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Today

 Recap

* Joday:
1. Variance Reduction w/ Baselines
2. Advantages and a better baseline
3. An example: PG Example with (softmax) linear policies
4. Fitted Value Functions:
1. Direct approach
2. An iterative approach



Recap



The Learning Setting:

We don’t know the MDP, but we can obtain trajectories.

The Finite Horizon, Learning Setting. We can obtain trajectories as follows:
» We start at 5y ~ K.

» We act for H steps and observe the trajectory 7 = {sy, ag, S1, 15 ---» Sgy_1, Agy_1 }

The Infinite Horizon, Discounted Learning Setting. We can obtain trajectories as follows:
» We start at sy ~ K.
» We can obtain a “long trajectories” 7 = {q, dg, S1, Ay - - - }

* Suppose we can terminate the trajectory at will.
(and sufficient long trajectories will well approximate the discounted value function)



Recap: Policy Parameterization

Recall that we consider parameterized policy 7,( - |s) € A(A), Vs

1. Softmax linear Policy 2. Neural Policy:

Neural network

Feature vector ¢(s, a) € R, and
Ps, @) fo: SXA PR

parameter 8 € R?

exp(0' @(s, a)) exp(fy(s, a))

my(a | 5) =

my(a | 5) =

Za/ exp(0' (s, a")) Za, exp(fy(s,a’))



Recap: the REINFORCE Algorithm

(finite horizon case)

T = {89, Ay> S15 A5 -5 SH_1> A1 } H-1
JO) =E, ) | D, (5 a)
Po(T) = u(sy)my(ay | so)P(sy | o> ag)my(ay | sy)- .. h=0

-~

R(7)



PG with REINFORCE:

1. Initialize 6, parameters: 17, 1, ...
2. Fort=0, ...:

1. Obtain a trajectory 7 ~ py

H-1
Set V,J(0) = ) Vinm,(ay|5,)R()
h=0

2. Update: 0, = 0,41,V ,J(0,)



A improved PG formulation, for sampling (finite horizon setting)

H—-1
VIO) =E,,cy [| D, Volnmyay,ls,) | R@

h=0
H-1 H-1
— _TN,OQ(T) Z V@ln ﬂ@(ah ‘ Sh) Z ]/'t

H-1
= mpy(7) Z Voln my(ay, | 5,)Q, (s, ay)
h=0

Intuition: Change action distribution at / only affects rewards later on...)

HW: You will show these simplified version are also valid PG expressions



Proof sketch

Let (5o, ag, ---S,_1, 4j,_1, S;,) be an arbitrary function.

_ahNﬂH(°‘Sh) lV@ln ﬂ@(ah ‘ Sh)f(SO’ dos oSy _1:Ap_15 Sh) So, dys ce Sy _1:Up_15 Sh]

zf(SO, do, ...Sh_l,ah_l,sh) _ahNﬂé’('lsh) lV@ln ﬂ@(dh‘sh) 30> Aps ...Sh_l,ah_l,Sh] = 77



An improved PG procedure:

1. Initialize 6, parameters: 17, 1, ...
2. Fort=0, ...:

1. Obtain a trajectory 7 ~ py

H-1 H-1
Set V@](Ht) — Z (Vln ﬂ@t(ah‘sh) Z I”t)

h=0 I=h

2. Update: 0, = 0,41,V ,J(0))
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lToday:

Policy Gradients: Baselines
& Fitted Value Function Methods



Outline:

1. Variance Reduction w/ Baselines
2. Advantages and a better baseline
3. An example: PG Example with (softmax) linear policies
4. Fitted Value Functions:
1. Direct approach
2. An iterative approach
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With a “baseline” function:

For any function b,(s), we have:

H-1 H-1
VJIO) =E.., Z V,n ny(a, | Sh)< z r, — bh(sh))

H—1
~7~py(7) l Z Voln my(ay,| Sh)(Q;:g(Sh» ap) — bh(sh))]

h=0

This is (basically) the method of control variates.
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(M=1) PG with a Naive (constant) Baseline:

1. Initialize 6,, parameters: 17, 1, ...
2. Fort=0, ...:

1. Using NV trajectories sampled under 7, set

 On atrajectory 7, define: 1 &
H-1 T
by=— ) Ryz)
R,(7) = z}; r, N &
1=

2. Obtain a trajectory 7 ~ py

H-1
Set VoJ(0) = ¥ Vnm,(ay]sy) (Rh(f) _ bh)
h=0

* et try to use a constant
(time-dependent) baseline:

by = Ep o |[RA(D)
(which also depends on 6)

3. Update: ¢, = 0, + ntvef(é’t)
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Outline:

1. Variance Reduction w/ Baselines
2. Advantages and a better baseline
3. An example: PG Example with (softmax) linear policies
4. Fitted Value Functions:
1. Direct approach
2. An iterative approach
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The Advantage Function (finite horizon)

H—-1
Vi(s) = l Z r(s.,a.)

=h

Sh:S

Q) (s,a) =

 The Advantage function is defined as:

e \WWe have that:
E

a~7(-|s)

[A;f(s, a)

S, h] — Z n(al|s)A;(s,a) = ?7

|

H-1

Z r(s,,a.)

=h

 For the discounted case, A*(s,a) = Q"(s,a) — V*(s)
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The Advantage-based PG:

H—-1
VJ(O) = rmepi(D) [ Z V,n ny(a, | Sh)(QZQ(Sh» a,) — bh(Sh))]

h=0

H-1
E ) l Z Vln my(a, | Sh)A;;e(sh, ah)]

h=0

- The second step follows by choosing b, (s) = V/'(s).
» In practice, the most common approach is to use b,,(s) to approximate V;(s).
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Outline:

1. Variance Reduction w/ Baselines
2. Advantages and a better baseline
3. An example: PG Example with (softmax) linear policies
4. Fitted Value Functions:
1. Direct approach
2. An iterative approach

18



Policy Parameterizations

Recall that we consider parameterized policy 7,( - |s) € A(A), Vs

1. Softmax linear Policy 2. Neural Policy:

Neural network

Feature vector ¢(s, a) € R<, and
Ps, @) fo: SXA PR

parameter 8 € R?

exp(é’Tqb(s, a)) exp(fo(s,a))

my(a | 5) =

my(a | 5) =

Za/ exp(0' ¢(s, a)) Za, exp(fy(s,a’))
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What is a “state” and a “feature vector”?

At last — a computer program that
can beat a champion Go player PAGE 484

ALL SYSTEMS GO

[AlohaZero. Silver

A state:

e Tabularcase:anindexin||S|]|=1{1,...|5]}
 Real world: a list/array of the relevant info about the world that makes the process Markovian.
(we sometimes append history info into the current state)

 Let’s assume the current time 4 is contained in the state.
(e.g. you can always add the time into the “list” that specifies the state)
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Softmax Policy Properties

Recall that we consider parameterized policy 7,( - |s) € A(A), Vs

1. Softmax linear Policy
Two properties (see HW):

Feature vector (s, a) € R?, and
parameter 8 € R?

- More probable actions have features which align with 6.
Precisely,

mals) = my(a’|s) if and only if 0 'd(s,a) > 0"d(s,a’
exp(0' ¢(s, @)
> exp(8Te(s, a’))

m(als) = - The gradient is:

Volog(my(als)) = ¢(s,a) — B, 1o[@(s, a)]

21



e We have:

VJ(O) =

PG for the (softmax) linear policies

H—1
= 2 pf(7) [ Z A;; 'Sy, ap) (45(% a,) —
h=0

(also true Q, instead of A,)

* We can simplify this to:

VJ(O) =

e Why?

H-1
= 2~ py(7) [ Z A,f @(Sh, ah)¢(sh9 Clh)]
h=0
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Outline:

1. Variance Reduction w/ Baselines
2. Advantages and a better baseline
3. An example: PG Example with (softmax) linear policies
4. Fitted Value Functions:
1. Direct approach
2. An iterative approach
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(M=1) PG with a Learned Baseline:

1. Initialize 6,, parameters: 17, 1, ...
2. Fort=0,...: Now let’s look at our baseline fitting step.

1. Using NV trajectories sampled under g, try to learn a Zh
b(s) =V, *(s)
2. Obtain a trajectory 7 ~ p,

H-1
Set V,J(0) = ) Vinm(ay|s,) (Rh(f) - b(sh))
h=0

3. Update: 0, , = 6,+n, V ,J(6)

Note that regardless of our choice of b, (s), we still get unbiased gradient estimates.
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Baseline/Value Function Parameterizations

Now let us consider parameterized classes of functions %, where foreachf € &,/ : S — R

1. Linear Functions 2. Neural Policy:

Feature vector u/(s) € R, and
parameter

Neural network f : 5 — R

() = wly(s)
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“Review”

e For arandom variable y € R, what is:
argmin £, _p[(c — y)°] =27

C
« Now let us look at the “function” case where we have a distribution over (x, y) pairs

f* — alg min E(x,y)ND[(f(x) o y)2]

fe&F
(Where F is the class of all possible functions)
What is f*(x) = ??
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Let’s look at our fitting step

1. Initialize 6, parameters: 17, 17,, ...
2. Fort=0, ... :

1. Sample /V trajectories under 7y to make a dataset,

W = argmln 2 Z ( (Sh)—Rh(T)>2

TE Data (Sh ah)ET
2. Obtain a trajectory 7 ~ py

Set VJ(6) = ¥ VInm(ay|s,) (Rh(’[) _ 'Eh)
h=0

3. Update: 0, , = 6,+n, V ,J(@6)

27



Outline:

1. Variance Reduction w/ Baselines
2. Advantages and a better baseline
3. An example: PG Example with (softmax) linear policies
4. Fitted Value Functions:
1. Direct approach
2. An iterative approach
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Is there an iterative version of Policy Evaluation?
(that is faster, but approximate?)

Algorithm (lterative PE):

1. Initialization: V? : HVOH

2. lterate until convergence: VIt « R + yPV!

This is a “fixed point” algorithm trying to enforce Bellman consistency:
Vs, VA(s) = r(s, 7(5)) + YE . pis.ain V(5
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Let’s look at our fitting step

1. Initialize 6,, parameters: 17, 1, ...
2. Fort=0, ...:
1. Using NV trajectories sampled under g, try to learn a b,

P Y ﬂet
bj(s) =V, “(s)
2. Obtain a trajectory 7 ~ p,

H-1
Set VyJ(6) = ¥ VInz(ay|s) (Rh(T) _ bh)
h=0

3. Update: 0, , = 6,+n, V ,J(6)
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Let’s look at just our fitting step in the inner loop
(where we want to fit the value of 7,)

1. Sample N trajectories under 7, to make a dataset.

2. Initialize W),

3. Fork=0,...,K:
1. Update:

Wie1 = dIg mvin Z Z (fw(Sh) — (’”h +fwk(Sh+1))>2

TE Data (Sh,ah)ET

Temporal Difference Learning (TD) is a an online method to do the above.

31



Summary so far:

1. Variance Reduction w/ Baselines & Advantages.
2. An example: PG Example with (softmax) linear policies
3. Fitted Value Functions:

1. Direct approach

2. An iterative approach & TD

1-minute feedback form: https://bit.ly/3RHtIxy


https://bit.ly/3RHtlxy

