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Today

• Recap++

• will clarify few points based on feedback. 

• Today:

1. Estimation of Stochastic Gradients

2. Variance Reduction

3. More Variance Reduction (baselines)
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Recap++ 
(some new material and clarifications)
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Recap Outline:

1. The Learning Setting

2. Objective: direct policy optimization. 

3. General convergence: properties of SGD

4. Importance Sampling 

& Deriving a Policy Gradient Expression
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The Learning Setting: 
We don’t know the MDP, but we can obtain trajectories.

The Finite Horizon, Learning Setting. We can obtain trajectories as follows:

• We start at .

• We act for  steps and observe the trajectory  

The Infinite Horizon, Discounted Learning Setting. We can obtain trajectories as follows:

• We start at .

• We can obtain a “long trajectories” 

• Suppose we can terminate the trajectory at will. 

(and sufficient long trajectories will well approximate the discounted value function) 
 

Note that with a simulator, we can sample trajectories as specified in the above.

s0 ∼ μ0
H τ = {s0, a0, s1, a1, …, sH−1, aH−1}

s0 ∼ μ0
τ = {s0, a0, s1, a1, …}
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& Deriving a Policy Gradient Expression
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Policy Optimization: 
our goal is to do well on “large” problems

[AlphaZero, Silver et.al, 17] [OpenAI Five, 18] [OpenAI,19]

7



Recap: Policy Parameterization

1. Softmax linear Policy 
(We will try this in HW2)

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) =
exp(θ⊤ϕ(s, a))

∑a′￼
exp(θ⊤ϕ(s, a′￼))

2. Neural Policy:

Neural network  
fθ : S × A ↦ ℝ

πθ(a |s) =
exp( fθ(s, a))

∑a′￼
exp( fθ(s, a′￼))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s
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Our Objective and Policy Gradient Ascent

J(θ) := Es0∼μ0 [Vπθ(s0)]
= E[

∞

∑
h=0

γhrh μ0, πθ]
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• Objective:  try to find “good” parameters 
	 


• Approach:  stochastic gradient descent (or gradient descent) 
	

max
θ

J(θ)

θt+1 = θt + η ∇̃ θJ(θt)

J(θ) := Es0∼μ0 [Vπθ(s0)]
= E[

H−1

∑
h=0

rh μ0, πθ]

We consider either discounted or finite horizon settings.
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Stochastic Gradient Descent

Given an objective function ,  (e.g., )J(θ) : ℝd ↦ ℝ J(θ) = 𝔼x,y( fθ(x) − y)2

SGD minimizes the above objective function as follows:

Initialize , for t = 0, … : θ0

θt+1 = θt − ηt ∇̃ θJ(θt)

where 𝔼 [ ∇̃ θJ(θt)] = ∇θJ(θt)
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SGD: Convergence to a Stationary Point for Nonconvex Functions

• Def of -smooth: β ∥∇θJ(θ) − ∇θJ(θ0)∥2 ≤ β∥θ − θ0∥2

• [Theorem] (informal) Suppose we run SGD: , for  steps,  

where  with . Assume:


•  is -smooth. 

•  is bounded: .


•  has “bounded variance”: 


then, in  steps, SGD will find a  such that:  
	 .

θt+1 = θt − η ∇̃ θJ(θt) T
𝔼 [ ∇̃ θJ(θt)] = ∇θJ(θt) η = O(1/ T)

J(θ) β
J(θ) |J(θ) | ≤ M, ∀θ
∇̃ θJ(θ) 𝔼 [∥∇θJ(θt) − ∇̃ θJ(θt)∥2

2] ≤ σ2,

T θ
∥∇θJ(θ)∥ ≤ O ((Mβσ2/T)1/4 + (Mβ/T)1/2)
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Formally, we have 𝔼[ min
t≤T

∥∇θJ(θt)∥2] ≤ O ( Mβσ2/T + Mβ/T)
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Importance Sampling (and the Likelihood Ratio Method)

For , our goal is to accurately approximate . 
(We want to avoid computing the integral/sum.)

J(θ) = 𝔼x∼Pθ [f(x)] ∇θJ(θ) = ∇θ𝔼x∼Pθ
f(x)

• Often, we are in setting where:

•  is “easy” to compute.


• We have a distribution that is easy to sample from and where  

(sometimes we use  itself as )

Pθ
ρ, max

x
Pθ(x)/ρ(x) < ∞

Pθ ρ

∇θJ(θ) = ∇θ𝔼x∼Pθ
f(x) = ∇θ𝔼x∼ρ

Pθ(x)
ρ(x)

f(x) = 𝔼x∼ρ
∇θPθ(x)

ρ(x)
f(x) ≈

1
N

N

∑
i=1

∇θPθ(xi)
ρ(xi)

f(xi)

By setting the sampling distribution ρ = Pθ0

∇θJ(θ0) = 𝔼x∼Pθ0 [∇θln Pθ0
(x) ⋅ f(x)]

To compute gradient at :   (in short of )θ0 ∇θJ(θ0) ∇θJ(θ) |θ=θ0
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We derived the most basic PG formulation:

Increase the likelihood of sampling an trajectory with high total reward
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Recap: the REINFORCE Algorithm (discounted case)

, where ∇J(θ) = 𝔼τ∼ρθ(τ) (
∞

∑
h=0

∇θln πθ(ah |sh)) R(τ) R(τ) =
∞

∑
h=0

γhr(sh, ah)



Recap: the REINFORCE Algorithm  
(finite horizon case)

τ = {s0, a0, s1, a1, …, sH−1, aH−1}

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)πθ(a1 |s1)…
J(θ) = 𝔼τ∼ρθ(τ) [

H−1

∑
h=0

r(sh, ah)]
R(τ)

∇θJ(θ) := 𝔼τ∼ρθ(τ) (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)
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Derivation of Policy Gradient: REINFORCE for finite H

τ = {s0, a0, s1, a1, …}

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)πθ(a1 |s1)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

J(θ) = 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

r(sh, ah)]
R(τ)

∇θJ(θ0) = 𝔼τ∼ρθ0(τ) [∇θln ρθ0
(τ)R(τ)]

= 𝔼τ∼μθ0(τ) [∇θ(ln ρ(s0) + ln πθ0
(a0 |s0) + ln P(s1 |s0, a0) + …) R(τ)]

= 𝔼τ∼ρθ0(τ) [∇θ(ln πθ0
(a0 |s0) + ln πθ0

(a1 |s1)…) R(τ)] = 𝔼τ∼ρθ0(τ) (
H−1

∑
h=0

∇θln πθ0
(ah |sh)) R(τ)
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Today:

Policy Gradient Descent
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Outline:

1. Estimation of Stochastic Gradients

2. Variance Reduction

3. More Variance Reduction (baselines)
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Obtaining an Unbiased Gradient Estimate at θ0

∇θJ(θ) := 𝔼τ∼ρθ(τ) (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

1. Obtain a trajectory  
(which we can do in our learning setting)


2. Set:  

	  

We have: 

τ ∼ ρθ0

∇̃ θJ(θ0) :=
H−1

∑
h=0

∇ln πθ0
(ah |sh)R(τ)

𝔼[ ∇̃ θJ(θ0)] = ∇θJ(πθ0
)
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PG with REINFORCE:

1. Initialize , parameters: 

2. For t = 0, … : 


1. Obtain a trajectory  

Set  

2. Update: 

θ0 η1, η2, …

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)R(τ)

θt+1 = θt + ηt ∇̃ θJ(θt)
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The (mini-batch) PG procedure with REINFORCE  
(reducing variance using batch sizes of )M

1. Initialize , parameters: 

2. For t = 0, … : 


1. Init  and do  times: 
Obtain a trajectory  

Set  

Set  

2. Update: 

θ0 η1, η2, …

g = 0 M
τ ∼ ρθt

g = g +
H−1

∑
h=0

∇ln πθt
(ah |sh)R(τ)

∇̃ θJ(θt) :=
1
M

g

θt+1 = θt + ηt ∇̃ θJ(θt)
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Outline:

1. Estimation of Stochastic Gradients

2. Variance Reduction

3. More Variance Reduction:  Baselines and Advantages
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A improved PG formulation, for sampling (finite horizon setting)

∇J(θ) = 𝔼τ∼ρθ(τ) (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= 𝔼τ∼ρθ(τ)

H−1

∑
h=0 (∇θln πθ(ah |sh)

H−1

∑
t=h

rt)
= 𝔼τ∼ρθ(τ) [

H−1

∑
h=0

∇θln πθ(ah |sh)Q
πθ
h (sh, ah)]

Intuition: Change action distribution at  only affects rewards later on…)h

HW: You will show these simplified version are also valid PG expressions
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Proof sketch
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𝔼ah∼πθ(⋅|sh) [∇θln πθ(ah |sh)f(s0, a0, …sh−1, ah−1, sh) s0, a0, …sh−1, ah−1, sh]
= f(s0, a0, …sh−1, ah−1, sh)𝔼ah∼πθ(⋅|sh) [∇θln πθ(ah |sh) s0, a0, …sh−1, ah−1, sh] = ??

Let  be an arbitrary function.f(s0, a0, …sh−1, ah−1, sh)



An improved PG procedure:

1. Initialize , parameters: 

2. For t = 0, … : 


1. Obtain a trajectory  

Set  

2. Update: 

θ0 η1, η2, …

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0 (∇ln πθt

(ah |sh)
H−1

∑
t=h

rt)
θt+1 = θt + ηt ∇̃ θJ(θt)
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A improved PG formulation, for sampling (for the discounted setting)

∇J(θ) = 𝔼τ∼ρθ(τ) (
∞

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= 𝔼τ∼ρθ(τ)

∞

∑
h=0 (∇θln πθ(ah |sh)

∞

∑
t=h

γtrt)
= 𝔼τ∼ρθ(τ) [

∞

∑
h=0

∇θln πθ(ah |sh)γhQπθ(sh, ah)]
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Outline:

1. Estimation of Stochastic Gradients

2. Variance Reduction

3. More Variance Reduction:  Baselines and Advantages
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With a “baseline” function:

∇J(θ) = 𝔼τ∼ρθ(τ)

H−1

∑
h=0

∇θln πθ(ah |sh)(
H−1

∑
t=h

rt − bh(sh))

= 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

For any function , we have:bh(s)
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(M=1) SGD with a Naive (constant) Baseline:

1. Initialize , parameters: 

2. For t = 0, … : 


1. Using  trajectories sampled under , set 




2. Obtain a trajectory  

Set  

3. Update: 

θ0 η1, η2, …

N πθt

b̃h =
1
N

N

∑
i=1

Rh(τi)

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃h)

θt+1 = θt + ηt ∇̃ θJ(θt)

• On a trajectory , define:

.


• Let try to use a constant 
(time-dependent) baseline: 

 

τ

Rh(τ) =
H−1

∑
t=h

rt

bθ
h = 𝔼τ∼ρθ(τ)E [Rh(τ)]
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The Advantage Function (finite horizon)

Vπ
h (s) = 𝔼 [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = 𝔼 [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 


• We have that: 

	 


• For the discounted case, 

Aπ
h (s, a) = Qπ

h (s, a) − Vπ
h (s, a)

Ea∼π(⋅|s)[Ah(s, a) s, h] = ∑
a

π(a |s)Ah(s, a) = ??

Aπ(s, a) = Qπ(s, a) − Vπ(s, a)
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The Advantage-based PG: 

• The second step follows by choosing .

• In practice, the most common approach is to use  as an estimate of . 

bh(s) = Vπ
h (s)

bh(s) Vπ
h (s)

= 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)A
πθ
h (sh, ah)]

∇J(θ) = 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]
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Summary so far:
Variance reduction with:

• Improvement over REINFORCE

• baseline functions (and the “advantage” formulation)

∇J(θ) = 𝔼τ∼ρθ(τ)

H−1

∑
h=0

∇θln πθ(ah |sh)(
H−1

∑
t=h

rt − bh(sh))
= 𝔼τ∼ρθ(τ) [

H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

1-minute feedback form: https://bit.ly/3RHtlxy 

= 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)A
πθ
h (sh, ah)]
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https://bit.ly/3RHtlxy

