Policy Gradient Methods (continued)

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning
Fall 2022

Today

- Recap++
- will clarify few points based on feedback.
- Today:

1. Estimation of Stochastic Gradients
2. Variance Reduction
3. More Variance Reduction (baselines)

Recap++

(some new material and clarifications)

Recap Outline:

1. The Learning Setting
2. Objective: direct policy optimization.
3. General convergence: properties of SGD
4. Importance Sampling
\& Deriving a Policy Gradient Expression

The Learning Setting:

We don't know the MDP, but we can obtain trajectories.

The Finite Horizon, Learning Setting. We can obtain trajectories as follows:

- We start at $s_{0} \sim \mu_{0}$.
- We act for H steps and observe the trajectory $\tau=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots, s_{H-1}, a_{H-1}\right\}$

The Infinite Horizon, Discounted Learning Setting. We can obtain trajectories as follows:

- We start at $s_{0} \sim \mu_{0}$.
- We can obtain a "long trajectories" $\tau=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots\right\}$
- Suppose we can terminate the trajectory at will. (and sufficient long trajectories will well approximate the discounted value function)

Note that with a simulator, we can sample trajectories as specified in the above.

Recap Outline:

1. The Learning Setting
2. Objective: direct policy optimization.
3. General convergence: properties of SGD
4. Importance Sampling
\& Deriving a Policy Gradient Expression

Policy Optimization:

our goal is to do well on "large" problems

[AlphaZero, Silver et.al, 17]

[OpenAl Five, 18]

[OpenAI, 19]

Recap: Policy Parameterization

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

1. Softmax linear Policy (We will try this in HW2)

Feature vector $\phi(s, a) \in \mathbb{R}^{d}$, and parameter $\theta \in \mathbb{R}^{d}$
$\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta^{\top} \phi(s, a)\right)}{\sum_{a^{\prime}} \exp \left(\theta^{\top} \phi\left(s, a^{\prime}\right)\right)}$

2. Neural Policy:

$$
\begin{gathered}
\text { Neural network } \\
f_{\theta}: S \times A \mapsto \mathbb{R} \\
\pi_{\theta}(a \mid s)=\frac{\exp \left(f_{\theta}(s, a)\right)}{\sum_{a^{\prime}} \exp \left(f_{\theta}\left(s, a^{\prime}\right)\right)}
\end{gathered}
$$

Our Objective and Policy Gradient Ascent

We consider either discounted or finite horizon settings.

$$
\begin{aligned}
J(\theta) & :=E_{s_{0} \sim \mu_{0}}\left[V^{\pi_{\theta}}\left(s_{0}\right)\right] \\
& =E\left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} \mid \mu_{0}, \pi_{\theta}\right]
\end{aligned}
$$

$$
\begin{aligned}
J(\theta) & :=E_{s_{0} \sim \mu_{0}}\left[V^{\pi_{\theta}}\left(s_{0}\right)\right] \\
& =E\left[\sum_{h=0}^{H-1} r_{h} \mid \mu_{0}, \pi_{\theta}\right]
\end{aligned}
$$

- Objective: try to find "good" parameters
$\max J(\theta)$
θ
- Approach: stochastic gradient descent (or gradient descent)

$$
\theta_{t+1}=\theta_{t}+\eta \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)
$$

Recap Outline:

1. The Learning Setting
2. Objective: direct policy optimization.
3. General convergence: properties of SGD
4. Importance Sampling
\& Deriving a Policy Gradient Expression

Stochastic Gradient Descent

Given an objective function $J(\theta): \mathbb{R}^{d} \mapsto \mathbb{R},\left(\right.$ e.g., $\left.J(\theta)=\mathbb{E}_{x, y}\left(f_{\theta}(x)-y\right)^{2}\right)$
Gradient Descent

SGD minimizes the above objective function as follows:

Initialize θ_{0}, for $\mathrm{t}=0, \ldots$:

$$
\theta_{t+1}=\theta_{t}-\eta_{t} \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)
$$

where $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)\right]=\nabla_{\theta} J\left(\theta_{t}\right)$

Stochastic Gradient Descent

SGD: Convergence to a Stationary Point for Nonconvex Functions

- Def of β-smooth: $\left\|\nabla_{\theta} J(\theta)-\nabla_{\theta} J\left(\theta_{0}\right)\right\|_{2} \leq \beta\left\|\theta-\theta_{0}\right\|_{2}$
- [Theorem] (informal) Suppose we run SGD: $\theta_{t+1}=\theta_{t}-\eta \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)$, for T steps, where $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)\right]=\nabla_{\theta} J\left(\theta_{t}\right)$ with $\eta=O(1 / \sqrt{T})$. Assume:
- $J(\theta)$ is β-smooth.
- $J(\theta)$ is bounded: $|J(\theta)| \leq M, \forall \theta$.
- $\widetilde{\nabla}_{\theta} J(\theta)$ has "bounded variance": $\mathbb{E}\left[\left\|\nabla_{\theta} J\left(\theta_{t}\right)-\widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)\right\|_{2}^{2}\right] \leq \sigma^{2}$,
then, in T steps, SGD will find a θ such that:

$$
\left\|\nabla_{\theta} J(\theta)\right\| \leq O\left(\left(M \beta \sigma^{2} / T\right)^{1 / 4}+(M \beta / T)^{1 / 2}\right) .
$$

Formally, we have $\mathbb{E}\left[\min _{t \leq T}\left\|\nabla_{\theta} J\left(\theta_{t}\right)\right\|^{2}\right] \leq O\left(\sqrt{M \beta \sigma^{2} / T}+M \beta / T\right)$

Recap Outline:

1. The Learning Setting
2. Objective: direct policy optimization.
3. General convergence: properties of SGD
4. Importance Sampling
\& Deriving a Policy Gradient Expression

Importance Sampling (and the Likelihood Ratio Method)

For $J(\theta)=\mathbb{E}_{x \sim P_{\theta}}[f(x)]$, our goal is to accurately approximate $\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)$.
(We want to avoid computing the integral/sum.)

- Often, we are in setting where:
- P_{θ} is "easy" to compute.
- We have a distribution ρ, that is easy to sample from and where $\max P_{\theta}(x) / \rho(x)<\infty$ (sometimes we use P_{θ} itself as ρ)

$$
\nabla_{\theta} J(\theta)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}} f(x)=\nabla_{\theta} \mathbb{E}_{x \sim \rho} \frac{P_{\theta}(x)}{\rho(x)} f(x)=\mathbb{E}_{x \sim \rho} \frac{\nabla_{\theta} P_{\theta}(x)}{\rho(x)} f(x) \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\nabla_{\theta} P_{\theta}\left(x_{i}\right)}{\rho\left(x_{i}\right)} f\left(x_{i}\right)
$$

To compute gradient at $\theta_{0}: \nabla_{\theta} J\left(\theta_{0}\right)$ (in short of $\left.\nabla_{\theta} J(\theta)\right|_{\theta=\theta_{0}}$)
By setting the sampling distribution $\rho=P_{\theta_{0}}$

$$
\nabla_{\theta} J\left(\theta_{0}\right)=\mathbb{E}_{x \sim P_{\theta_{0}}}\left[\nabla_{t_{4}} \ln P_{\theta_{0}}(x) \cdot f(x)\right]
$$

Recap: the REINFORCE Algorithm (discounted case)

We derived the most basic PG formulation:

$$
\nabla J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right], \text { where } R(\tau)=\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right)
$$

Increase the likelihood of sampling an trajectory with high total reward

Recap: the REINFORCE Algorithm

(finite horizon case)

$$
\begin{gathered}
\tau=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots, s_{H-1}, a_{H-1}\right\} \\
\rho_{\theta}(\tau)=\mu\left(s_{0}\right) \pi_{\theta}\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \pi_{\theta}\left(a_{1} \mid s_{1}\right) \ldots
\end{gathered} \quad J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \underbrace{\left[\sum_{h=0}^{H-1} r\left(s_{h}, a_{h}\right)\right]}_{R(\tau)}
$$

$$
\nabla_{\theta} J(\theta):=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right]
$$

Derivation of Policy Gradient: REINFORCE for finite H

$$
\begin{aligned}
& \tau=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots\right\} \\
& \rho_{\theta}(\tau)=\mu\left(s_{0}\right) \pi_{\theta}\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \pi_{\theta}\left(a_{1} \mid s_{1}\right) \ldots P\left(s_{H-1} \mid s_{H-2}, a_{H-2}\right) \pi_{\theta}\left(a_{H-1} \mid s_{H-1}\right) \\
& J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \underbrace{\left[\begin{array}{l}
R(\tau) \\
\nabla_{\theta} \ln \rho_{\theta_{0}}(\tau) \\
\nabla_{\theta} J\left(\theta_{0}\right)
\end{array}\right)=\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}[\tau)}_{\left.\sum_{h=0}^{R-1} r\left(s_{h}, a_{h}\right)\right]} \\
& =\mathbb{E}_{\tau \sim \mu_{\theta_{0}}(\tau)}\left[\nabla_{\theta}\left(\ln \rho\left(s_{0}\right)+\ln \pi_{\theta_{0}}\left(a_{0} \mid s_{0}\right)+\ln P\left(s_{1} \mid s_{0}, a_{0}\right)+\ldots\right) R(\tau)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\nabla_{\theta}\left(\ln \pi_{\theta_{0}}\left(a_{0} \mid s_{0}\right)+\ln \pi_{\theta_{0}}\left(a_{1} \mid s_{1}\right) \ldots\right) R(\tau)\right]=\mathbb{E}_{\tau \sim \rho_{\theta_{0}}(\tau)}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta_{0}}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right]
\end{aligned}
$$

Today:
Policy Gradient Descent

Outline:

1. Estimation of Stochastic Gradients
2. Variance Reduction
3. More Variance Reduction (baselines)

Obtaining an Unbiased Gradient Estimate at θ_{0}

$$
\nabla_{\theta} J(\theta):=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right]
$$

1. Obtain a trajectory $\tau \sim \rho_{\theta_{0}}$
(which we can do in our learning setting)
2. Set:

$$
\widetilde{\nabla}_{\theta} J\left(\theta_{0}\right):=\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta_{0}}\left(a_{h} \mid s_{h}\right) R(\tau)
$$

We have: $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J\left(\theta_{0}\right)\right]=\nabla_{\theta} J\left(\pi_{\theta_{0}}\right)$

PG with REINFORCE:

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $t=0, \ldots$:
3. Obtain a trajectory $\tau \sim \rho_{\theta_{t}}$

$$
\text { Set } \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)=\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right) R(\tau)
$$

2. Update: $\theta_{t+1}=\theta_{t}+\eta_{t} \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)$

The (mini-batch) PG procedure with REINFORCE

(reducing variance using batch sizes of M)

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $t=0, \ldots$:
3. Init $g=0$ and do M times:

Obtain a trajectory $\tau \sim \rho_{\theta_{t}}$

$$
\begin{aligned}
& \text { Set } g=g+\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right) R(\tau) \\
& \text { Set } \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right):=\frac{1}{M} g
\end{aligned}
$$

2. Update: $\theta_{t+1}=\theta_{t}+\eta_{t} \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)$

Outline:

1. Estimation of Stochastic Gradients
2. Variance Reduction
3. More Variance Reduction: Baselines and Advantages

A improved PG formulation, for sampling (finite horizon setting)

$$
\begin{aligned}
\nabla J(\theta)= & \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1}\left(\nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \sum_{t=h}^{H-1} r_{t}\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) Q_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)\right]
\end{aligned}
$$

Intuition: Change action distribution at h only affects rewards later on...)
HW: You will show these simplified version are also valid PG expressions

Proof sketch

Let $f\left(s_{0}, a_{0}, \ldots s_{h-1}, a_{h-1}, s_{h}\right)$ be an arbitrary function.

$$
\begin{aligned}
& \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(\cdot \mid s_{h}\right)}\left[\nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) f\left(s_{0}, a_{0}, \ldots s_{h-1}, a_{h-1}, s_{h}\right) \mid s_{0}, a_{0}, \ldots s_{h-1}, a_{h-1}, s_{h}\right] \\
& =f\left(s_{0}, a_{0}, \ldots s_{h-1}, a_{h-1}, s_{h}\right) \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(\cdot \mid s_{h}\right)}\left[\nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \mid s_{0}, a_{0}, \ldots s_{h-1}, a_{h-1}, s_{h}\right]=? ?
\end{aligned}
$$

An improved PG procedure:

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $t=0, \ldots$:
3. Obtain a trajectory $\tau \sim \rho_{\theta_{t}}$

$$
\text { Set } \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)=\sum_{h=0}^{H-1}\left(\nabla \ln \pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right) \sum_{t=h}^{H-1} r_{t}\right)
$$

2. Update: $\theta_{t+1}=\theta_{t}+\eta_{t} \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)$

A improved PG formulation, for sampling (for the discounted setting)

$$
\begin{aligned}
\nabla J(\theta)= & \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\left(\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{\infty}\left(\nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \sum_{t=h}^{\infty} \gamma^{t} r_{t}\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{\infty} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \gamma^{h} Q^{\pi_{\theta}}\left(s_{h}, a_{h}\right)\right]
\end{aligned}
$$

Outline:

1. Estimation of Stochastic Gradients
2. Variance Reduction
3. More Variance Reduction: Baselines and Advantages

With a "baseline" function:
For any function $b_{h}(s)$, we have:

$$
\begin{aligned}
\nabla J(\theta) & =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(\sum_{t=h}^{H-1} r_{t}-b_{h}\left(s_{h}\right)\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum _ { h = 0 } ^ { H - 1 } \nabla _ { \theta } \operatorname { l n } \pi _ { \theta } (a _ { h } | s _ { h }) \left(Q_{h}^{\left.\left.\pi_{\theta}\left(s_{h}, a_{h}\right)-b_{h}\left(s_{h}\right)\right)\right]}\right.\right.
\end{aligned}
$$

($M=1$) SGD with a Naive (constant) Baseline:

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $t=0, \ldots$:
3. Using N trajectories sampled under $\pi_{\theta_{l}}$, set
$\widetilde{b}_{h}=\frac{1}{N} \sum_{i=1}^{N} R_{h}\left(\tau_{i}\right)$
4. Obtain a trajectory $\tau \sim \rho_{\theta_{t}}$

Set $\widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)=\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)\left(R_{h}(\tau)-\widetilde{b}_{h}\right)$
3. Update: $\theta_{t+1}=\theta_{t}+\eta_{t} \widetilde{\nabla}_{\theta} J\left(\theta_{t}\right)$

The Advantage Function (finite horizon)

$$
V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid s_{h}=s\right] \quad Q_{h}^{\pi}(s, a)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid\left(s_{h}, a_{h}\right)=(s, a)\right]
$$

- The Advantage function is defined as:

$$
A_{h}^{\pi}(s, a)=Q_{h}^{\pi}(s, a)-V_{h}^{\pi}(s, a)
$$

- We have that:

$$
E_{a \sim \pi(\cdot \mid s)}\left[A_{h}(s, a) \mid s, h\right]=\sum_{a} \pi(a \mid s) A_{h}(s, a)=? ?
$$

- For the discounted case, $A^{\pi}(s, a)=Q^{\pi}(s, a)-V^{\pi}(s, a)$

The Advantage-based PG:

$$
\begin{aligned}
\nabla J(\theta) & =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(Q_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)-b_{h}\left(s_{h}\right)\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) A_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)\right]
\end{aligned}
$$

- The second step follows by choosing $b_{h}(s)=V_{h}^{\pi}(s)$.
- In practice, the most common approach is to use $b_{h}(s)$ as an estimate of $V_{h}^{\pi}(s)$.

Summary so far:

Variance reduction with:

- Improvement over REINFORCE
- baseline functions (and the "advantage" formulation)

$$
\begin{aligned}
\nabla J(\theta) & =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(\sum_{t=h}^{H-1} r_{t}-b_{h}\left(s_{h}\right)\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(Q_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)-b_{h}\left(s_{h}\right)\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) A_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)\right]
\end{aligned}
$$

1-minute feedback form: https://bit.ly/3RHtlxy

