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Today

• Recap 

• Today:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:


1. Direct approach

2. An iterative approach
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Recap

3



The Learning Setting: 
We don’t know the MDP, but we can obtain trajectories.

The Finite Horizon, Learning Setting. We can obtain trajectories as follows:

• We start at .

• We act for  steps and observe the trajectory  

The Infinite Horizon, Discounted Learning Setting. We can obtain trajectories as follows:

• We start at .

• We can obtain a “long trajectories” 

• Suppose we can terminate the trajectory at will. 

(and sufficient long trajectories will well approximate the discounted value function) 
 

Note that with a simulator, we can sample trajectories as specified in the above.

s0 ∼ μ0
H τ = {s0, a0, s1, a1, …, sH−1, aH−1}

s0 ∼ μ0
τ = {s0, a0, s1, a1, …}
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Recap: Policy Parameterization

1. Softmax linear Policy

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) =
exp(θ⊤ϕ(s, a))

∑a′￼
exp(θ⊤ϕ(s, a′￼))

2. Neural Policy:

Neural network  
fθ : S × A ↦ ℝ

πθ(a |s) =
exp( fθ(s, a))

∑a′￼
exp( fθ(s, a′￼))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s
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Recap: the REINFORCE Algorithm  
(finite horizon case)

τ = {s0, a0, s1, a1, …, sH−1, aH−1}

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)πθ(a1 |s1)…
J(θ) = 𝔼τ∼ρθ(τ) [

H−1

∑
h=0

r(sh, ah)]
R(τ)

∇θJ(θ) := 𝔼τ∼ρθ(τ) (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)
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PG with REINFORCE:

1. Initialize , parameters: 

2. For t = 0, … : 


1. Obtain a trajectory  

Set  

2. Update: 

θ0 η1, η2, …

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)R(τ)

θt+1 = θt + ηt ∇̃ θJ(θt)
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A improved PG formulation, for sampling (finite horizon setting)

∇J(θ) = 𝔼τ∼ρθ(τ) (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= 𝔼τ∼ρθ(τ)

H−1

∑
h=0 (∇θln πθ(ah |sh)

H−1

∑
t=h

rt)
= 𝔼τ∼ρθ(τ) [

H−1

∑
h=0

∇θln πθ(ah |sh)Q
πθ
h (sh, ah)]

Intuition: Change action distribution at  only affects rewards later on…)h

HW: You will show these simplified version are also valid PG expressions
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Proof sketch
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𝔼ah∼πθ(⋅|sh) [∇θln πθ(ah |sh)f(s0, a0, …sh−1, ah−1, sh) s0, a0, …sh−1, ah−1, sh]
= f(s0, a0, …sh−1, ah−1, sh)𝔼ah∼πθ(⋅|sh) [∇θln πθ(ah |sh) s0, a0, …sh−1, ah−1, sh] = ??

Let  be an arbitrary function.f(s0, a0, …sh−1, ah−1, sh)



An improved PG procedure:

1. Initialize , parameters: 

2. For t = 0, … : 


1. Obtain a trajectory  

Set  

2. Update: 

θ0 η1, η2, …

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0 (∇ln πθt

(ah |sh)
H−1

∑
t=h

rt)
θt+1 = θt + ηt ∇̃ θJ(θt)
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Today:

Policy Gradients: Baselines  

& Fitted Value Function Methods
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Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:


1. Direct approach

2. An iterative approach
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With a “baseline” function:

∇J(θ) = 𝔼τ∼ρθ(τ)

H−1

∑
h=0

∇θln πθ(ah |sh)(
H−1

∑
t=h

rt − bh(sh))

= 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

For any function , we have:bh(s)
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This is (basically) the method of control variates.



(M=1) PG with a Naive (constant) Baseline:

1. Initialize , parameters: 

2. For t = 0, … : 


1. Using  trajectories sampled under , set 




2. Obtain a trajectory  

Set  

3. Update: 

θ0 η1, η2, …

N πθt

b̃h =
1
N

N

∑
i=1

Rh(τi)

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃h)

θt+1 = θt + ηt ∇̃ θJ(θt)

• On a trajectory , define:

.


• Let try to use a constant 
(time-dependent) baseline: 

 
(which also depends on ) 

τ

Rh(τ) =
H−1

∑
t=h

rt

bh = 𝔼τ∼ρθ(τ)E [Rh(τ)]
θ
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Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:


1. Direct approach

2. An iterative approach
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The Advantage Function (finite horizon)

Vπ
h (s) = 𝔼 [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = 𝔼 [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 


• We have that: 

	 


• What do we know about ?


• For the discounted case, 

Aπ
h (s, a) = Qπ

h (s, a) − Vπ
h (s)

Ea∼π(⋅|s)[Aπ
h (s, a) s, h] = ∑

a

π(a |s)Aπ
h (s, a) = ??

Aπ⋆

h (s, a)
Aπ(s, a) = Qπ(s, a) − Vπ(s)
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The Advantage-based PG: 

• The second step follows by choosing .

• In practice, the most common approach is to use  to approximate . 

bh(s) = Vπ
h (s)

bh(s) Vπ
h (s)

= 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)A
πθ
h (sh, ah)]

∇J(θ) = 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

17



Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:


1. Direct approach

2. An iterative approach
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Policy Parameterizations

1. Softmax linear Policy

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) =
exp(θ⊤ϕ(s, a))

∑a′￼
exp(θ⊤ϕ(s, a′￼))

2. Neural Policy:

Neural network  
fθ : S × A ↦ ℝ

πθ(a |s) =
exp( fθ(s, a))

∑a′￼
exp( fθ(s, a′￼))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s
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What is a “state” and a “feature vector”?

[AlphaZero, Silver [OpenAI Five, [OpenAI,

A state:

• Tabular case: an index in 

• Real world: a list/array of the relevant info about the world that makes the process Markovian. 

(we sometimes append history info into the current state)

• Let’s assume the current time  is contained in the state. 

(e.g. you can always add the time into the “list” that specifies the state)

[ |S | ] = {1,… |S |}

h
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Softmax Policy Properties

1. Softmax linear Policy

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) =
exp(θ⊤ϕ(s, a))

∑a′￼
exp(θ⊤ϕ(s, a′￼))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s
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Two properties (see HW): 

•  More probable actions have features which align with . 
Precisely, 

 if and only if  

•The gradient is: 

θ

πθ(a |s) ≥ πθ(a′￼|s) θ⊤ϕ(s, a) ≥ θ⊤ϕ(s, a′￼)

∇θlog(πθ(a |s)) = ϕ(s, a) − 𝔼a′￼∼πθ(⋅|s)[ϕ(s, a′￼)]



PG for the (softmax) linear policies
• We have: 

 

(also true  instead of  

• We can simplify this to: 




• Why?


∇J(θ) = 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

Aπθ
h (sh, ah)(ϕ(sh, ah) − 𝔼a′￼∼πθ(⋅|sh)[ϕ(sh, a′￼)])]

Qh Ah)

∇J(θ) = 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

Aπθ
h (sh, ah)ϕ(sh, ah)]
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Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:


1. Direct approach

2. An iterative approach

23



(M=1) PG with a Learned Baseline:

1. Initialize , parameters: 

2. For t = 0, … : 


1. Using  trajectories sampled under , try to learn a  



2. Obtain a trajectory  

Set  

3. Update: 

θ0 η1, η2, …

N πθt
b̃h

b̃(s) ≈ Vπθt
h (s)

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃(sh))

θt+1 = θt + ηt ∇̃ θJ(θt)
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Note that regardless of our choice of , we still get unbiased gradient estimates.b̃h(s)

Now let’s look at our baseline fitting step.



Baseline/Value Function Parameterizations

1. Linear Functions

Feature vector , and 
parameter 

ψ(s) ∈ ℝk

w ∈ ℝk

fw(s) = w⊤ψ(s)

2. Neural Policy:

Neural network  fw : S ↦ ℝ

Now let us consider parameterized classes of functions , where for each , ℱ f ∈ ℱ f : S → R
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“Review”

• For a random variable , what is: 
	 


• Now let us look at the “function” case where we have a distribution over  pairs 
	  

(where  is the class of all possible functions) 
What is  

y ∈ R
arg min

c
Ey∼D[(c − y)2] = ??

(x, y)
f ⋆ = arg min

f∈ℱ
E(x,y)∼D[( f(x) − y)2]

ℱ
f ⋆(x) = ??
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Let’s look at our fitting step

1. Initialize , parameters: 

2. For t = 0, … : 


1. Sample  trajectories under  to make a dataset, 




2. Obtain a trajectory  

Set  

3. Update: 

θ0 η1, η2, …

N πθt

w̃ = arg min
w ∑

τ∈Data
∑

(sh,ah)∈τ
(fw(sh) − Rh(τ))

2

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃h)

θt+1 = θt + ηt ∇̃ θJ(θt)
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Outline:

1. Variance Reduction w/ Baselines

2. Advantages and a better baseline

3. An example: PG Example with (softmax) linear policies

4. Fitted Value Functions:


1. Direct approach

2. An iterative approach
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Is there an iterative version of Policy Evaluation? 
(that is faster, but approximate?)

Algorithm (Iterative PE):  

1. Initialization:  


2. Iterate until convergence:  

V0 : ∥V0∥∞ ∈ [0,
1

1 − γ ]
Vt+1 ← R + γPVt

29

This is a “fixed point” algorithm trying to enforce Bellman consistency: 
	 ∀s, Vπ(s) = r(s, π(s)) + γ𝔼s∼P(s,π(s))Vπ(s′￼)



Let’s look at our fitting step

1. Initialize , parameters: 

2. For t = 0, … : 


1. Using  trajectories sampled under , try to learn a  



2. Obtain a trajectory  

Set  

3. Update: 

θ0 η1, η2, …

N πθt
b̃h

b̃h(s) ≈ Vπθt
h (s)

τ ∼ ρθt

∇̃ θJ(θt) =
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃h)

θt+1 = θt + ηt ∇̃ θJ(θt)
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Let’s look at just our fitting step in the inner loop 
(where we want to fit the value of )πθt

1. Sample  trajectories under  to make a dataset.

2. Initialize 

3. For k =  : 


1. Update: 

N πθt

w0
0,…, K

wk+1 = arg min
w ∑

τ∈Data
∑

(sh,ah)∈τ
(fw(sh) − (rh + fwk

(sh+1)))
2
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Temporal Difference Learning (TD) is a an online method to do the above.



Summary so far:
1. Variance Reduction w/ Baselines & Advantages.

2. An example: PG Example with (softmax) linear policies

3. Fitted Value Functions:


1. Direct approach

2. An iterative approach & TD 

Next up: Why not just directly use a “fitted” approach for Value Iteration or Policy Iteration?

1-minute feedback form: https://bit.ly/3RHtlxy 
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https://bit.ly/3RHtlxy

