) |:< z Vgln ﬂg(ah | Sh) z }/lrf>:|
h=0 t=h
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Further simplification on PG (e.g., for finite horizon)

h=0 =h

H-1 H-1
VIO =E,., < Z Voln (a,|s;,) - Z r(s,, af)>
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Further simplification on PG (e.g., for finite horizon)

H-1 H-1
VJIO) =E,., ( 2 Voln (a,|s;,) - Z r(s,, aT)>

h=0 7=h

(Change action distribution at / only affects rewards later on...)
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Further simplification on PG (e.g., for finite horizon)

VJ(Q) — [ETN/)H(T) 2 V In ﬂ.ﬁ(ah | Sh) Z r(ST’ T

7=h

(Change action distribution at / only affects rewards later on...)

Exercise:

Show this simplified version is equivalent to REINFORCE
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Summary for today

1. Importance Weighting (the likelihood ratio method)
2. The Policy Gradient:
REINFORCE (a direct application of the likelihood ratio method)

3. With unbiased estimate of V ,J(0), SGA(hopefully) converges to a
local optimal policy.

1-minute feedback form: https://bit.ly/3RHtIxy
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