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Today

• Recap 

• Today:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:


1. Direct approach

2. An iterative approach
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The Learning Setting: 
We don’t know the MDP, but we can obtain trajectories.

The Finite Horizon, Learning Setting. We can obtain trajectories as follows:

• We start at .

• We act for  steps and observe the trajectory  

The Infinite Horizon, Discounted Learning Setting. We can obtain trajectories as follows:

• We start at .

• We can obtain a “long trajectories” 

• Suppose we can terminate the trajectory at will. 

(and sufficient long trajectories will well approximate the discounted value function)  
 

Note that with a simulator, we can sample trajectories as specified in the above.

s0 ∼ μ0
H τ = {s0, a0, s1, a1, …, sH−1, aH−1}

s0 ∼ μ0
τ = {s0, a0, s1, a1, …}
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Recap: Policy Parameterization

1. Softmax linear Policy

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′ 

exp(θ⊤ϕ(s, a′ ))

2. Neural Policy:

Neural network  
fθ : S × A ↦ ℝ

πθ(a |s) = exp( fθ(s, a))
∑a′ 

exp( fθ(s, a′ ))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s
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Recap: the REINFORCE Algorithm  
(finite horizon case)

τ = {s0, a0, s1, a1, …, sH−1, aH−1}

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)πθ(a1 |s1)…
J(θ) = -τ∼ρθ(τ) [

H−1

∑
h=0

r(sh, ah)]
R(τ)

∇θJ(θ) := -τ∼ρθ(τ) (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)
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PG with REINFORCE:

1. Initialize , parameters: 

2. For t = 0, … : 


1. Obtain a trajectory  

Set  

2. Update: 

θ0 η1, η2, …

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)R(τ)

θt+1 = θt + ηt ∇̃ θJ(θt)
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A improved PG formulation, for sampling (finite horizon setting)

∇J(θ) = -τ∼ρθ(τ) (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= -τ∼ρθ(τ)

H−1

∑
h=0 (∇θln πθ(ah |sh)

H−1

∑
t=h

rt)
= -τ∼ρθ(τ) [

H−1

∑
h=0

∇θln πθ(ah |sh)Qπθ
h (sh, ah)]

Intuition: Change action distribution at  only affects rewards later on…)h

HW: You will show these simplified version are also valid PG expressions
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Proof sketch
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-ah∼πθ(⋅|sh) [∇θln πθ(ah |sh)f(s0, a0, …sh−1, ah−1, sh) s0, a0, …sh−1, ah−1, sh]
= f(s0, a0, …sh−1, ah−1, sh)-ah∼πθ(⋅|sh) [∇θln πθ(ah |sh) s0, a0, …sh−1, ah−1, sh] = ??

Let  be an arbitrary function.f(s0, a0, …sh−1, ah−1, sh)
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An improved PG procedure:

1. Initialize , parameters: 

2. For t = 0, … : 


1. Obtain a trajectory  

Set  

2. Update: 

θ0 η1, η2, …

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0 (∇ln πθt

(ah |sh)
H−1

∑
t=h

rt)
θt+1 = θt + ηt ∇̃ θJ(θt)
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Today:

Policy Gradients: Baselines  

& Fitted Value Function Methods

11



Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:


1. Direct approach

2. An iterative approach
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With a “baseline” function:
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With a “baseline” function:

∇J(θ) = -τ∼ρθ(τ)

H−1

∑
h=0

∇θln πθ(ah |sh)(
H−1

∑
t=h

rt − bh(sh))

For any function , we have:bh(s)
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(M=1) PG with a Naive (constant) Baseline:
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(M=1) PG with a Naive (constant) Baseline:

• On a trajectory , define:

.

τ

Rh(τ) =
H−1

∑
t=h

rt
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Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:


1. Direct approach

2. An iterative approach
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The Advantage Function (finite horizon)

Vπ
h (s) = - [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = - [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]

16
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The Advantage Function (finite horizon)

Vπ
h (s) = - [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = - [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
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The Advantage Function (finite horizon)

Vπ
h (s) = - [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = - [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
• We have that: 
	 Ea∼π(⋅|s)[Ah(s, a) s, h] = ∑

a
π(a |s)Ah(s, a) = ??
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The Advantage Function (finite horizon)

Vπ
h (s) = - [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = - [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
• We have that: 
	 Ea∼π(⋅|s)[Ah(s, a) s, h] = ∑

a
π(a |s)Ah(s, a) = ??

• What do we know about ?Aπ⋆
h (s, a)

• For the discounted case, Aπ(s, a) = Qπ(s, a) − Vπ(s)
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The Advantage-based PG: 

∇J(θ) = -τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]
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The Advantage-based PG: 

• The second step follows by choosing .

• In practice, the most common approach is to use  to approximate . 

bh(s) = Vπ
h (s)

bh(s) Vπ
h (s)

= -τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθ
h (sh, ah)]

∇J(θ) = -τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

17
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Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:


1. Direct approach

2. An iterative approach
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Policy Parameterizations

1. Softmax linear Policy

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′ 

exp(θ⊤ϕ(s, a′ ))

2. Neural Policy:

Neural network  
fθ : S × A ↦ ℝ

πθ(a |s) = exp( fθ(s, a))
∑a′ 

exp( fθ(s, a′ ))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s

19
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What is a “state” and a “feature vector”?

[AlphaZero, Silver [OpenAI Five, [OpenAI,

A state:

• Tabular case: an index in 

• Real world: a list/array of the relevant info about the world that makes the process Markovian.  

(we sometimes append history info into the current state)

• Let’s assume the current time  is contained in the state.  

(e.g. you can always add the time into the “list” that specifies the state)

[ |S | ] = {1,… |S |}

h

20
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Softmax Policy Properties

1. Softmax linear Policy

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′ 

exp(θ⊤ϕ(s, a′ ))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s
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•  More probable actions have features which align with .  
Precisely, 

 if and only if  

θ

πθ(a |s) ≥ πθ(a′ |s) θ⊤ϕ(s, a) ≥ θ⊤ϕ(s, a′ )
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Two properties (see HW): 

•  More probable actions have features which align with .  
Precisely, 

 if and only if  

θ

πθ(a |s) ≥ πθ(a′ |s) θ⊤ϕ(s, a) ≥ θ⊤ϕ(s, a′ )

•The gradient is: 
∇θlog(πθ(a |s)) = ϕ(s, a) − -a′ ∼πθ(⋅|s)[ϕ(s, a′ )]

Please check
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PG for the (softmax) linear policies
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PG for the (softmax) linear policies
• We have: 

 

(also true  instead of  

∇J(θ) = -τ∼ρθ(τ) [
H−1

∑
h=0

Aπθ
h (sh, ah)(ϕ(sh, ah) − -a′ ∼πθ(⋅|sh)[ϕ(sh, a′ )])]

Qh Ah)

22
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Outline:
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2. Advantages and a better baseline
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(M=1) PG with a Learned Baseline:
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Note that regardless of our choice of , we still get unbiased gradient estimates.b̃h(s)

Now let’s look at our baseline fitting step.



Baseline/Value Function Parameterizations

1. Linear Functions

Feature vector , and 
parameter 

ψ(s) ∈ ℝk

w ∈ ℝk

fw(s) = w⊤ψ(s)

2. Neural Policy:

Neural network  fw : S ↦ ℝ

Now let us consider parameterized classes of functions , where for each , ℱ f ∈ ℱ f : S → R

25
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“Review”
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“Review”
• For a random variable , what is:  
	

y ∈ R
arg min

c
Ey∼D[(c − y)2] = ??
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• Now let us look at the “function” case where we have a distribution over  pairs 
	  

(where  is the class of all possible functions)  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f ⋆ = arg min

f∈ℱ
E(x,y)∼D[( f(x) − y)2]
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Let’s look at our fitting step
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1. Sample  trajectories under  to make a dataset,  N πθt

w̃ = arg min
w ∑

τ∈Data
∑

(sh,ah)∈τ
(fw(sh) − Rh(τ))

2

2. Obtain a trajectory  

Set  

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃h)

3. Update: θt+1 = θt + ηt ∇̃ θJ(θt)

27



Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:


1. Direct approach

2. An iterative approach
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Is there an iterative version of Policy Evaluation? 
(that is faster, but approximate?)

Algorithm (Iterative PE):  

1. Initialization:  


2. Iterate until convergence:  

V0 : ∥V0∥∞ ∈ [0, 1
1 − γ ]

Vt+1 ← R + γPVt

29



Is there an iterative version of Policy Evaluation? 
(that is faster, but approximate?)

Algorithm (Iterative PE):  

1. Initialization:  


2. Iterate until convergence:  

V0 : ∥V0∥∞ ∈ [0, 1
1 − γ ]

Vt+1 ← R + γPVt
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This is a “fixed point” algorithm trying to enforce Bellman consistency: 
	 ∀s, Vπ(s) = r(s, π(s)) + γ-s∼P(s,π(s))Vπ(s′ )



Let’s look at our fitting step

1. Initialize , parameters: 

2. For t = 0, … : 


1. Using  trajectories sampled under , try to learn a  



2. Obtain a trajectory  

Set  

3. Update: 

θ0 η1, η2, …

N πθt
b̃h

b̃h(s) ≈ Vπθt
h (s)

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃h)

θt+1 = θt + ηt ∇̃ θJ(θt)

30



Let’s look at just our fitting step in the inner loop 
(where we want to fit the value of )πθt

31

Temporal Difference Learning (TD) is a an online method to do the above.
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Let’s look at just our fitting step in the inner loop 
(where we want to fit the value of )πθt

1. Sample  trajectories under  to make a dataset.N πθt

2. Initialize w0

31

Temporal Difference Learning (TD) is a an online method to do the above.



Let’s look at just our fitting step in the inner loop 
(where we want to fit the value of )πθt

1. Sample  trajectories under  to make a dataset.N πθt

2. Initialize w0
3. For k =  : 0,…, K
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Temporal Difference Learning (TD) is a an online method to do the above.



Let’s look at just our fitting step in the inner loop 
(where we want to fit the value of )πθt

1. Sample  trajectories under  to make a dataset.N πθt

2. Initialize w0
3. For k =  : 0,…, K

1. Update: 

wk+1 = arg min
w ∑

τ∈Data
∑

(sh,ah)∈τ
(fw(sh) − (rh + fwk

(sh+1)))
2
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Temporal Difference Learning (TD) is a an online method to do the above.



Summary so far:
1. Variance Reduction w/ Baselines & Advantages.

2. An example: PG Example with (softmax) linear policies

3. Fitted Value Functions:


1. Direct approach

2. An iterative approach & TD 

Next up: Why not just directly use a “fitted” approach for Value Iteration or Policy Iteration?

1-minute feedback form: https://bit.ly/3RHtlxy 
32

https://bit.ly/3RHtlxy

