8 **Fall 2022**

"Convergence" **Trust Region Policy Optimization** Lucas Janson and Sham Kakade **CS/Stat 184: Introduction to Reinforcement Learning**

Today

- Please come to the next class. (There will be a discussion.)
- Please do the assigned reading (John Rawls) in advance.
- Recap++
- Today:
 - 1. Convergence of Fitted Policy Iteration
 - 2. Trust Region Policy Optimization

• Next class: embedded ethics (from Jenna Donohue, a postdoc in the Philosophy dept) Course Plan: consider different ethical implications of different possible utility functions for a (fictional) RL algorithm that was setting dynamic prices for rides.

Recap + Examples

Is there an iterative version of Policy Evaluation? (that is faster, but approximate?)

Algorithm (Iterative PE):

- 1. Initialization: $V^0 : ||V^0||_{\infty}$
- 2. Iterate until convergence: V Equivalently, $\forall s, V^{k+1}(s) = r(s, \pi(s))$

$$\in \begin{bmatrix} 0, \frac{1}{1-\gamma} \end{bmatrix}$$

$$V^{k+1} \leftarrow R + \gamma P V^{k}$$

$$(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi(s))} V^k(s')$$

[Policy Eval Subroutine]: TD Learning for "tabular" case

[Iterative Policy Eval Subroutine/TD] input: policy π , sample size N1. Sample trajectories $\tau_1, \ldots \tau_N \sim \rho_{\pi}$ which gives us a dataset D(each trajectory is of the form $\tau_i = \{s_0, a_0, r_0, \ldots s_{H-1}, a_{H-1}, r_{H-1}, \}$) 2. For k = 0,..., K: 1. Sample a transition $(s_h, r_h, s_{h+1},) \in D$ and update: $V_{k+1}(s_h) = V_k(s_h) - \eta_k \Big(V_k(s_h) - \big(r_h + V_k(s_{h+1}) \big) \Big)$ 3. Return the function V_K as an estimate of V^{π}

Another [Policy Eval Subroutine]: Fit $V^{\pi}(s)$ using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD] input: policy π , sample size N, init w_0

1. Sample trajectories $\tau_1, \ldots, \tau_N \sim \rho_{\pi}$ which gives us a dataset D

2. For
$$k = 0, ..., K$$
:

1. Construct an *empirical loss function*:

$$L_{k}(w) = \frac{1}{NH} \sum_{i=1}^{N} \sum_{(s_{h}, r_{h}, s_{h+1}) \in \tau_{i}} \left(f_{w}(s_{h}) - \left(r_{h} + f_{w_{k}}(s_{h+1}) \right) \right)^{2}$$

2. Update with either: full minimization:

 $w_{k+1} \approx \arg\min l$

TD learning: (one step of SGD)

 $w_{k+1} = w_k - \eta_k \nabla L_k(w_k)$

3. Return the function f_{W_K} as an estimate of V^{π}

$$L_k(w)$$

Fitted Dynamic Programming Methods for learning Q^* and π^*

Policy Iteration (PI)

- Initialization: choose a policy
- For k = 0, 1, ...
 - 1. Policy Evaluation: com 2. Policy Improvement: set $\pi^{k+1}(s) := \arg \max q$

$$xy \pi^0 : S \mapsto A$$

pute
$$Q^{\pi^k}(s, a)$$

et
 $Q^{\pi^k}(s, a)$

Fitted Policy Iteration: (aka Approximate Policy Iteration API)

1. Initialize staring policy π_0 , samples size M 2. For k = 0, ...: 1. [Q-Evaluation Subroutine] $\widetilde{Q}_k(s,a) \approx Q_h^{\pi_k}(s,a)$ 2. Policy Update $\pi_{k+1}(s) := \arg\max \widetilde{Q}^{\pi_k}(s, a)$ 3. Return \widetilde{Q}_{K} and π_{K} as an estimate of Q^{\star} and π^{\star}

```
Using M sampled trajectories, \tau_1, \ldots, \tau_N \sim \rho_{\pi_k},
```

Alternative Version: Bellman Operator \mathcal{T} on Q(HW2 Q2 is the Q-version of the Bellman Equations)

- (Bellman equations for Q) Q is equal to Q^{\star} if and only if $\mathcal{T}Q = Q$.

• Given a function $Q: S \times A \mapsto \mathbb{R}$, define $\mathcal{T}Q: S \times A \mapsto \mathbb{R}$ as $(\mathcal{T}Q)(s,a) := r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} \max_{a' \in A} Q(s',a')$

Q-Value Iteration Algorithm:

- 1.
- 2.

Initialization:
$$Q^0 : ||Q^0||_{\infty} \in \left[0, \frac{1}{1-\gamma}\right]$$

Iterate until convergence: $Q_{k+1} \leftarrow \mathcal{T}Q_k$
 $Q_{k+1}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} \max_{a' \in A} Q_k(s', a')$

The Offline Learning Setting:

We don't know the MDP and our data collection is under some fixed distribution.

The Finite Horizon, Offline Learning Setting:

- We have *N* trajectories $\tau_1, \ldots \tau_N \sim \rho_{\pi_{data}}$
- π_{data} is often referred to as our data collection policy.

Q-Learning for "tabular" case

[Iterative Policy Eval Subroutine/TD] input: offline dataset $\tau_1, \ldots \tau_N \sim \rho_{\pi_{data}}$ 1. For k = 0, ..., K:

2. Return the function Q_K as an estimate of Q^{\star}

1. Sample a transition $(s_h, a_h, r_h, s_{h+1}) \in D$ and update: $Q_{k+1}(s_h, a_h) = Q_k(s_h, a_h) - \eta_k \left(Q_k(s_h, a_h) - \left(r_h + \max_{a'} Q_k(s_{h+1}, a')\right)\right)$

Fitted Q-Iteration

input: offline dataset $\tau_1, \ldots \tau_N \sim \rho_{\pi_{data}}$, init w_0 1. For k = 0, 1, ..., K: 1. Construct an *empirical loss function*: $L_k(w) = \frac{1}{NH} \sum_{k=1}^{N} \sum_{k=1}^{N$ i=1 (*s_h*,*a_h*,*r_h*,*s_i*) 2. Update with either: full minimization: $w_{k+1} \approx \arg\min_{w} L_k(w)$ Q-learning: (one step of SG $w_{k+1} = w_k - \eta_k \nabla L_k(w_k)$ 2. Return the function $f_{\widetilde{W}_{\kappa}}$ as an estimate of Q^{\star}

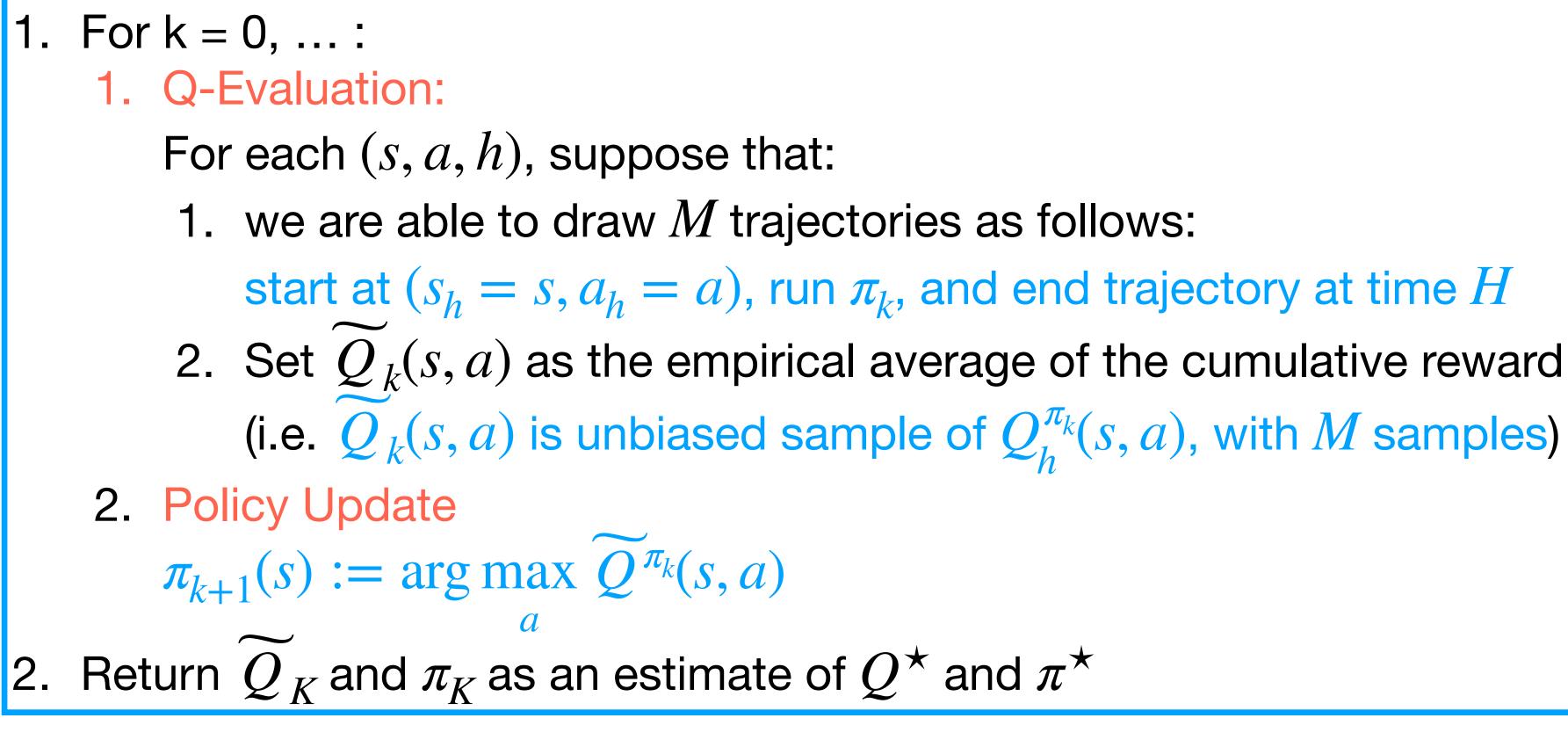
$$\int_{S_{h+1}} \left(f_w(s_h, a_h) - \left(r_h + \max_a f_{w_k}(s_{h+1}, a) \right) \right)^2$$

Today: "Convergence" & Trust Region Policy Optimization

Outline:

- 1. Convergence of Fitted Policy Iteration 1. "Tabular" case
- - 2. Fitted case
- 2. Trust Region Policy Optimization 1. Quick intro on KL-divergence
- 2. TRPO formulation

Sample Based Policy Iteration in the Tabular Case: (the easiest case to think about fitted Policy Iteration)



[Theorem] Using polynomial many total samples and polynomial computation time (in $|S|, |A|, H, 1/\epsilon$), we have that $||Q_K - Q^*||_{\infty} \leq \epsilon$ and $||Q^{\pi_K} - Q^*||_{\infty} \leq \epsilon$.

- 2. Set $Q_k(s, a)$ as the empirical average of the cumulative reward on these trajectories.

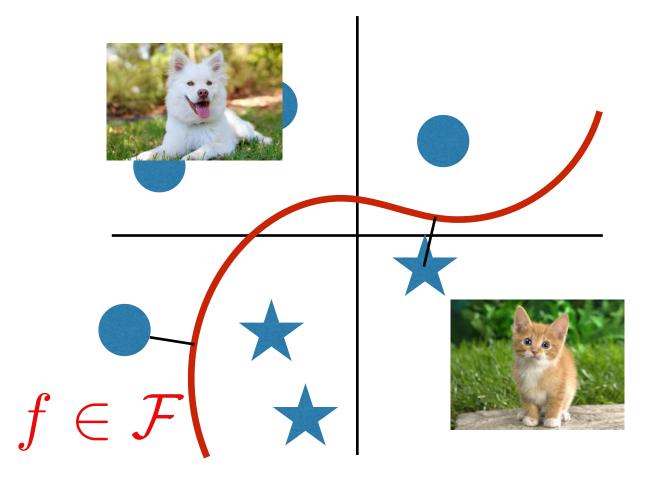
Outline:

- 1. Convergence of Fitted Policy Iteration 1. "Tabular" case
- - 2. Fitted case
- 2. Trust Region Policy Optimization 1. Quick intro on KL-divergence 2. TRPO formulation

First: let's summarize a few things about Supervised Learning

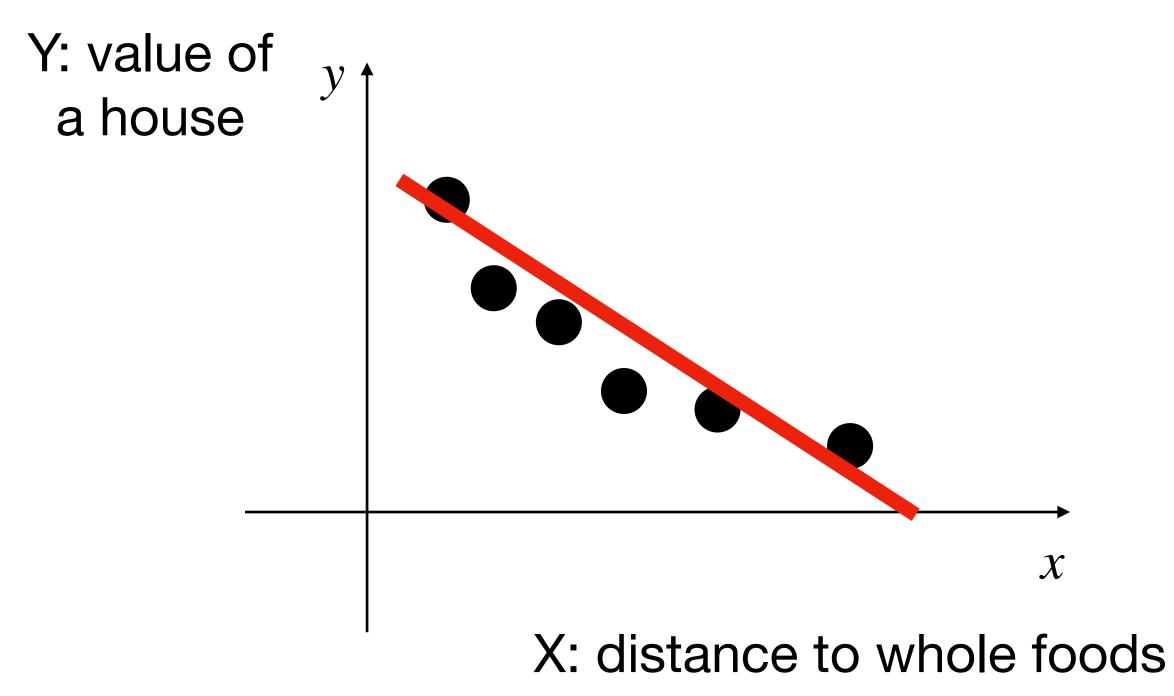
Recap on Supervised Learning: Classification

Given i.i.d examples at training:



Using function approximator, we are able to predict on cats/dogs that we **never see before** (i.e., we **generalize**)

Recap on Supervised Learning: Regression



Using function approximation, we are able to predict on the value of some house not from the training data

Recap on Supervised Learning: regression

We have a data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i) + \epsilon_i$, where noise $\mathbb{E}[\epsilon_i] = 0, |\epsilon_i| \leq c$

We want to approximate f^* using finite training samples;

Let us introduce an abstract function class $\mathcal{F} = \{f : \mathcal{X} \mapsto \mathbb{R}\}$, and do least squares: Empirical Risk Minimizer (ERM) $\hat{f} = \arg \min_{f \in \mathcal{F}} \sum_{i=1}^{N} (f(x_i) - y_i)^2$

Q: quality of ERM \hat{f} ?

Recap on Supervised Learning: regression

We have a data distribution \mathcal{D} , $x_i \sim \mathcal{D}$, $y_i = f^*(x_i) + \epsilon_i$, where noise $\mathbb{E}[\epsilon_i] = 0$, $|\epsilon_i| \leq c$

 $\hat{f} = \arg\min_{f \in \mathscr{F}} \sum_{i=1}^{n}$

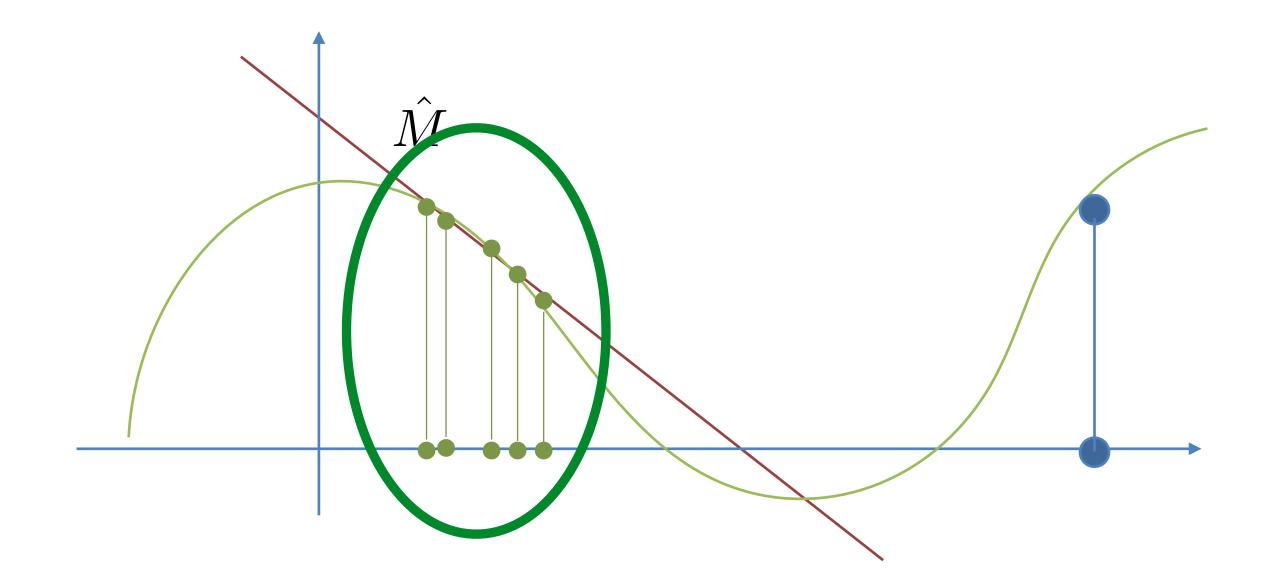
Supervised learning theory (e.g., VC theory) says that we can indeed generalize, i.e., we can predict well **under the same distribution**:

$$\mathbb{E}_{x \sim \mathcal{D}}\left(\hat{f}(x) - f^{\star}(x)\right)^2 \leq \delta$$

$$\sum_{k=1}^{N} \left(f(x_i) - y_i \right)^2$$

Assume $f^* \in \mathcal{F}$ (this is called realizability), we can expect:

Supervise Learning can fail if there is train-test distribution mismatch



Deeper neural nets and larger datasets are typically not enough to address "distribution shift"

However, for some $\mathscr{D}' \neq \mathscr{D}$, $\mathbb{E}_{x \sim \mathscr{D}'} (f(x) - f^*(x))^2$ might be arbitrarily large

Back to RL

Fitted Policy Improvement Guarantees

- For all k, suppose that: $E_{\tau \sim \rho_{\pi_k}} \left[\sum_{k=1}^{H} \left(\widetilde{Q}_k(s_h, a_h) - Q_h^{\pi_k}(s_h, a_h) \right)^2 \right] \le \delta, \text{ and } \max_{s, a} \left| \widetilde{Q}_k(s_h, a_h) - Q_h^{\pi_k}(s_h, a_h) \right| \le \delta_{\infty}$
- δ : the average case supervised learning error (reasonable to expect this can be made small) δ_{∞} : the worse case error (often unreasonable to expect to be small)

[Theorem:] We have that:

- One step performance degradation is bounded by the worst case error:
- For large enough K, final performance also governed by the worst case error: $Q^{\pi_K}(s,a) \ge Q^{\star}(s,a) - 2H^2 \delta_{\infty}$
- differ from that of previous policy, i.e. that

 $\max_{s,a,h} \left(\frac{\Pr(s_h = s, a_h = a \mid \pi)}{\Pr(s_h = s, a_h = a \mid x)} \right)$

then we can bound our sub-optimality by the average case error: $Q^{\pi_{K}}(s,a) \geq Q^{\star}(s,a) - 2H^{2} \cdot C_{\infty} \cdot \delta$

```
Q_{k+1}(s, a) \ge Q_k(s, a) - 2H\delta_{\infty} (and equality possible in some examples).
```

• (Intuition) If it somehow turns out that, for all iterations k, the density under the next policy, uniformly does not

$$\left(\frac{\pi_{k+1}}{\pi_k}\right) \leq C_{\infty}$$

Outline:

- 1. Convergence of Fitted Policy Iteration 1. "Tabular" case
- - 2. Fitted case
- 2. Trust Region Policy Optimization
 - 1. Quick intro on KL-divergence
 - 2. TRPO formulation

KL-divergence: measures the distance between two distributions

 $KL(P \mid Q) =$

If Q = P, then KL

 $KL(P \mid Q) \ge 0$, and being 0 if and only if P = Q

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

$$(P \mid Q) = KL(Q \mid P) = 0$$

If $P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$, then $KL(P | Q) = \|\mu_1 - \mu_2\|_2^2 / \sigma^2$

Fact:

Outline:

- - 2. TRPO formulation

1. Convergence of Fitted Policy Iteration 2. Trust Region Policy Optimization 1. Quick intro on KL-divergence

An "idealized" trust region formulation for policy update: (back to direct policy optimization)

At iteration t, with $\pi_{\theta_{t}}$ at hand, we compute θ_{t+1} as follows:

 $\max J(\theta) - J(\theta_t)$ π_{θ}

s.t., *KL* |

$$\left(\rho_{\pi_{\theta_t}} | \rho_{\pi_{\theta}}\right) \leq \delta$$

We want to maximize performance improvement starting at $\pi_{\theta_{t}}$, but we want the new policy to be close to π_{θ_t} (in the KL sense)

Summary:

- 1. Convergence of Fitted Policy Iteration
- 2. Trust Region Policy Optimization
 - 1. Quick intro on KL-divergence
 - 2. TRPO formulation

1-minute feedback form: <u>https://bit.ly/3RHtlxy</u>

