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Today

• Recap  

• Today:

• How do we learn/compute a good policy in an intractably large MDP?

• Policy gradient descent is one of the most effective methods.
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Recap
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Example: 

2-d car navigation


Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

4



Today:

Policy Gradient Descent
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Policy Optimization

[AlphaZero, Silver et.al, 17] [OpenAI Five, 18] [OpenAI,19]
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Today: Policy Gradient Deriviation

Consider parameterized policy:

J(θ) := Es0∼μ0 [Vπθ(s0)]
= E[

∞

∑
h=0

γhrh μ0, πθ]

θt+1 = θt + η∇θJ(πθ) |θ=θt

πθ(a |s) = π(a |s; θ)

Main question for today’s lecture: 

how to compute the gradient?
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Outline for today

1. Recap on Gradient Descent (GD) and Stochastic Gradient Descent (SGD)

2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations 
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Gradient Descent

Given an objective function ,  (e.g., )J(θ) : ℝd ↦ ℝ J(θ) = 𝔼x,y( fθ(x) − y)2

GD minimizes the above objective function as follows:

Initialize , for t = 0, … : θ0

θt+1 = θt − η∇J(θt)
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Stochastic Gradient Descent

Given an objective function ,  (e.g., )J(θ) : ℝd ↦ ℝ J(θ) = 𝔼x,y( fθ(x) − y)2

SGD minimizes the above objective function as follows:

Initialize , for t = 0, … : θ0

θt+1 = θt − ηtgt

where 𝔼[gt] = ∇θJ(θt)
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Brief overview of GD/SGD:

• Global optima, local optima, and saddle points (by picture) 
 

• For convex functions (with certain regularity conditions, such as “smoothness”),

•  GD (with an appropriate constant learning rate) converges to the global optima.

• SGD (with an appropriately decaying learning rate) converges to the global optima. 

• For non-convex functions, we hope to find a local minima. 

• What we can prove (under mild regularity conditions) is a little weaker:

• GD (with an appropriate constant learning rate) converges to a saddle point.

• SGD (with an appropriately decaying learning rate) converges to a saddle point.
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SGD: Convergence to a Stationary Point for Nonconvex Functions

• Def of -smooth: β ∥∇θJ(θ) − ∇θJ(θ0)∥2 ≤ β∥θ − θ0∥2

• [Theorem] Suppose we run SGD: , for  steps,  

where  with . Assume:


•  is -smooth. 

•  is bounded: .


•  has “bounded second moment”: 


then, in  steps, SGD will find a  such that: .

θt+1 = θt − η ∇̃ θJ(θt) T
𝔼 [ ∇̃ θJ(θt)] = ∇θJ(θt) η = O(1/ T)

J(θ) β
J(θ) |J(θ) | ≤ M, ∀θ
∇̃ θJ(θ) 𝔼 [∥∇̃ θJ(θt)∥2

2] ≤ σ2,

T θ ∥∇θJ(θ)∥2 ≤ O ( Mβσ2/T )
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Proof of Convergence to Stationary Point (optional)

J(θt+1) − J(θt) − ∇θJ(θt)⊤(θt+1 − θt) ≤
β
2

∥θt+1 − θt∥2
2

⇒ J(θt+1) − J(θt) + η∇θJ(θt)⊤ ∇̃ θJ(θt) ≤
β
2

η2∥∇̃ θJ(θt)∥2
2

⇒ η∇θJ(θt)⊤ ∇̃ θJ(θt) ≤ − J(θt+1) + J(θt) +
β
2

η2∥∇̃ θJ(θt)∥2
2

⇒ 𝔼 [η∇θJ(θt)⊤ ∇θJ(θt)] ≤ 𝔼 [J(θt) − J(θt+1)] +
β
2

η2σ2

⇒ η𝔼 [∑
t

∥∇θJ(θt)∥2
2] ≤ ∑

t

𝔼 [J(θt) − J(θt+1)] +
βT
2

η2σ2 ⇒
1
T ∑

t

∥∇θJ(θt)∥2
2 ≤

1
ηT

M +
β
2

ησ2

Set η = M/(βσ2T)

If  is -smooth, then J β J(θ) − J(θ0) − ∇θJ(θ0)⊤(θ − θ0) ≤
β
2

∥θ − θ0∥2
2, ∀θ, θ0
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Outline for today

1. Recap on Gradient descent and stochastic gradient descent

2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations 
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Importance Sampling (and the Likelihood Ratio Method)

For , our goal is to accurately compute .J(θ) = 𝔼x∼Pθ [f(x)] ∇θJ(θ) = ∇θ𝔼x∼Pθ
f(x)

• Suppose:

•  is “difficult” to compute.

•  is “easy” to compute.


• We have a distribution that is easy to sample from and where 

J(θ)
Pθ

ρ, max
x

Pθ(x)/ρ(x) < ∞

∇θJ(θ) = ∇θ𝔼x∼Pθ
f(x) = ∇θ𝔼x∼ρ

Pθ(x)
ρ(x)

f(x) = 𝔼x∼ρ
∇θPθ(x)

ρ(x)
f(x) ≈

1
N

N

∑
i=1

∇θPθ(xi)
ρ(xi)

f(xi)

By setting the sampling distribution ρ = Pθ0

∇θJ(θ0) = 𝔼x∼Pθ0 [∇θln Pθ0
(x) ⋅ f(x)]

To compute gradient at :   (in short of )θ0 ∇θJ(θ0) ∇θJ(θ) |θ=θ0
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Importance Sampling (and the Likelihood Ratio Method)

By setting the sampling distribution ρ = Pθ0

∇θJ(θ0) = 𝔼x∼ρ
∇θPθ0

(x)
ρ(x)

f(x) = 𝔼x∼Pθ0 [∇θln Pθ0
(x) ⋅ f(x)]

To compute gradient at :   (in short of )θ0 ∇θJ(θ0) ∇θJ(θ) |θ=θ0
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Example and Intuition 

∇θJ(θ) |θ=θ0
= 𝔼x∼Pθ0

∇θln Pθ0
(x) ⋅ f(x)

f(x)

x

Pθ

Pθ0Pθ1

θ1 = θ0 + η∇θJ(θ0)

Update distribution (via updating ) such that 
 has high probability mass at regions 

where  is large

θ
Pθ

f(x)

Using same idea, now let’s move on to RL…
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Outline for today

1. Recap on Gradient descent and stochastic gradient descent

2. Warm up: computing gradient using importance weighting

3. Policy Gradient formulations 
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Policy Gradient: Examples of Policy Parameterization (discrete actions)

1. Softmax Policy for 
discrete MDPs:

θs,a ∈ ℝ, ∀s, a ∈ S × A

πθ(a |s) =
exp(θs,a)

∑a′ 
exp(θs,a′ 

)

2. Softmax linear Policy 
(We will try this in HW2)

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) =
exp(θ⊤ϕ(s, a))

∑a′ 
exp(θ⊤ϕ(s, a′ ))

3. Neural Policy:

Neural network  
fθ : S × A ↦ ℝ

πθ(a |s) =
exp( fθ(s, a))

∑a′ 
exp( fθ(s, a′ ))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s
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Derivation of Policy Gradient: REINFORCE

τ = {s0, a0, s1, a1, …}

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)πθ(a1 |s1)…

J(θ) = 𝔼τ∼ρθ(τ) [
∞

∑
h=0

γhr(sh, ah)]
R(τ)

∇θJ(θ0) = 𝔼τ∼ρθ0(τ) [∇θln ρθ0
(τ)R(τ)]

= 𝔼τ∼μθ0(τ) [∇θ(ln ρ(s0) + ln πθ0
(a0 |s0) + ln P(s1 |s0, a0) + …) R(τ)]

= 𝔼τ∼ρθ0(τ) [∇θ(ln πθ0
(a0 |s0) + ln πθ0

(a1 |s1)…) R(τ)] = 𝔼τ∼ρθ0(τ) (
∞

∑
h=0

∇θln πθ0
(ah |sh)) R(τ)

Adjust policy such that 
larger reward traj has 

higher likelihood
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Summary so far for Policy Gradients

We derived the most basic PG formulation:

∇J(θ) = 𝔼τ∼ρθ(τ) (
∞

∑
h=0

∇θln πθ(ah |sh)) R(τ)

Increase the likelihood of sampling an trajectory with high total reward
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Obtaining a sample  for REINFORCE (for this approach)∇̃ θJ(θ)

, where ∇J(θ) = 𝔼τ∼ρθ(τ) (
∞

∑
h=0

∇θln πθ(ah |sh)) R(τ) R(τ) =
∞

∑
h=0

γhr(sh, ah)
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For finite horizon MDP (sometimes used with PG):

∇J(θ) = 𝔼τ∼ρθ(τ) (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

Increase the likelihood of sampling an trajectory with high total reward

where R(τ) =
H−1

∑
h=0

r(sh, ah)
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A improved PG formulation, for sampling (for the discounted setting)

∇J(θ) = 𝔼τ∼ρθ(τ) (
∞

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= 𝔼τ∼ρθ(τ) (
∞

∑
h=0

∇θln πθ(ah |sh)
∞

∑
t=h

γtrt)
= 𝔼τ∼ρθ(τ) (

∞

∑
h=0

∇θln πθ(ah |sh)γhQπθ(sh, ah))
Intuition: Change action distribution at  only affects rewards later on…)h

Exercise: Show this simplified version is equivalent to REINFORCE
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A improved PG formulation, for sampling (for the discounted setting)

∇J(θ) = 𝔼τ∼ρθ(τ) (
∞

∑
h=0

∇θln πθ(ah |sh)
∞

∑
t=h

γtrt)
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Further simplification on PG (e.g., for finite horizon)

∇J(θ) = 𝔼τ∼ρθ(τ) (
H−1

∑
h=0

∇θln πθ(ah |sh) ⋅
H−1

∑
τ=h

r(sτ, aτ))
(Change action distribution at  only affects rewards later on…)h

Exercise: 

Show this simplified version is equivalent to REINFORCE
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1. Importance Weighting (the likelihood ratio method)

2. The Policy Gradient: 

REINFORCE (a direct application of the likelihood ratio method) 




3. SGAscent With unbiased estimate of , SGA(hopefully) converges to a 
local optimal policy.

∇J(θ) = 𝔼τ∼ρθ(τ) (
∞

∑
h=0

∇θln πθ(ah |sh)) R(τ)

∇θJ(θ)

Summary for today

1-minute feedback form: https://bit.ly/3RHtlxy 
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