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Today
• Next class: embedded ethics (from Jenna Donohue, a postdoc in the Philosophy dept) 
• Course Plan: consider different ethical implications of different possible utility 

functions for a (fictional) RL algorithm that was setting dynamic prices for rides. 
• Please come to the next class. (There will be a discussion.) 
• Please do the assigned reading (John Rawls) in advance. 

 

• Recap++ 

• Today:

1. Convergence of Fitted Policy Iteration

2. Trust Region Policy Optimization
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Recap + Examples
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Is there an iterative version of Policy Evaluation? 
(that is faster, but approximate?)

Algorithm (Iterative PE):  

1. Initialization:  


2. Iterate until convergence: 

    Equivalently, 
	

V0 : ∥V0∥∞ ∈ [0,
1

1 − γ ]
Vk+1 ← R + γPVk

∀s, Vk+1(s) = r(s, π(s)) + γ𝔼s′￼∼P(s,π(s))Vk(s′￼)
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[Policy Eval Subroutine]: TD Learning for “tabular” case

[Iterative Policy Eval Subroutine/TD]  
input: policy , sample size 

1. Sample trajectories  which gives us a dataset  

(each trajectory is of the form )

2. For k =  : 


1. Sample a transition  and update: 

	 


3. Return the function   as an estimate of 

π N
τ1, …τN ∼ ρπ D

τi = {s0, a0, r0, …sH−1, aH−1, rH−1,}
0,…, K

(sh, rh, sh+1,) ∈ D
Vk+1(sh) = Vk(sh) − ηk(Vk(sh) − (rh + Vk(sh+1)))

VK Vπ
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Another [Policy Eval Subroutine]: 
Fit  using the iterative policy evaluation alg.Vπ(s)

[Iterative Policy Eval Subroutine/TD]  
input: policy , sample size , init 

1. Sample trajectories  which gives us a dataset 

2. For k =  : 


1. Construct an empirical loss function: 

	 


2. Update with either: 
full minimization: 
	 


TD learning: (one step of SGD) 
	 


3. Return the function  as an estimate of 

π N w0
τ1, …τN ∼ ρπ D

0,…, K

Lk(w) =
1

NH

N

∑
i=1

∑
(sh,rh,sh+1)∈τi

(fw(sh) − (rh + fwk
(sh+1)))

2

wk+1 ≈ arg min
w

Lk(w)

wk+1 = wk − ηk ∇̃ Lk(wk)
fwK

Vπ
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Fitted Dynamic Programming Methods for learning and Q⋆ π⋆
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Policy Iteration (PI)

• Initialization: choose a policy 

• For 


1. Policy Evaluation: compute 

2. Policy Improvement: set 

	

π0 : S ↦ A
k = 0,1,…

Qπk(s, a)

πk+1(s) := arg max
a

Qπk(s, a)
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Fitted Policy Iteration:  
(aka Approximate Policy Iteration API)

1. Initialize staring policy , samples size M

2. For k = 0, … : 


1. [Q-Evaluation Subroutine] 
Using M sampled trajectories, ,  



2. Policy Update 




3. Return  and  as an estimate of  and 

π0

τ1, …τN ∼ ρπk

Q̃ k(s, a) ≈ Qπk
h (s, a)

πk+1(s) := arg max
a

Q̃ πk(s, a)

Q̃ K πK Q⋆ π⋆
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Alternative Version: Bellman Operator  on  
(HW2 Q2 is the Q-version of the Bellman Equations)

𝒯 Q

• Given a function , define  as 
	 


• (Bellman equations for Q) 
 is equal to  if and only if .


Q : S × A ↦ ℝ 𝒯Q : S × A ↦ ℝ
(𝒯Q)(s, a) := r(s, a) + γ𝔼s′￼∼P(s,a) max

a′￼∈A
Q(s′￼, a′￼)

Q Q⋆ 𝒯Q = Q
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Q-Value Iteration Algorithm:

1. Initialization:  


2. Iterate until convergence:  
 

Q0 : ∥Q0∥∞ ∈ [0,
1

1 − γ ]
Qk+1 ← 𝒯Qk

Qk+1(s, a) = r(s, a) + γ𝔼s′￼∼P(s,a) max
a′￼∈A

Qk(s′￼, a′￼)
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The Offline Learning Setting: 
We don’t know the MDP and our data collection is under some fixed distribution.

The Finite Horizon, Offline Learning Setting:

• We have  trajectories 


•  is often referred to as our data collection policy.
N τ1, …τN ∼ ρπdata

πdata
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Q-Learning for “tabular” case

[Iterative Policy Eval Subroutine/TD]  
input: offline dataset 

1. For k =  : 


1. Sample a transition  and update: 

	 


2. Return the function   as an estimate of 

τ1, …τN ∼ ρπdata

0,…, K
(sh, ah, rh, sh+1) ∈ D

Qk+1(sh, ah) = Qk(sh, ah) − ηk(Qk(sh, ah) − (rh + max
a′￼

Qk(sh+1, a′￼)))
QK Q⋆
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Fitted Q-Iteration

input: offline dataset , init 

1. For  : 


1. Construct an empirical loss function: 

	  

 

2. Update with either: 

full minimization: 
	  

Q-learning: (one step of SGD) 
	 


2. Return the function  as an estimate of 

τ1, …τN ∼ ρπdata
w0

k = 0,1,…K

Lk(w) =
1

NH

N

∑
i=1

∑
(sh,ah,rh,sh+1)∈τi

(fw(sh, ah) − (rh + max
a

fwk
(sh+1, a)))

2

wk+1 ≈ arg min
w

Lk(w)

wk+1 = wk − ηk ∇̃ Lk(wk)
f w̃ K

Q⋆
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Today:

“Convergence” & Trust Region Policy Optimization
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Outline:

1. Convergence of Fitted Policy Iteration

1. “Tabular” case

2. Fitted case


2. Trust Region Policy Optimization

1. Quick intro on KL-divergence

2. TRPO formulation
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Sample Based Policy Iteration in the Tabular Case: 
(the easiest case to think about fitted Policy Iteration)

1. For k = 0, … : 

1. Q-Evaluation: 

For each , suppose that:

1. we are able to draw  trajectories as follows:  

start at , run , and end trajectory at time 

2. Set  as the empirical average of the cumulative reward on these trajectories. 

(i.e.  is unbiased sample of , with  samples)

2. Policy Update 




2. Return  and  as an estimate of  and 

(s, a, h)
M

(sh = s, ah = a) πk H
Q̃ k(s, a)
Q̃ k(s, a) Qπk

h (s, a) M

πk+1(s) := arg max
a

Q̃ πk(s, a)

Q̃ K πK Q⋆ π⋆
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[Theorem]  Using polynomial many total samples and polynomial computation time 
(in ), we have that  and .|S | , |A | , H,1/ϵ ∥ Q̃ K − Q⋆∥∞ ≤ ϵ ∥QπK − Q⋆∥∞ ≤ ϵ



Outline:

1. Convergence of Fitted Policy Iteration

1. “Tabular” case

2. Fitted case


2. Trust Region Policy Optimization

1. Quick intro on KL-divergence

2. TRPO formulation
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First: let’s summarize a few things about Supervised Learning
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Recap on Supervised Learning: Classification

f 2 F

,cat ,cat ,dog( )( )

Given i.i.d examples at training:

( )

Using function approximator, we are able to 
predict on cats/dogs that we never see 

before (i.e., we generalize)
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Recap on Supervised Learning: Regression

x

X: distance to whole foods

yY: value of 
a house

Using function approximation, we are able 
to predict on the value of some house not 

from the training data
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Recap on Supervised Learning: regression

We have a data distribution ,  , ,  where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

We want to approximate  using finite training samples;f ⋆

Let us introduce an abstract function class , and do least squares:ℱ = {f : 𝒳 ↦ ℝ}

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Q: quality of ERM  ? ̂f

Empirical Risk Minimizer (ERM)

22



Recap on Supervised Learning: regression

We have a data distribution ,  , ,  where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Supervised learning theory (e.g., VC theory) says that we can indeed generalize, 

i.e., we can predict well under the same distribution:

𝔼x∼𝒟 ( ̂f(x) − f ⋆(x))
2

≤ δ

Assume  (this is called realizability), we can expect:f ⋆ ∈ ℱ
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Supervise Learning can fail if there is train-test distribution mismatch

However, for some ,   might be arbitrarily large𝒟′￼ ≠ 𝒟 𝔼x∼𝒟′￼
( f(x) − f ⋆(x))2

M̂

Deeper neural nets and larger datasets are typically 
not enough to address “distribution shift”

24



Back to RL
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Fitted Policy Improvement Guarantees
•For all k, suppose that: 

, and   


•   : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small) 

[Theorem:] We have that: 

•One step performance degradation is bounded by the worst case error:  
	 	   (and equality possible in some examples).


•For large enough , final performance also governed by the worst case error:  
	 	 


• (Intuition) If it somehow turns out that, for all iterations , the density under the next policy, uniformly does not 
differ from that of previous policy, i.e. that 

	 	  

then we can bound our sub-optimality by the average case error: 
	 	

Eτ∼ρπk[
H

∑
h=1

( Q̃ k(sh, ah) − Qπk
h (sh, ah))2] ≤ δ max

s,a
| Q̃ k(sh, ah) − Qπk

h (sh, ah) | ≤ δ∞

δ
δ∞

Q̃ k+1(s, a) ≥ Q̃ k(s, a) − 2Hδ∞
K

QπK(s, a) ≥ Q⋆(s, a) − 2H2δ∞
k

max
s,a,h (

Pr(sh = s, ah = a |πk+1)
Pr(sh = s, ah = a |πk) ) ≤ C∞

QπK(s, a) ≥ Q⋆(s, a) − 2H2 ⋅ C∞ ⋅ δ
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Outline:

1. Convergence of Fitted Policy Iteration

1. “Tabular” case

2. Fitted case


2. Trust Region Policy Optimization

1. Quick intro on KL-divergence

2. TRPO formulation
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KL-divergence: measures the distance between two distributions

Given two distributions , where , 

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = 𝔼x∼P [ln
P(x)
Q(x) ]

Examples: 

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = 𝒩(μ1, σ2I), Q = 𝒩(μ2, σ2I) KL(P |Q) = ∥μ1 − μ2∥2
2/σ2

Fact: 

, and being  if and only if KL(P |Q) ≥ 0 0 P = Q
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Outline:

1. Convergence of Fitted Policy Iteration

2. Trust Region Policy Optimization


1. Quick intro on KL-divergence

2. TRPO formulation
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An “idealized” trust region formulation for policy update: 
(back to direct policy optimization)

max
πθ

J(θ) − J(θt)

s.t., KL (ρπθt
|ρπθ) ≤ δ

At iteration t, with  at hand, we compute  as follows: πθt
θt+1

We want to maximize performance improvement starting at , 
but we want the new policy to be close to  (in the KL sense)

πθt

πθt
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Summary:

1. Convergence of Fitted Policy Iteration

2. Trust Region Policy Optimization


1. Quick intro on KL-divergence

2. TRPO formulation 

1-minute feedback form: https://bit.ly/3RHtlxy 
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https://bit.ly/3RHtlxy

