
PG Methods, Baselines, & 
fitted Value function methods  

 
Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning  

Fall 2022

1

Today

• Recap 

• Today:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:

1. Direct approach

2. An iterative approach

2

AW3 posted today

Recap

3

The Learning Setting:
We don’t know the MDP, but we can obtain trajectories.

The Finite Horizon, Learning Setting. We can obtain trajectories as follows:

• We start at .

• We act for steps and observe the trajectory  

The Infinite Horizon, Discounted Learning Setting. We can obtain trajectories as follows:

• We start at .

• We can obtain a “long trajectories”

• Suppose we can terminate the trajectory at will. 

(and sufficient long trajectories will well approximate the discounted value function)  
 

Note that with a simulator, we can sample trajectories as specified in the above.

s0 ∼ μ0
H τ = {s0, a0, s1, a1, …, sH−1, aH−1}

s0 ∼ μ0
τ = {s0, a0, s1, a1, …}

4

Recap: Policy Parameterization

1. Softmax linear Policy

Feature vector , and
parameter

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

2. Neural Policy:

Neural network
fθ : S × A ↦ ℝ

πθ(a |s) = exp(fθ(s, a))
∑a′

exp(fθ(s, a′))

Recall that we consider parameterized policy πθ(⋅ |s) ∈ Δ(A), ∀s

5

Recap: the REINFORCE Algorithm  
(finite horizon case)

τ = {s0, a0, s1, a1, …, sH−1, aH−1}

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)πθ(a1 |s1)…
J(θ) = -τ∼ρθ(τ) [

H−1

∑
h=0

r(sh, ah)]
R(τ)

∇θJ(θ) := -τ∼ρθ(τ) (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

6

PG with REINFORCE:

1. Initialize , parameters:

2. For t = 0, … :

1. Obtain a trajectory  

Set  

2. Update:

θ0 η1, η2, …

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)R(τ)

θt+1 = θt + ηt ∇̃ θJ(θt)

7

A improved PG formulation, for sampling (finite horizon setting)

∇J(θ) = -τ∼ρθ(τ) (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= -τ∼ρθ(τ)

H−1

∑
h=0 (∇θln πθ(ah |sh)

H−1

∑
t=h

rt)
= -τ∼ρθ(τ) [

H−1

∑
h=0

∇θln πθ(ah |sh)Qπθ
h (sh, ah)]

Intuition: Change action distribution at only affects rewards later on…)h

HW: You will show these simplified version are also valid PG expressions
8

REINFORCE

q nice cyp
for

sampling

usual

Proof sketch

9

-ah∼πθ(⋅|sh) [∇θln πθ(ah |sh)f(s0, a0, …sh−1, ah−1, sh) s0, a0, …sh−1, ah−1, sh]
= f(s0, a0, …sh−1, ah−1, sh)-ah∼πθ(⋅|sh) [∇θln πθ(ah |sh) s0, a0, …sh−1, ah−1, sh] = ??

Let be an arbitrary function.f(s0, a0, …sh−1, ah−1, sh)

Ex p DG Paa O

An improved PG procedure:

1. Initialize , parameters:

2. For t = 0, … :

1. Obtain a trajectory  

Set  

2. Update:

θ0 η1, η2, …

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0 (∇ln πθt

(ah |sh)
H−1

∑
t=h

rt)
θt+1 = θt + ηt ∇̃ θJ(θt)

10

Today:

Policy Gradients: Baselines  

& Fitted Value Function Methods

11

Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:

1. Direct approach

2. An iterative approach

12

With a “baseline” function:

13

With a “baseline” function:

∇J(θ) = -τ∼ρθ(τ)

H−1

∑
h=0

∇θln πθ(ah |sh)(
H−1

∑
t=h

rt − bh(sh))

For any function , we have:bh(s)

13

With a “baseline” function:

∇J(θ) = -τ∼ρθ(τ)

H−1

∑
h=0

∇θln πθ(ah |sh)(
H−1

∑
t=h

rt − bh(sh))

= -τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

For any function , we have:bh(s)

13

With a “baseline” function:

∇J(θ) = -τ∼ρθ(τ)

H−1

∑
h=0

∇θln πθ(ah |sh)(
H−1

∑
t=h

rt − bh(sh))

= -τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

For any function , we have:bh(s)

13

This is (basically) the method of control variates.

(M=1) PG with a Naive (constant) Baseline:

14

(M=1) PG with a Naive (constant) Baseline:

• On a trajectory , define:

.

τ

Rh(τ) =
H−1

∑
t=h

rt

14

(M=1) PG with a Naive (constant) Baseline:

• On a trajectory , define:

.

τ

Rh(τ) =
H−1

∑
t=h

rt

• Let try to use a constant
(time-dependent) baseline: 

 
(which also depends on)
bh = -τ∼ρθ(τ)E [Rh(τ)]

θ

14

(M=1) PG with a Naive (constant) Baseline:

1. Initialize , parameters: θ0 η1, η2, …

• On a trajectory , define:

.

τ

Rh(τ) =
H−1

∑
t=h

rt

• Let try to use a constant
(time-dependent) baseline: 

 
(which also depends on)
bh = -τ∼ρθ(τ)E [Rh(τ)]

θ

14

(M=1) PG with a Naive (constant) Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

• On a trajectory , define:

.

τ

Rh(τ) =
H−1

∑
t=h

rt

• Let try to use a constant
(time-dependent) baseline: 

 
(which also depends on)
bh = -τ∼ρθ(τ)E [Rh(τ)]

θ

14

(M=1) PG with a Naive (constant) Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

1. Using trajectories sampled under , set N πθt

b̃h = 1
N

N

∑
i=1

Rh(τi)
• On a trajectory , define:

.

τ

Rh(τ) =
H−1

∑
t=h

rt

• Let try to use a constant
(time-dependent) baseline: 

 
(which also depends on)
bh = -τ∼ρθ(τ)E [Rh(τ)]

θ

14

(M=1) PG with a Naive (constant) Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

1. Using trajectories sampled under , set N πθt

b̃h = 1
N

N

∑
i=1

Rh(τi)

2. Obtain a trajectory  

Set  

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃h)

• On a trajectory , define:

.

τ

Rh(τ) =
H−1

∑
t=h

rt

• Let try to use a constant
(time-dependent) baseline: 

 
(which also depends on)
bh = -τ∼ρθ(τ)E [Rh(τ)]

θ

14

I dare't

(M=1) PG with a Naive (constant) Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

1. Using trajectories sampled under , set N πθt

b̃h = 1
N

N

∑
i=1

Rh(τi)

2. Obtain a trajectory  

Set  

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃h)

3. Update: θt+1 = θt + ηt ∇̃ θJ(θt)

• On a trajectory , define:

.

τ

Rh(τ) =
H−1

∑
t=h

rt

• Let try to use a constant
(time-dependent) baseline: 

 
(which also depends on)
bh = -τ∼ρθ(τ)E [Rh(τ)]

θ

14

Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:

1. Direct approach

2. An iterative approach

15

The Advantage Function (finite horizon)

Vπ
h (s) = - [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = - [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]

16

T T

The Advantage Function (finite horizon)

Vπ
h (s) = - [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = - [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)

16

The Advantage Function (finite horizon)

Vπ
h (s) = - [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = - [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
• We have that: 
	 Ea∼π(⋅|s)[Ah(s, a) s, h] = ∑

a
π(a |s)Ah(s, a) = ??

16

Ea Q's jÉ
is v Ts o

T
o

The Advantage Function (finite horizon)

Vπ
h (s) = - [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = - [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
• We have that: 
	 Ea∼π(⋅|s)[Ah(s, a) s, h] = ∑

a
π(a |s)Ah(s, a) = ??

• What do we know about ?Aπ⋆
h (s, a)

16

s MEQGal

Y S a h AY sa I 0

The Advantage Function (finite horizon)

Vπ
h (s) = - [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = - [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
• We have that: 
	 Ea∼π(⋅|s)[Ah(s, a) s, h] = ∑

a
π(a |s)Ah(s, a) = ??

• What do we know about ?Aπ⋆
h (s, a)

• For the discounted case, Aπ(s, a) = Qπ(s, a) − Vπ(s)
16

The Advantage-based PG:

∇J(θ) = -τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

17

The Advantage-based PG:

• The second step follows by choosing .

• In practice, the most common approach is to use to approximate . 

bh(s) = Vπ
h (s)

bh(s) Vπ
h (s)

= -τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθ
h (sh, ah)]

∇J(θ) = -τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

17

1 lies

Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:

1. Direct approach

2. An iterative approach

18

Policy Parameterizations

1. Softmax linear Policy

Feature vector , and
parameter

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

2. Neural Policy:

Neural network
fθ : S × A ↦ ℝ

πθ(a |s) = exp(fθ(s, a))
∑a′

exp(fθ(s, a′))

Recall that we consider parameterized policy πθ(⋅ |s) ∈ Δ(A), ∀s

19

1

What is a “state” and a “feature vector”?

[AlphaZero, Silver [OpenAI Five, [OpenAI,

A state:

• Tabular case: an index in

• Real world: a list/array of the relevant info about the world that makes the process Markovian.  

(we sometimes append history info into the current state)

• Let’s assume the current time is contained in the state.  

(e.g. you can always add the time into the “list” that specifies the state)

[|S |] = {1,… |S |}

h

20

I y
hidden

6

robotics
01s a e Rd454,955

toe
a

Softmax Policy Properties

1. Softmax linear Policy

Feature vector , and
parameter

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

Recall that we consider parameterized policy πθ(⋅ |s) ∈ Δ(A), ∀s

21

Softmax Policy Properties

1. Softmax linear Policy

Feature vector , and
parameter

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

Recall that we consider parameterized policy πθ(⋅ |s) ∈ Δ(A), ∀s

21

Two properties (see HW): 

Softmax Policy Properties

1. Softmax linear Policy

Feature vector , and
parameter

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

Recall that we consider parameterized policy πθ(⋅ |s) ∈ Δ(A), ∀s

21

Two properties (see HW): 

• More probable actions have features which align with .  
Precisely, 

 if and only if  

θ

πθ(a |s) ≥ πθ(a′ |s) θ⊤ϕ(s, a) ≥ θ⊤ϕ(s, a′)

Softmax Policy Properties

1. Softmax linear Policy

Feature vector , and
parameter

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

Recall that we consider parameterized policy πθ(⋅ |s) ∈ Δ(A), ∀s

21

Two properties (see HW): 

• More probable actions have features which align with .  
Precisely, 

 if and only if  

θ

πθ(a |s) ≥ πθ(a′ |s) θ⊤ϕ(s, a) ≥ θ⊤ϕ(s, a′)

•The gradient is: 
∇θlog(πθ(a |s)) = ϕ(s, a) − -a′ ∼πθ(⋅|s)[ϕ(s, a′)]

Please check

Neural
case DalyTotals Fafsa Ear tds.at

PG for the (softmax) linear policies

22

PG for the (softmax) linear policies
• We have: 

 

(also true instead of  

∇J(θ) = -τ∼ρθ(τ) [
H−1

∑
h=0

Aπθ
h (sh, ah)(ϕ(sh, ah) − -a′ ∼πθ(⋅|sh)[ϕ(sh, a′)])]

Qh Ah)

22

I IKE sa

PG for the (softmax) linear policies
• We have: 

 

(also true instead of  

∇J(θ) = -τ∼ρθ(τ) [
H−1

∑
h=0

Aπθ
h (sh, ah)(ϕ(sh, ah) − -a′ ∼πθ(⋅|sh)[ϕ(sh, a′)])]

Qh Ah)

• We can simplify this to: 

∇J(θ) = -τ∼ρθ(τ) [
H−1

∑
h=0

Aπθ
h (sh, ah)ϕ(sh, ah)]

22

PG for the (softmax) linear policies
• We have: 

 

(also true instead of  

∇J(θ) = -τ∼ρθ(τ) [
H−1

∑
h=0

Aπθ
h (sh, ah)(ϕ(sh, ah) − -a′ ∼πθ(⋅|sh)[ϕ(sh, a′)])]

Qh Ah)

• We can simplify this to: 

∇J(θ) = -τ∼ρθ(τ) [
H−1

∑
h=0

Aπθ
h (sh, ah)ϕ(sh, ah)]

• Why?

22

EelA Susan Ernalolls

instantEef's an Ear a is 1 sa 97

Et I Ea n as isa latish an Egg 01st 0

PG for the (softmax) linear policies
• We have: 

 

(also true instead of  

∇J(θ) = -τ∼ρθ(τ) [
H−1

∑
h=0

Aπθ
h (sh, ah)(ϕ(sh, ah) − -a′ ∼πθ(⋅|sh)[ϕ(sh, a′)])]

Qh Ah)

• We can simplify this to: 

∇J(θ) = -τ∼ρθ(τ) [
H−1

∑
h=0

Aπθ
h (sh, ah)ϕ(sh, ah)]

• Why?

22

Neural case OJ G Eep.LA lssanofolsa

Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:

1. Direct approach

2. An iterative approach

23

(M=1) PG with a Learned Baseline:

24

(M=1) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …

24

(M=1) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

24

(M=1) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

1. Using trajectories sampled under , try to learn a  N πθt
b̃h

b̃(s) ≈ Vπθt
h (s)

24

(M=1) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

1. Using trajectories sampled under , try to learn a  N πθt
b̃h

b̃(s) ≈ Vπθt
h (s)

2. Obtain a trajectory  

Set  

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃(sh))

24

(M=1) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

1. Using trajectories sampled under , try to learn a  N πθt
b̃h

b̃(s) ≈ Vπθt
h (s)

2. Obtain a trajectory  

Set  

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃(sh))

3. Update: θt+1 = θt + ηt ∇̃ θJ(θt)

24

(M=1) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

1. Using trajectories sampled under , try to learn a  N πθt
b̃h

b̃(s) ≈ Vπθt
h (s)

2. Obtain a trajectory  

Set  

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃(sh))

3. Update: θt+1 = θt + ηt ∇̃ θJ(θt)

24

Note that regardless of our choice of , we still get unbiased gradient estimates.b̃h(s)

(M=1) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

1. Using trajectories sampled under , try to learn a  N πθt
b̃h

b̃(s) ≈ Vπθt
h (s)

2. Obtain a trajectory  

Set  

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃(sh))

3. Update: θt+1 = θt + ηt ∇̃ θJ(θt)

24

Note that regardless of our choice of , we still get unbiased gradient estimates.b̃h(s)

Now let’s look at our baseline fitting step.

Baseline/Value Function Parameterizations

1. Linear Functions

Feature vector , and
parameter

ψ(s) ∈ ℝk

w ∈ ℝk

fw(s) = w⊤ψ(s)

2. Neural Policy:

Neural network fw : S ↦ ℝ

Now let us consider parameterized classes of functions , where for each , ℱ f ∈ ℱ f : S → R

25

find a st

fails V5 s

“Review”

26

“Review”
• For a random variable , what is:  
	

y ∈ R
arg min

c
Ey∼D[(c − y)2] = ??

26

c Fly

“Review”
• For a random variable , what is:  
	

y ∈ R
arg min

c
Ey∼D[(c − y)2] = ??

• Now let us look at the “function” case where we have a distribution over pairs 
	  

(where is the class of all possible functions)  
What is  

(x, y)
f ⋆ = arg min

f∈ℱ
E(x,y)∼D[(f(x) − y)2]

ℱ
f ⋆(x) = ??

26

GER

Ely x

“Review”
• For a random variable , what is:  
	

y ∈ R
arg min

c
Ey∼D[(c − y)2] = ??

• Now let us look at the “function” case where we have a distribution over pairs 
	  

(where is the class of all possible functions)  
What is  

(x, y)
f ⋆ = arg min

f∈ℱ
E(x,y)∼D[(f(x) − y)2]

ℱ
f ⋆(x) = ??

26

false Vitis

x state
9 as Rafe

E Rak Isa Mesa

Let’s look at our fitting step

27

Let’s look at our fitting step

1. Initialize , parameters: θ0 η1, η2, …

27

Let’s look at our fitting step

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

27

Let’s look at our fitting step

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

1. Sample trajectories under to make a dataset,  N πθt

w̃ = arg min
w ∑

τ∈Data
∑

(sh,ah)∈τ
(fw(sh) − Rh(τ))

2

27

Let’s look at our fitting step

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

1. Sample trajectories under to make a dataset,  N πθt

w̃ = arg min
w ∑

τ∈Data
∑

(sh,ah)∈τ
(fw(sh) − Rh(τ))

2

2. Obtain a trajectory  

Set  

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃h)

27

Let’s look at our fitting step

1. Initialize , parameters: θ0 η1, η2, …
2. For t = 0, … :

1. Sample trajectories under to make a dataset,  N πθt

w̃ = arg min
w ∑

τ∈Data
∑

(sh,ah)∈τ
(fw(sh) − Rh(τ))

2

2. Obtain a trajectory  

Set  

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃h)

3. Update: θt+1 = θt + ηt ∇̃ θJ(θt)

27

Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:

1. Direct approach

2. An iterative approach

28

Is there an iterative version of Policy Evaluation? 
(that is faster, but approximate?)

Algorithm (Iterative PE):

1. Initialization:

2. Iterate until convergence:  

V0 : ∥V0∥∞ ∈ [0, 1
1 − γ]

Vt+1 ← R + γPVt

29

Is there an iterative version of Policy Evaluation? 
(that is faster, but approximate?)

Algorithm (Iterative PE):

1. Initialization:

2. Iterate until convergence:  

V0 : ∥V0∥∞ ∈ [0, 1
1 − γ]

Vt+1 ← R + γPVt

29

This is a “fixed point” algorithm trying to enforce Bellman consistency: 
	 ∀s, Vπ(s) = r(s, π(s)) + γ-s∼P(s,π(s))Vπ(s′)

Let’s look at our fitting step

1. Initialize , parameters:

2. For t = 0, … :

1. Using trajectories sampled under , try to learn a  

2. Obtain a trajectory  

Set  

3. Update:

θ0 η1, η2, …

N πθt
b̃h

b̃h(s) ≈ Vπθt
h (s)

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃h)

θt+1 = θt + ηt ∇̃ θJ(θt)

30

Let’s look at just our fitting step in the inner loop 
(where we want to fit the value of)πθt

31

Temporal Difference Learning (TD) is a an online method to do the above.

Let’s look at just our fitting step in the inner loop 
(where we want to fit the value of)πθt

1. Sample trajectories under to make a dataset.N πθt

31

Temporal Difference Learning (TD) is a an online method to do the above.

Let’s look at just our fitting step in the inner loop 
(where we want to fit the value of)πθt

1. Sample trajectories under to make a dataset.N πθt

2. Initialize w0

31

Temporal Difference Learning (TD) is a an online method to do the above.

Let’s look at just our fitting step in the inner loop 
(where we want to fit the value of)πθt

1. Sample trajectories under to make a dataset.N πθt

2. Initialize w0
3. For k = : 0,…, K

31

Temporal Difference Learning (TD) is a an online method to do the above.

Let’s look at just our fitting step in the inner loop 
(where we want to fit the value of)πθt

1. Sample trajectories under to make a dataset.N πθt

2. Initialize w0
3. For k = : 0,…, K

1. Update: 

wk+1 = arg min
w ∑

τ∈Data
∑

(sh,ah)∈τ
(fw(sh) − (rh + fwk

(sh+1)))
2

31

Temporal Difference Learning (TD) is a an online method to do the above.

Summary so far:
1. Variance Reduction w/ Baselines & Advantages.

2. An example: PG Example with (softmax) linear policies

3. Fitted Value Functions:

1. Direct approach

2. An iterative approach & TD 

Next up: Why not just directly use a “fitted” approach for Value Iteration or Policy Iteration?

1-minute feedback form: https://bit.ly/3RHtlxy
32

https://bit.ly/3RHtlxy

