Policy Gradient Descent

CS/Stat 184: Introduction to Reinforcement Learning
Fall 2022



Today

 Recap

 Joday:
 How do we learn/compute a good policy in an intractably large MDP?
* Policy gradient descent is one of the most effective methods.



Recap



Example:
2-d car navigation
Cost function is designed such that it gets to the goal without colliding with obstacles (in red)




lToday:

Policy Gradient Descent



Policy Optimization
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Today: Policy Gradient Deriviation

Consider parameterized policy:

nyals) = n(als;0) J(0) =E [V”H(So)]
— Elz yhrh //thﬂ'g]
h=0
0.,=0+nV,J(n) ‘9:@ Main question for today’s lecture:

how to compute the gradient?



Outline for today

1. Recap on Gradient Descent (GD) and Stochastic Gradient Descent (SGD)
2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations



Gradient Descent

Given an objective function J(6) : R = R, (e.g., J(0) = =y (o) — y)?)

. L. . Gradient Descent
GD minimizes the above objective function as follows:

Initialize &, fort =0, ... : e e e D)

0.1=0—-nVJ(O)



Stochastic Gradient Descent

Given an objective function J(6) : R = R, (e.g., J(0) = =y (o) — y)?)

Gradient Descent

SGD minimizes the above objective function as follows:

Initialize &, fort =0, ... : e e e D)

Stochastic Gradient Descent

—[g,] = VHJ(Ht)

s
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Brief overview of GD/SGD:

Global optima, local optima, and saddle points (by picture)

For convex functions (with certain regularity conditions, such as “smoothness”),
 GD (with an appropriate constant learning rate) converges to the .
 SGD (with an appropriately decaying learning rate) converges to the global optima.

For non-convex functions, we hope to find a local minima.
What we can prove (under mild regularity conditions) is a little weaker:

* GD (with an appropriate constant learning rate) converges to a saddle point.
 SGD (with an appropriately decaying learning rate) converges to a saddle point.

11



SGD: Convergence to a Stationary Point for Nonconvex Functions

e Def of f-smooth: ||V ,/(O) — V ,J(O)|, < PO — 0yl

» [Theorem] Suppose we run SGD: 0, | = 0, — ;779](6;), for T steps,
where [E ['%J(et)] = V,J(0,) withn = O(l/ﬁ ). Assume:
« J(0) is p-smooth.
» J(0)is bounded: |J(O)| <M, V0.
. VQJ(H) has “bounded second moment”: [E lHVHJ(Ht)H%] < o7,

then, in T steps, SGD will find a @ such that: ||V ,/(0)||* < O (\/M,Baz/T )
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Proof of Convergence to Stationary Point (optional)

If J is f-smooth, then

p
10,1 = 0) = Vg J(0)T 011 = 0) | <1101~ 01

= [J(0,.) —J(O) + nVQJ(Ht)TVQJ(Qt) 'B 2H V(9](6’t)||2

=
= nV,J(0)TV ,J(0) < —JO,.)) + JO,) + inzH VO3
5 Set n =

= E [nV,J(0)TV,J0)] <E 1) - J0O,)] + “no

1
= nE [Z HVQJ(@)\@] < ) E[JO)—JO,)] - ﬂZT 2.2 = — Z HVQJ(Ht)H2<ﬁM+§na

13




Outline for today

1. Recap on Gradient descent and stochastic gradient descent
2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations

14



Importance Sampling (and the Likelihood Ratio Method)

For J(0)) = =P, [f(x)], our goal is to accurately compute V ,/(0) =V, =P, f(x).

e Suppose:
« J(0) is “difficult” to compute.
« Pyis “easy” to compute.

. We have a distribution p, that is easy to sample from and where max P,(x)/p(x) < oo
X

P (x) VP (x) 1 & VoPy(x))
V,J(0) = V, b = Vb — [F N — z:

J(x;)

To compute gradient at 6,: V,J(6)) (in short of V,J(0) ‘9=90)

By setting the sampling distribution p = P90

Vol @) = Eoop, ngln Py - 0]



Importance Sampling (and the Likelihood Ratio Method)

To compute gradient at 6,: V,J(6)) (in short of V,J(0) ‘«9=90)

Vo Py (x)

Vgl(0p) = k., ) Jx)=E.p, lVQInPHO(x) - J(X)
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Example and Intuition

VHJ (9) ‘gzgo — _xNPQO Vé’ln P Qo(x) f (X)

J(x), 0, = 6y +nVy(6)
/
— — Update distribution (via updating 6) such that
—\ P, has high probability mass at regions
P, where f(x) is large
Py

Using same idea, now let’s move on to RL...

18



Outline for today

1. Recap on Gradient descent and stochastic gradient descent
2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations
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Policy Gradient: Examples of Policy Parameterization (discrete actions)

Recall that we consider parameterized policy 7,( - |s) € A(A), Vs

2. Softmax linear Policy
(We will try this in HW2)

3. N | Policy:
1. Softmax Policy for eural Folicy

discrete MDPs:

Neural network

Feature vector (s, a) € R?, and

0 R, Vs, S XA
sa S 5,4 € parameter 8 € R?

exp(é’saa)
Z q’ CXP (es,a’)

my(a | 5) =

exp(@' g (s, a)) exp(fy(s, @)

Toals) = Toals) =

Za/ exp(0' (s, a")) Za, exp(fo(s,a’))
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Derivation of Policy Gradient: REINFORCE

T = {So, ao, Sl,al, }

Po(T) = p(so)mg(ag | So)P(sy | Sg. dg)mglay | 7). ..

Adjust policy such that

o0
J(0)=F__ 2o(7) 2 yhr(sh, a,) larger reward traj has
h—0 higher likelihood

R(z)
Vo (0) = Ermpy o | Voln pa (DR

_TN/A@O(T) [V@ <ln p(SO) + 11’1 ]Z'QO(CZO ‘ SO) —+ ln P(Sl | SO, CZO) + .. ) R(T)]

_TN,OQO(T) [V@ (11’1 7[90(610 ‘ So) + hl 7[90(611 | S1)° . ) R(T)] p— _TN/OHO(T) ( Z V@ln ﬂ@o(ah ‘ Sh)> R(T)
h=0
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Summary so far for Policy Gradients

We derived the most basic PG formulation:

Increase the likelihood of sampling an trajectory with high total reward
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—

Obtaining a sample V ,J(0) for REINFORCE (for this approach)

VJ©O) =E,., '( ) Vylnzya,] sh)) R(T)] where R(r) = ) 7"r(s;, a))
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For finite horizon MDP (sometimes used with PG):

H-1
VJO) =E,.., ( Z Vln my(a, | Sh)) R(7)

h=0
H-1

where R(7) = Z r(s,, a,)

h=0

Increase the likelihood of sampling an trajectory with high total reward
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A improved PG formulation, for sampling (for the discounted setting)

h=0

VJO) =E,.., ( Z Vln my(a, | Sh)) R(7)

=7 py(7) ( Z Voln my(ay | 51) Z y'r r)

~7~py(7) ( Z Voln zy(ay, | 5,)r"Q7(s), ah))
h=0

Intuition: Change action distribution at / only affects rewards later on...)

Exercise: Show this simplified version is equivalent to REINFORCE
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A improved PG formulation, for sampling (for the discounted setting)

VJO) =k, , [( Z Voln zy(ay, | s,) Z 7%)]
h=0 t=h
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Further simplification on PG (e.g., for finite horizon)

H—-1 H—-1
VIO) =E, .0 || D, Volnzyaylsy) - ) r(s.a)
h=0 T=h

(Change action distribution at /& only affects rewards later on...)

Exercise:

Show this simplified version is equivalent to REINFORCE
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Summary for today

1. Importance Weighting (the likelihood ratio method)
2. The Policy Gradient:
REINFORCE (a direct application of the likelihood ratio method)

3. With unbiased estimate of V ,J(0), SGA(hopefully) converges to a
local optimal policy.

1-minute feedback form: https://bit.ly/3RHtIxy


https://bit.ly/3RHtlxy

