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Today

* Next class: embedded ethics (from Jenna Donohue, a postdoc in the Philosophy dept)
 Course Plan: consider different ethical implications of different possible utility
functions for a (fictional) RL algorithm that was setting dynamic prices for rides.
» Please come to the next class. (There will be a discussion.)
 Please do the assigned reading (John Rawls) in advance.

* Recap++

* TJoday:
1. Convergence of Fitted Policy lteration
2. Trust Region Policy Optimization



Recap + Examples



Is there an iterative version of Policy Evaluation?
(that is faster, but approximate?)

Algorithm (lterative PE):

1. Initialization: VO : ||[VY]| €

2. lterate until convergence: V¥ «— R 4+ yPV*
Equivalently,

Vs, V¥ (s) = (s, 7(5)) + YE_ps.n(sy V(5"




[Policy Eval Subroutine]: TD Learning for “tabular” case

[Iterative Policy Eval Subroutine/TD]

input: policy 7, sample size N

1. Sample trajectories 7, ...7y ~ p, which gives us a dataset [J
(each trajectory is of the form 7, = {5y, dy, ¥» - - -Sg—1> Arr—1> T—15 })

2. Fork=0,...,K:
1. Sample a transition (s,,. 7, 5,,(,) € D and update:

Vir1(sp) = Vilsy) = ﬂk(Vk(Sh) - (’” hT Vk(Sh+1)))

3. Return the function V- as an estimate of V*



Another [Policy Eval Subroutinel:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy z, sample size NV, init wy,
1. Sample trajectories 7, ...7Ty ~ p, Which gives us a dataset [J

2. Fork=0,...,K:
1. Construct an empirical loss function:

l < 2
Li(w) = N Z Z (fw(Sh) - (’”h +fwk(Sh+1))>

=1 (Sh,rh,Sh+1)€Ti

2. Update with either:
full minimization:

Wiy ~ arg min L, (w)
W

1D learning: (one step of SGD)
Wikl = Wi — i V Li(wp)

3. Return the function f,, as an estimate of V*
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Fitted Dynamic Programming Methods for learning Q*and T*



Policy Iteration (Pl)

+ Initialization: choose a policy 7¥ : S — A
e Fork=0,1,...
k
1. Policy Evaluation: compute Q% (s, a)

2. Policy Improvement: set

71 (s) := arg max 0% (s, a)




Fitted Policy lteration:
(aka Approximate Policy Iteration API)

1. Initialize staring policy 7;, samples size M

2. Fork=0, ...:
1. [Q-Evaluation Subroutine]

Using M sampled trajectories, 7, ...Ty ~ P ,

0 (s, a) = Q. %(s, a)
2. Policy Update

7, 1(s) := arg max a”k(s, a)

3. Return Q  and 7y as an estimate of Q™ and 7~




Alternative Version: Bellman Operator & on Q
(HW?2 Q2 is the Q-version of the Bellman Equations)

« GivenafunctionQ : S XA — R, define S0 : S XA — R as

(5’7Q)(S, a) = r(s,a) + vy pia II,laj( O(s',a’)
aec

e (Bellman equations for Q)
O is equal to OQ* ifand only if 7 O = O.



Q-Value lteration Algorithm:

|
1. Initialization: Q" : ||QY|l, € (),1—
—Y
2. Iterate until convergence: Q. < I O,

Ori1(s,a) = r(s,a) + vy pgs.0 maji Q.(s',a’)
a'e



The Offline Learning Setting:

We don’t know the MDP and our data collection is under some fixed distribution.

The Finite Horizon, Learning Setting:
- We have N trajectories 7y, ...7y ~ p,

« 1, 1S often referred to as our data collection policy.
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Q-Learning for “tabular” case

[Iterative Policy Eval Subroutine/TD]
input: offline dataset 7, ...7y ~ p,

1. Fork=0,...,K:
1. Sample a transition (s,, @, 7. 5, ;) € D and update:

Q108 ay) = iy, ap,) — ﬂk(Qk(Sh» ay) — (’” p T max Qi(Sp 41 a’)) )

A

2. Return the function Q; as an estimate of Q*
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Fitted Q-Iteration

input: offline dataset 7,, .7, ~ p_ ., Init w

1. Fork=0,1,...K:
1. Construct an empirical loss function:

I < 2
L (w) = 77 Z Z (fw(sh, a,) — (rh + mjx fwk(sh 115 a)) )

=1 (Sh,ah,rh,sh+1)€’fi

2. Update with either:
full minimization:

Wiy ~ arg min L (w)
14%

Q-learning: (one step of SGD)
Wip1 = Wi — 1 V Li(wy)

2. Return the function f5; as an estimate of O
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lToday:

“Convergence” & Trust Region Policy Optimization



Outline:

1. Convergence of Fitted Policy lteration
1. “Tabular” case
2. Fitted case
2. Trust Region Policy Optimization
1. Quick intro on KL-divergence
2. TRPO formulation
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Sample Based Policy Iteration in the Tabular Case:
(the easiest case to think about fitted Policy lteration)

1. Fork=0, ...:
1. Q-Evaluation:

For each (s, a, h), suppose that:
1. we are able to draw M trajectories as follows:
start at (s, = 5, @), = a), run &, and end trajectory at time H

2. Set Ek(s, a) as the empirical average of the cumulative reward on these trajectories.
(i.e. Q(s,a)is unbiased sample of Q;:k(s, a), with M samples)
2. Policy Update

7, 1(8) := arg max E’Tk(s, a)

2. Return Q ; and 7y as an estimate of Q* and 7*

heorem| Using polynomial many total samples and polynomial computation time
in|S|,|A|,H,1/e),wehavethat ||O, — O”|_ <eand| O™ — 07| <e
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Outline:

1. Convergence of Fitted Policy lteration
1. “Tabular” case
2. Fitted case
2. Trust Region Policy Optimization
1. Quick intro on KL-divergence
2. TRPO formulation
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First: let’'s summarize a few things about Supervised Learning
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Recap on Supervised Learning: Classification

Given i.i.d examples at training:

,cat

Using function approximator, we are able to
predict on cats/dogs that we never see
before (i.e., we generalize)
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Recap on Supervised Learning: Regression

Y: value of

y A
a house

Using function approximation, we are able
to predict on the value of some house not
from the training data

X: distance to whole foods
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Recap on Supervised Learning: regression

We have a data distribution 9, x; ~ D, y. = f*(x;) + €;, where noise E[¢;] =0, |¢;| < ¢

We want to approximate f* using finite training samples;

Let us introduce an abstract function class & = {f : & — R}, and do least squares:

N

R , 2
Empirical Risk Minimizer (ERM) f = arg min 2 , (f(xi) — y,-)
&7 3

Q: quality of ERM f ?
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Recap on Supervised Learning: regression

We have a data distribution 9, x; ~ D, y. = f*(x;) + €;, where noise E[¢;] =0, |¢;| < ¢

~ argmin z ) -3,

fex -

Supervised learning theory (e.g., VC theory) says that we can indeed generalize,
l.e., we can predict well under the same distribution:

Assume f* € F (this is called realizability), we can expect:

o (fo0 )
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Supervise Learning can fail if there is train-test distribution mismatch

However, for some &Y' # 9, E, g (f(x) — £*(x))? might be arbitrarily large

A

N -

N o
AN

Deeper neural nets and larger datasets are typically
not enough to address “distribution shift”
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Back to RL
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Fitted Policy Improvement Guarantees

* For all k, suppose that:
H

‘A T 2 ‘A T
ETNpﬂk Z (Qk(sha a,) — Qh"(sh, Cl})) _ < d,and max | Q (s, a;,) — Qh"(sh, ap) | < 6,

_ S,d
h=1 ’
- 0: the average case supervised learning error (reasonable to expect this can be made small)

0.,: the worse case error (often unreasonable to expect to be small)

[ Theorem:| We have that:
* One step performance degradatlon IS bounded by the worst case error:

Qk+1(s a) > Qk(s a) —2Ho_, (and equality possible in some examples).
» For large enough K, final performance also governed by the worst case error:
Q™ (s,a) > Q*(s,a) — 2H*5_
- (Intuition) If it somehow turns out that, for all iterations k, the density under the next policy, uniformly does not
differ from that of previous policy, i.e. that

Pr(s, = s,a, = a|mx,. )
iy h h el ) C.
sah \ Pr(s, =s,a, =al|m)

then we can bound our sub-optimality by the average case error:

O™(s,a) > O*(s,a) — 2H? - C,:0
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Outline:

1. Convergence of Fitted Policy lteration
1. “Tabular” case
2. Fitted case
2. Trust Region Policy Optimization
1. Quick intro on KL-divergence
2. TRPO formulation
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KL-divergence: measures the distance between two distributions

Given two distributions P & O, where P € A(X), O € A(X),
KL Divergence is defined as:

KL(P|0) = E [ln P(x)]
o)

Examples:
f O = P, then KL(P| Q) = KL(Q|P) = 0
If P = '/V(//tla 02])9 Q — '/V(/’t29 62])! then KL(P‘ Q) — H/’tl o /12“%/02

Fact:

KL(P|Q) > 0,and beingOifandonlyif P = Q
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Outline:

1. Convergence of Fitted Policy lteration
2. Trust Region Policy Optimization

1. Quick intro on KL-divergence

2. TRPO formulation
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An “idealized” trust region formulation for policy update:
(back to direct policy optimization)

At iteration t, with 7Ty at hand, we compute @,, | as follows:

max J(0) — J(0))

0

s.t., KL (p%\ p@) <5

We want to maximize performance improvement starting at Ty

but we want the new policy to be close to Ty (in the KL sense)
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Summary:

1. Convergence of Fitted Policy lteration
2. Trust Region Policy Optimization

1. Quick intro on KL-divergence

2. TRPO formulation

1-minute feedback form: https://bit.ly/3RHtIxy


https://bit.ly/3RHtlxy

