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Today
• Next class: embedded ethics (from Jenna Donohue, a postdoc in the Philosophy dept) 
• Course Plan: consider different ethical implications of different possible utility 

functions for a (fictional) RL algorithm that was setting dynamic prices for rides. 
• Please come to the next class. (There will be a discussion.) 
• Please do the assigned reading (John Rawls) in advance. 

 

• Recap++ 

• Today:

1. Convergence of Fitted Policy Iteration

2. Trust Region Policy Optimization
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Recap + Examples
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Is there an iterative version of Policy Evaluation? 
(that is faster, but approximate?)

Algorithm (Iterative PE):  

1. Initialization:  


2. Iterate until convergence: 

    Equivalently, 
	

V0 : ∥V0∥∞ ∈ [0, 1
1 − γ ]

Vk+1 ← R + γPVk

∀s, Vk+1(s) = r(s, π(s)) + γ's′ ∼P(s,π(s))Vk(s′ )
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[Policy Eval Subroutine]: TD Learning for “tabular” case
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[Policy Eval Subroutine]: TD Learning for “tabular” case

[Iterative Policy Eval Subroutine/TD]  
input: policy , sample size , init π N w0
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1. Sample trajectories  which gives us a dataset  

(each trajectory is of the form )
τ1, …τN ∼ ρπ D

τi = {s0, a0, r0, …sH−1, aH−1, rH−1,}
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[Policy Eval Subroutine]: TD Learning for “tabular” case

[Iterative Policy Eval Subroutine/TD]  
input: policy , sample size , init π N w0
1. Sample trajectories  which gives us a dataset  

(each trajectory is of the form )
τ1, …τN ∼ ρπ D

τi = {s0, a0, r0, …sH−1, aH−1, rH−1,}
2. For k =  : 0,…, K

1. Sample a transition  and update:  
	

(sh, rh, sh+1,) ∈ D
Vk+1(sh) = Vk(sh) − ηk(Vk(sh) − (rh + Vk(sh+1)))
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[Policy Eval Subroutine]: TD Learning for “tabular” case

[Iterative Policy Eval Subroutine/TD]  
input: policy , sample size , init π N w0
1. Sample trajectories  which gives us a dataset  

(each trajectory is of the form )
τ1, …τN ∼ ρπ D

τi = {s0, a0, r0, …sH−1, aH−1, rH−1,}
2. For k =  : 0,…, K

1. Sample a transition  and update:  
	

(sh, rh, sh+1,) ∈ D
Vk+1(sh) = Vk(sh) − ηk(Vk(sh) − (rh + Vk(sh+1)))

3. Return the function   as an estimate of VK Vπ
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Another [Policy Eval Subroutine]: 
Fit  using the iterative policy evaluation alg.Vπ(s)
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Another [Policy Eval Subroutine]: 
Fit  using the iterative policy evaluation alg.Vπ(s)

[Iterative Policy Eval Subroutine/TD]  
input: policy , sample size , init π N w0
1. Sample trajectories  which gives us a dataset τ1, …τN ∼ ρπ D
2. For k =  : 0,…, K

1. Construct an empirical loss function: 

	 Lk(w) = 1
NH

N

∑
i=1

∑
(sh,rh,sh+1)∈τi

(fw(sh) − (rh + fwk
(sh+1)))

2

2. Update with either: 
full minimization: 
	 wk+1 ≈ arg min

w
Lk(w)
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Another [Policy Eval Subroutine]: 
Fit  using the iterative policy evaluation alg.Vπ(s)

[Iterative Policy Eval Subroutine/TD]  
input: policy , sample size , init π N w0
1. Sample trajectories  which gives us a dataset τ1, …τN ∼ ρπ D
2. For k =  : 0,…, K

1. Construct an empirical loss function: 

	 Lk(w) = 1
NH

N

∑
i=1

∑
(sh,rh,sh+1)∈τi

(fw(sh) − (rh + fwk
(sh+1)))

2

2. Update with either: 
full minimization: 
	 wk+1 ≈ arg min

w
Lk(w)

TD learning: (one step of SGD) 
	 wk+1 = wk − ηk ∇̃ Lk(wk)
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Another [Policy Eval Subroutine]: 
Fit  using the iterative policy evaluation alg.Vπ(s)

[Iterative Policy Eval Subroutine/TD]  
input: policy , sample size , init π N w0
1. Sample trajectories  which gives us a dataset τ1, …τN ∼ ρπ D
2. For k =  : 0,…, K

1. Construct an empirical loss function: 

	 Lk(w) = 1
NH

N

∑
i=1

∑
(sh,rh,sh+1)∈τi

(fw(sh) − (rh + fwk
(sh+1)))

2

2. Update with either: 
full minimization: 
	 wk+1 ≈ arg min

w
Lk(w)

TD learning: (one step of SGD) 
	 wk+1 = wk − ηk ∇̃ Lk(wk)

3. Return the function  as an estimate of fwK
Vπ
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Fitted Dynamic Programming Methods for learning and Q⋆ π⋆
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Policy Iteration (PI)

• Initialization: choose a policy 

• For 


1. Policy Evaluation: compute 

2. Policy Improvement: set 

	

π0 : S ↦ A
k = 0,1,…

Qπk(s, a)

πk+1(s) := arg max
a

Qπk(s, a)
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Fitted Policy Iteration:  
(aka Approximate Policy Iteration API)

1. Initialize staring policy , samples size M

2. For k = 0, … : 


1. [Q-Evaluation Subroutine] 
Using  sampled trajectories, , try to learn a  



2. Policy Update  




3. Return  and  as an estimate of  and 

π0

N τ1, …τN ∼ ρπk
b̃

Q̃ k(s, a) ≈ Qπk
h (s, a)

πk+1(s) := arg max
a

Q̃ πk(s, a)
Q̃ K πK Q⋆ π⋆
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Alternative Version: Bellman Operator  on  
(HW2 Q2 is the Q-version of the Bellman Equations)

. Q

• Given a function , define  as 
	 


• (Bellman equations for Q) 
 is equal to  if and only if .


Q : S × A ↦ ℝ .Q : S × A ↦ ℝ
(.Q)(s, a) := r(s, a) + γ's′ ∼P(s,a) max

a′ ∈A
Q(s′ , a′ )

Q Q⋆ .Q = Q
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Q-Value Iteration Algorithm:

1. Initialization:  


2. Iterate until convergence:  
 

Q0 : ∥Q0∥∞ ∈ [0, 1
1 − γ ]

Qk+1 ← .Qk

Qk+1(s, a) = r(s, a) + γ's′ ∼P(s,a) max
a′ ∈A

Qk(s′ , a′ )

11
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The Offline Learning Setting: 
We don’t know the MDP and our data collection is under some fixed distribution.

The Finite Horizon, Offline Learning Setting:

• We have  trajectories 

•  is often referred to as our data collection policy.

N τ1, …τN ∼ ρπdata

πdata
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Q-Learning for “tabular” case

[Iterative Policy Eval Subroutine/TD]  
input: offline dataset 

1. For k =  : 


1. Sample a transition  and update:  
	 


2. Return the function   as an estimate of 

τ1, …τN ∼ ρπdata

0,…, K
(sh, ah, rh, sh+1) ∈ D

Qk+1(sh, ah) = Qk(sh, ah) − ηk(Qk(sh, ah) − (rh + max
a′ 

Qk(sh+1, a′ )))
QK Q⋆
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Fitted Q-Iteration
input: offline dataset , init 

1. For  : 


1. Construct an empirical loss function: 

	  

 

2. Update with either: 

full minimization: 
	  
Q-learning: (one step of SGD) 
	 


2. Return the function  as an estimate of 

τ1, …τN ∼ ρπdata
w0

k = 0,1,…K

Lk(w) = 1
NH

N

∑
i=1

∑
(sh,ah,rh,sh+1)∈τi

(fw(sh, ah) − (rh + max
a

fwk
(sh+1, a)))

2

wk+1 ≈ arg min
w

Lk(w)

wk+1 = wk − ηk ∇̃ Lk(wk)
f w̃ K

Q⋆
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Today:

“Convergence” & Trust Region Policy Optimization
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Outline:

1. Convergence of Fitted Policy Iteration

1. “Tabular” case

2. Fitted case


2. Trust Region Policy Optimization

1. Quick intro on KL-divergence

2. TRPO formulation
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Sample Based Policy Iteration in the Tabular Case:  
(the easiest case to think about fitted Policy Iteration)
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Sample Based Policy Iteration in the Tabular Case:  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1. For k = 0, … : 
1. Q-Evaluation: 

For each , suppose that:(s, a, h)
1. we are able to draw  trajectories as follows:  

start at , run , and end trajectory at time 
M

(sh = s, ah = a) πk H
2. Set  as the empirical average of the cumulative reward on these trajectories.  

(i.e.  is unbiased sample of , with  samples)
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[Theorem]  Using polynomial many total samples and polynomial computation time 
(in ), we have that  and .|S | , |A | , H,1/ϵ ∥ Q̃ K − Q⋆∥∞ ≤ ϵ ∥QπK − Q⋆∥∞ ≤ ϵ
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Outline:

1. Convergence of Fitted Policy Iteration

1. “Tabular” case

2. Fitted case


2. Trust Region Policy Optimization

1. Quick intro on KL-divergence

2. TRPO formulation
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First: let’s summarize a few things about Supervised Learning
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Recap on Supervised Learning: Classification
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Recap on Supervised Learning: Classification

,cat ,cat ,dog( )( )

Given i.i.d examples at training:

( )
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Recap on Supervised Learning: Classification

f 2 F

,cat ,cat ,dog( )( )

Given i.i.d examples at training:

( )

Using function approximator, we are able to 
predict on cats/dogs that we never see 

before (i.e., we generalize)
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Recap on Supervised Learning: Regression

x

X: distance to whole foods

yY: value of 
a house
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Recap on Supervised Learning: Regression

x

X: distance to whole foods

yY: value of 
a house
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Recap on Supervised Learning: Regression

x

X: distance to whole foods

yY: value of 
a house

Using function approximation, we are able 
to predict on the value of some house not 

from the training data
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Recap on Supervised Learning: regression

We have a data distribution ,  , ,  where noise 2 xi ∼ 2 yi = f ⋆(xi) + ϵi '[ϵi] = 0, |ϵi | ≤ c
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f∈ℱ

N

∑
i=1

(f(xi) − yi)2
Empirical Risk Minimizer (ERM)
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Recap on Supervised Learning: regression

We have a data distribution ,  , ,  where noise 2 xi ∼ 2 yi = f ⋆(xi) + ϵi '[ϵi] = 0, |ϵi | ≤ c

We want to approximate  using finite training samples;f ⋆

Let us introduce an abstract function class , and do least squares:ℱ = {f : 4 ↦ ℝ}

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Q: quality of ERM  ? ̂f

Empirical Risk Minimizer (ERM)
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Recap on Supervised Learning: regression

We have a data distribution ,  , ,  where noise 2 xi ∼ 2 yi = f ⋆(xi) + ϵi '[ϵi] = 0, |ϵi | ≤ c

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Supervised learning theory (e.g., VC theory) says that we can indeed generalize, 

i.e., we can predict well under the same distribution:

'x∼2 ( ̂f(x) − f ⋆(x))
2

≤ δ

Assume  (this is called realizability), we can expect:f ⋆ ∈ ℱ

23
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Supervise Learning can fail if there is train-test distribution mismatch

However, for some ,   might be arbitrarily large2′ ≠ 2 'x∼2′ 
( f(x) − f ⋆(x))2

M̂
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Supervise Learning can fail if there is train-test distribution mismatch

However, for some ,   might be arbitrarily large2′ ≠ 2 'x∼2′ 
( f(x) − f ⋆(x))2

M̂

Deeper neural nets and larger datasets are typically 
not enough to address “distribution shift”
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Back to RL
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Fitted Policy Improvement Guarantees
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Fitted Policy Improvement Guarantees
•For all k, suppose that: 

, and   Eτ∼ρπk[
H

∑
h=1

( Q̃ k(sh, ah) − Qπk
h (sh, ah))2] ≤ δ max

s,a
| Q̃ k(sh, ah) − Qπk

h (sh, ah) | ≤ δ∞
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, and   Eτ∼ρπk[
H

∑
h=1

( Q̃ k(sh, ah) − Qπk
h (sh, ah))2] ≤ δ max

s,a
| Q̃ k(sh, ah) − Qπk

h (sh, ah) | ≤ δ∞

•   : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞
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H
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•   : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞

[Theorem:] We have that: 
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H

∑
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( Q̃ k(sh, ah) − Qπk
h (sh, ah))2] ≤ δ max

s,a
| Q̃ k(sh, ah) − Qπk

h (sh, ah) | ≤ δ∞

•   : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞

[Theorem:] We have that: 
•One step performance degradation is bounded by the worst case error:  
	 	   (and equality possible in some examples).Qk+1(s) ≥ Qk(s) − 2Hδ∞
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Fitted Policy Improvement Guarantees
•For all k, suppose that: 

, and   Eτ∼ρπk[
H

∑
h=1

( Q̃ k(sh, ah) − Qπk
h (sh, ah))2] ≤ δ max

s,a
| Q̃ k(sh, ah) − Qπk

h (sh, ah) | ≤ δ∞

•   : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞

[Theorem:] We have that: 
•One step performance degradation is bounded by the worst case error:  
	 	   (and equality possible in some examples).Qk+1(s) ≥ Qk(s) − 2Hδ∞

•For large enough , final performance also governed by the worst case error:  
	 	

K
QπK(s) ≥ Q⋆(s) − 2H2δ∞
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Fitted Policy Improvement Guarantees
•For all k, suppose that: 

, and   Eτ∼ρπk[
H

∑
h=1

( Q̃ k(sh, ah) − Qπk
h (sh, ah))2] ≤ δ max

s,a
| Q̃ k(sh, ah) − Qπk

h (sh, ah) | ≤ δ∞

•   : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small)  
δ
δ∞

[Theorem:] We have that: 
•One step performance degradation is bounded by the worst case error:  
	 	   (and equality possible in some examples).Qk+1(s) ≥ Qk(s) − 2Hδ∞

•For large enough , final performance also governed by the worst case error:  
	 	

K
QπK(s) ≥ Q⋆(s) − 2H2δ∞

• (Intuition) If it somehow turns out that, for all iterations , the density under the next policy, uniformly does not 
differ from that of previous policy, i.e. that  

	 	  

then we can bound our sub-optimality by the average case error:  
	 	

k

max
s,a,h ( Pr(sh = s, ah = a |πk+1)

Pr(sh = s, ah = a |πk) ) ≤ C∞

QπK(s) ≥ Q⋆(s) − 2H2 ⋅ C∞ ⋅ δ
26
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Outline:

1. Convergence of Fitted Policy Iteration

1. “Tabular” case

2. Fitted case


2. Trust Region Policy Optimization

1. Quick intro on KL-divergence

2. TRPO formulation
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KL-divergence: measures the distance between two distributions

Given two distributions , where , 

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = 'x∼P [ln P(x)
Q(x) ]
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KL-divergence: measures the distance between two distributions

Given two distributions , where , 

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = 'x∼P [ln P(x)
Q(x) ]

Examples: 

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = :(μ1, σ2I), Q = :(μ2, σ2I) KL(P |Q) = ∥μ1 − μ2∥2
2/σ2

Fact: 
, and being  if and only if KL(P |Q) ≥ 0 0 P = Q
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2. Trust Region Policy Optimization


1. Quick intro on KL-divergence

2. TRPO formulation
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An “idealized” trust region formulation for policy update: 
(back to direct policy optimization)

max
πθ

J(θ) − J(θt)

s.t., KL (ρπθt
|ρπθ) ≤ δ

At iteration t, with  at hand, we compute  as follows: πθt
θt+1
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An “idealized” trust region formulation for policy update: 
(back to direct policy optimization)

max
πθ

J(θ) − J(θt)

s.t., KL (ρπθt
|ρπθ) ≤ δ

At iteration t, with  at hand, we compute  as follows: πθt
θt+1

We want to maximize performance improvement starting at , 
but we want the new policy to be close to  (in the KL sense)

πθt

πθt
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A trust region formulation for policy update:

At iteration t, with  at hand, we compute  as follows: πθt
θt+1

31



A trust region formulation for policy update:

max
πθ

's0,…sH−1∼ρθt ['a∼πθ(s) [Aπθt(s, a)]]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with  at hand, we compute  as follows: πθt
θt+1
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A trust region formulation for policy update:

max
πθ

's0,…sH−1∼ρθt ['a∼πθ(s) [Aπθt(s, a)]]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with  at hand, we compute  as follows: πθt
θt+1

We want to maximize local advantage against , but we want 
the new policy to be close to  (in the KL sense)

πθt

πθt
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A trust region formulation for policy update:

max
πθ

's0,…sH−1∼ρθt ['a∼πθ(s) [Aπθt(s, a)]]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with  at hand, we compute  as follows: πθt
θt+1

We want to maximize local advantage against , but we want 
the new policy to be close to  (in the KL sense)

πθt

πθt

How we can actually do the optimization here? 

After all, we don’t even know the analytical form of trajectory likelihood…
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Summary:

1. Convergence of Fitted Policy Iteration

2. Trust Region Policy Optimization


1. Quick intro on KL-divergence

2. TRPO formulation 

1-minute feedback form: https://bit.ly/3RHtlxy 
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https://bit.ly/3RHtlxy

