## Trust Region Policy Optimization

 \& the Natural Policy Gradient Lucas Janson and Sham KakadeCS/Stat 184: Introduction to Reinforcement Learning Fall 2022

## Today

- Announcements:

If you are an undergraduate student at Harvard and are possibly interested in pursuing research, formally or informally, with the ML foundations group, please fill in the following form: https://forms.gle/yCiTfbXn31x2RQtHA

- Recap
- Today:

1. Convergence of Fitted Policy lteration
2. Trust Region Policy Optimization


## Recap

## [Policy Eval Subroutine]: TD Learning for "tabular" case

## [Iterative Policy Eval Subroutine/TD]

input: policy $\pi$, sample size $N$, init $w_{0}$

1. Sample trajectories $\tau_{1}, \ldots \tau_{N} \sim \rho_{\pi}$ which gives us a dataset $D$ (each trajectory is of the form $\tau_{i}=\left\{s_{0}, a_{0}, r_{0}, \ldots s_{H-1}, a_{H-1}, r_{H-1},\right\}$ )
2. For $\mathrm{k}=0, \ldots, K$ :
3. Sample a transition $\left(s_{h}, r_{h}, s_{h+1},\right) \in D$ and update:

$$
V_{k+1}\left(s_{h}\right)=V_{k}\left(s_{h}\right)-\eta_{k}\left(V_{k}\left(s_{h}\right)-\left(r_{h}+V_{k}\left(s_{h+1}\right)\right)\right)
$$

3. Return the function $V_{K}$ as an estimate of $V^{\pi}$


Q-Learning for "tabular" case
[Iterative Policy Eval Subroutine/TD]
input: offline dataset $\tau_{1}, \ldots \tau_{N} \sim \rho_{\pi_{\text {data }}}$

1. For $\mathrm{k}=0, \ldots, K$ :
2. Sample a transition $\left(s_{h}, a_{h}, r_{h}, s_{h+1}\right) \in D$ and update:

$$
Q_{k+1}\left(s_{h}, a_{h}\right)=Q_{k}\left(s_{h}, a_{h}\right)-\eta_{k}\left(Q_{k}\left(s_{h}, a_{h}\right)-\left(r_{h}+\max _{a^{\prime}} Q_{k}\left(s_{h+1}, a^{\prime}\right)\right)\right)
$$

2. Return the function $Q_{K}$ as an estimate of $Q^{\star}$
to le ain (estinn le
Q*
agate the idea was to enforce
B. con sistency.

## Fitted Policy Iteration: (aka Approximate Policy Iteration API)

1. Initialize staring policy $\pi_{0}$, samples size M
2. For $k=0, \ldots$ :
3. [Q-Evaluation Subroutine]

Using M sampled trajectories, $\tau_{1}, \ldots \tau_{N} \sim \rho_{\pi_{k}}$,

$$
\widetilde{Q}_{k}(s, a) \approx Q_{h}^{\pi_{k}}(s, a)
$$

2. Policy Update
$\pi_{k+1}(s):=\arg \max \widetilde{Q}^{\pi_{k}}(s, a)$
3. Return $\widetilde{Q}_{K}$ and $\pi_{K}$ as an estimate of $Q^{\star}$ and $\pi^{\star}$

## Recap on Supervised Learning: regression

We have a data distribution $\mathscr{D}, x_{i} \sim \mathscr{D}, y_{i}=f^{\star}\left(x_{i}\right)+\epsilon_{i}$, where noise $\mathbb{E}\left[\epsilon_{i}\right]=0,\left|\epsilon_{i}\right| \leq c$

$$
\hat{f}=\arg \min _{f \in \mathscr{F}} \sum_{i=1}^{N}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

Supervised learning theory (e.g., VC theory) says that we can indeed generalize, i.e., we can predict well under the same distribution:

Assume $f^{\star} \in \mathscr{F}$ (this is called realizability), we can expect:

$$
\mathbb{E}_{x \sim D}\left(\hat{f}(x)-f^{\star}(x)\right)^{2} \leq \delta
$$

## Supervise Learning can fail if there is train-test distribution mismatch

However, for some $\mathscr{D}^{\prime} \neq \mathscr{D}, \mathbb{E}_{x \sim \mathscr{D}^{\prime}}\left(f(x)-f^{\star}(x)\right)^{2}$ might be arbitrarily large


Deeper neural nets and larger datasets are typically not enough to address "distribution shift"

Fitted Policy Improvement Guarantees

## Fitted Policy Improvement Guarantees

- For all k, suppose that:

$$
E_{\tau \sim \rho_{\pi_{k}}}\left[\sum_{h=1}^{H}\left(\widetilde{Q}_{k}\left(s_{h}, a_{h}\right)-Q_{h}^{\pi_{k}}\left(s_{h}, a_{h}\right)\right)^{2}\right] \leq \delta, \text { and } \max _{s, a}\left|\widetilde{Q}_{k}\left(s_{h}, a_{h}\right)-Q_{h}^{\pi_{k}}\left(s_{h}, a_{h}\right)\right| \leq \delta_{\infty}
$$

- $\delta$ : the average case supervised learning error (reasonable to expect this can be made small)
$\delta_{\infty}$ : the worse case error (often unreasonable to expect to be small)


## Fitted Policy Improvement Guarantees

- For all k, suppose that:

$$
E_{\tau \sim \rho_{\pi_{k}}}\left[\sum_{h=1}^{H}\left(\widetilde{Q}_{k}\left(s_{h}, a_{h}\right)-Q_{h}^{\pi_{k}}\left(s_{h}, a_{h}\right)\right)^{2}\right] \leq \delta, \text { and } \max _{s, a}\left|\widetilde{Q}_{k}\left(s_{h}, a_{h}\right)-Q_{h}^{\pi_{k}}\left(s_{h}, a_{h}\right)\right| \leq \delta_{\infty}
$$

- $\delta$ : the average case supervised learning error (reasonable to expect this can be made small)
$\delta_{\infty}$ : the worse case error (often unreasonable to expect to be small)
[Theorem:] We have that:


## Fitted Policy Improvement Guarantees

- For all k, suppose that:

$$
E_{\tau \sim \rho_{\pi_{k}}}\left[\sum_{h=1}^{H}\left(\widetilde{Q}_{k}\left(s_{h}, a_{h}\right)-Q_{h}^{\pi_{k}}\left(s_{h}, a_{h}\right)\right)^{2}\right] \leq \delta, \text { and } \max _{s, a}\left|\widetilde{Q}_{k}\left(s_{h}, a_{h}\right)-Q_{h}^{\pi_{k}}\left(s_{h}, a_{h}\right)\right| \leq \delta_{\infty}
$$

- $\delta$ : the average case supervised learning error (reasonable to expect this can be made small)
$\delta_{\infty}$ : the worse case error (often unreasonable to expect to be small)
[Theorem:] We have that:
- One step performance degradation is bounded by the worst case error:
$Q^{k+1}(s) \geq Q^{k}(s)-2 H \delta_{\infty}$ (and equality possible in some examples).


## Fitted Policy Improvement Guarantees

- For all k, suppose that:

$$
E_{\tau \sim \rho_{\pi_{k}}}\left[\sum_{h=1}^{H}\left(\widetilde{Q}_{k}\left(s_{h}, a_{h}\right)-Q_{h}^{\pi_{k}}\left(s_{h}, a_{h}\right)\right)^{2}\right] \leq \delta, \text { and } \max _{s, a}\left|\widetilde{Q}_{k}\left(s_{h}, a_{h}\right)-Q_{h}^{\pi_{k}}\left(s_{h}, a_{h}\right)\right| \leq \delta_{\infty}
$$

- $\delta$ : the average case supervised learning error (reasonable to expect this can be made small)
$\delta_{\infty}$ : the worse case error (often unreasonable to expect to be small)
[Theorem:] We have that:
- One step performance degradation is bounded by the worst case error:

$$
Q^{k+1}(s) \geq Q^{k}(s)-2 H \delta_{\infty} \text { (and equality possible in some examples). }
$$

- For large enough $K$, final performance also governed by the worst case error:

$$
Q^{\pi_{K}(s)} \geq Q^{\star}(s)-2 H^{2} \delta_{\infty}
$$

## Fitted Policy Improvement Guarantees

- For all k, suppose that:

$$
E_{\tau \sim \rho_{\pi_{k}}}\left[\sum_{h=1}^{H}\left(\widetilde{Q}_{k}\left(s_{h}, a_{h}\right)-Q_{h}^{\pi_{k}}\left(s_{h}, a_{h}\right)\right)^{2}\right] \leq \delta, \text { and } \max _{s, a}\left|\widetilde{Q}_{k}\left(s_{h}, a_{h}\right)-Q_{h}^{\pi_{k}}\left(s_{h}, a_{h}\right)\right| \leq \delta_{\infty}
$$

- $\delta$ : the average case supervised learning error (reasonable to expect this can be made small)
$\delta_{\infty}$ : the worse case error (often unreasonable to expect to be small)
[Theorem:] We have that:
- One step performance degradation is bounded by the worst case error:

$$
Q^{k+1}(s) \geq Q^{k}(s)-2 H \delta_{\infty} \text { (and equality possible in some examples). }
$$

- For large enough $K$, final performance also governed by the worst case error:

$$
Q^{\pi_{K}(s)} \geq Q^{\star}(s)-2 H^{2} \delta_{\infty}
$$

- (Intuition) If it somehow turns out that, for all iterations $k$, the density under the next policy, uniformly does not differ from that of previous policy, i.e. that

$$
\max _{s, a, h}\left(\frac{\operatorname{Pr}\left(s_{h}=s, a_{h}=a \mid \pi_{k+1}\right)}{\operatorname{Pr}\left(s_{h}=s, a_{h}=a \mid \pi_{k}\right)}\right) \leq C_{\infty}
$$

then we can bound our sub-optimality by the average case error:

$$
Q^{\pi_{K}(s)} \geq Q^{\star}(s)-2 H^{2} \cdot C_{\infty} \cdot \delta
$$

## Today:

Qptim Nark Decision Preesses

## Outline:

1. Quick intro on KL-divergence \& the visitation measure
2. A Trust-Region Formulation for Policy Optimization
3. Algorithm: Natural Policy Gradient

## KL-divergence: measures the distance between two distributions

Given two distributions $P \& Q$, where $P \in \Delta(X), Q \in \Delta(X)$,
KL Divergence is defined as:

$$
K L(P \mid Q)=\mathbb{E}_{x \sim P}\left[\ln \frac{P(x)}{Q(x)}\right]
$$

## KL-divergence: measures the distance between two distributions

Given two distributions $P \& Q$, where $P \in \Delta(X), Q \in \Delta(X)$,
KL Divergence is defined as:

$$
K L(P \mid Q)=\mathbb{E}_{x \sim P}\left[\ln \frac{P(x)}{Q(x)}\right]
$$



Examples:

$$
\text { If } Q=P \text {, then } K L(P \mid Q)=K L(Q \mid P)=0
$$

$$
K L(P \mid Q) \geqslant 0
$$

## KL-divergence: measures the distance between two distributions

Given two distributions $P \& Q$, where $P \in \Delta(X), Q \in \Delta(X)$,
KL Divergence is defined as:

$$
K L(P \mid Q)=\mathbb{E}_{x \sim P}\left[\ln \frac{P(x)}{Q(x)}\right]
$$

## Examples:

$$
\begin{gathered}
\text { If } Q=P \text {, then } K L(P \mid Q)=K L(Q \mid P)=0 \\
\text { If } P=\mathcal{N}\left(\mu_{1}, \sigma^{2} I\right), Q=\mathcal{N}\left(\mu_{2}, \sigma^{2} I\right) \text {, then } K L(P \mid Q)=\left\|\mu_{1}-\mu_{2}\right\|_{2}^{2} / \sigma^{2}
\end{gathered}
$$

KL-divergence: measures the distance between two distributions

Given two distributions $P \& Q$, where $P \in \Delta(X), Q \in \Delta(X)$,
KL Divergence is defined as:

$$
K L(P \mid Q)=\mathbb{E}_{x \sim P}\left[\ln \frac{P(x)}{Q(x)}\right]
$$

Examples:
If $Q=P$, then $K L(P \mid Q)=K L(Q \mid P)=0$
If $P=\mathcal{N}\left(\mu_{1}, \sigma^{2} I\right), Q=\mathcal{N}\left(\mu_{2}, \sigma^{2} I\right)$, then $K L(P \mid Q)=\left\|\mu_{1}-\mu_{2}\right\|_{2}^{2} / \sigma^{2}$

Fact:
$K L(P \mid Q) \geq 0$, and being 0 if and only if $P=Q$

## Outline:

1. Quick intro on KL-divergence
2. A Trust-Region Formulation for Policy Optimization (TRPO)
3. Algorithm: Natural Policy Gradient

## A trust region formulation for policy update:

At iteration t , with $\pi_{\theta_{t}}$ at hand, we compute $\theta_{t+1}$ as follows:

## A trust region formulation for policy update:

At iteration t , with $\pi_{\theta_{t}}$ at hand, we compute $\theta_{t+1}$ as follows:

$$
\begin{aligned}
& \underset{\theta}{\max } \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\theta_{t}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}(s, a)}\right] \\
& \quad \text { s.t. }, K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) \leq \delta
\end{aligned}
$$

A trust region formulation for policy update: $A^{\star}(s, a)$
$=Q^{\pi}\left(S, a 1-V^{\pi}(S)\right.$
At iteration t , with $\pi_{\theta_{t}}$ at hand, we compute $\theta_{t+1}$ as follows:

$$
\begin{aligned}
& \max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\theta_{t}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}(s, a)}\right] \\
& \text { s.t., } K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right)^{\leq \delta}
\end{aligned}
$$

We want to maximize local advantage against $\pi_{\theta_{l}}$, but we want the new policy to be close to $\pi_{\theta_{t}}$ (in the KL sense)

Some Helpful Notation: Visitation Measures

- Visitation probability at time $h: \mathbb{P}_{h}\left(s_{h}, a_{h} \mid \mu, \pi\right)$

$$
S_{0} \sim \mu, \text { follow, ing }
$$

(recall that we absorb $h$, into the state, ie. $s \leftarrow(s, h)$ )

- Average Visitation Measure:

$$
d_{\mu}^{\pi}(s, a)=\frac{1}{H} \sum_{h=0}^{H-1} \mathbb{P}_{h}(s, a \mid \mu, \pi)
$$

$$
d_{n}^{T}(s)=\frac{1}{4} \sum_{i=0}^{H \cdot} P_{n}(s \mid \mu \pi)
$$

- With this def, we have:

$$
\begin{aligned}
& D J(\theta) \quad J(\theta):=\mathbb{E}_{s_{0} \sim \mu_{0}}\left[V^{\pi_{\theta}}\left(s_{0}\right)\right] \\
& =\underset{s, a \sim d_{\mu}^{\pi}}{H E}\left[\nabla \operatorname{lgg}_{\mu} \pi_{\theta}(a / s) A^{\theta}(s, a)\right]=E\left[\sum_{h=0}^{H-1} r\left(s_{h}, a_{h}\right) \mid \mu_{0}, \pi_{\theta}\right]=H \underset{s_{\theta}}{E} d_{\mu}^{\pi} \quad E[r(s, a)] \\
& =H \cdot \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}} E_{a \sim \pi_{\theta}(s)}[r(s, a)]
\end{aligned}
$$

## Visitation Measures: the discounted case

- Visitation probability at time $h: \mathbb{P}_{h}\left(s_{h}, a_{h} \mid \mu, \pi\right)$ (recall that we absorb $h$, into the state, i.e. $s \leftarrow(s, h)$ )
- Average Visitation Measure:

$$
d_{\mu}^{\pi}(s, a)=(1-\gamma) \sum_{h=0}^{\infty} \gamma^{h} \mathbb{P}_{h}(s, a \mid \mu, \pi)
$$

- With this def, we have:

$$
\begin{aligned}
J(\theta) & :=E_{S_{0} \sim \mu_{0}}\left[V^{\pi_{\theta}}\left(s_{0}\right)\right] \\
& =E\left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} \mid \mu_{0}, \pi_{\theta}\right] \\
& =\frac{1}{1-\gamma} \cdot \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}} E_{a \sim \pi(s)}[r(s, a)]
\end{aligned}
$$

## Equivalently,

At iteration t , with $\pi_{\theta_{t}}$ at hand, we compute $\theta_{t+1}$ as follows:

## Equivalently,

At iteration t , with $\pi_{\theta_{t}}$ at hand, we compute $\theta_{t+1}$ as follows:

$$
\begin{gathered}
\max _{\theta} H \cdot \mathbb{E}_{s \sim d_{\mu}}^{\pi_{\theta_{t}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}(s, a)}\right] \\
\quad \text { s.t., } K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) \leq \delta
\end{gathered}
$$

We want to maximize local advantage against $\pi_{\theta_{l}}$, but we want the new policy to be close to $\pi_{\theta_{t}}$ (in the KL sense)

## Equivalently,

At iteration t , with $\pi_{\theta_{t}}$ at hand, we compute $\theta_{t+1}$ as follows:

$$
\begin{gathered}
\max _{\theta} H \cdot \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}(s, a)}\right] \\
\quad \text { s.t., } K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) \leq \delta
\end{gathered}
$$

We want to maximize local advantage against $\pi_{\theta_{l}}$, but we want the new policy to be close to $\pi_{\theta_{t}}$ (in the KL sense)

How we can actually do the optimization here? After all, we don't even know the analytical form of trajectory likelihood...

## Outline:

1. Quick intro on KL-divergence
2. A Trust-Region Formulation for Policy Optimization
3. Algorithm: Natural Policy Gradient

## A trust region formulation for policy update:

At iteration t , with $\pi_{\theta_{t}}$ at hand, we compute $\theta_{t+1}$ as follows:

$$
\begin{gathered}
\max _{\theta} H \cdot \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}(s, a)}\right] \\
\quad \text { s.t., } K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) \leq \delta
\end{gathered}
$$

High-level strategy:

1. First-order Taylor expansion on the objective at $\theta_{t}$ 2.second-order Taylor expansion of the constraint at $\theta_{t}$

## Simplify Objective Function

$H \cdot \max _{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}(s, a)}\right]$

## Simplify Objective Function

$$
\max _{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}(s, a)}\right]
$$

Since the objective is also non-linear, let's do first order-talyor expansion on it:

Simplify Objective Function $\nabla_{\theta} E_{a \sim \pi}[f(\varepsilon)]$

$$
\begin{aligned}
& H \cdot \max _{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\left.\pi_{\theta_{t}}(S, a)\right]}=E_{a_{\sim} \bar{a}^{\theta}}\left[\nabla \lg \pi^{\theta}(\varepsilon \mid f / q)\right]\right. \\
& \text { Since the objective is also nonlinear, } \\
& \text { let's do first order-talyor expansion on it: } \\
& \begin{array}{l}
\text { Since the objective is also nonlinear, } \\
\text { let's do first order-talyor expansion on it: }
\end{array} \underbrace{\left.\nabla_{\theta} \theta_{y} \pi_{\theta}(s \mid s)\right|_{\theta=\theta_{t}}} \\
& H \mathbb{E}_{s \sim d_{\mu}^{\pi_{t}}}[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\left.\pi_{\theta_{t}}(s, a)\right] \approx H \mathbb{E}_{s \sim d_{H}}^{\pi_{\theta_{t}}}}[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} A^{\left.\pi_{\theta_{t}}(s, a)\right]}+\underbrace{\mathbb{E}_{s \sim d_{\mu}^{\pi_{t}}}\left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)}\left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) A^{\pi_{\theta_{t}}(s, a)}\right]\right.}_{\nabla_{\theta}\left(\pi_{\theta_{t}}\right)} \cdot\left(\theta-\theta_{t}\right) \\
& f_{\theta_{t}}(\theta)=f_{\theta_{t}}\left(\theta_{t}\right)+\left(\nabla f_{\theta_{t}}(\theta)\right]_{\theta=\theta_{z}}\left(\theta-\theta_{t}\right)+o()
\end{aligned}
$$

## Simplify Objective Function

$$
\max _{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}(S, a)}\right]
$$

Since the objective is also non-linear, let's do first order-talyor expansion on it:


$$
=f \mid \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top}\left(\theta-\theta_{t}\right)
$$

## Simplify Constraint via second-order Taylor Expansion:

## Simplify Constraint via second-order Taylor Expansion:

$$
K L\left(\rho_{\theta_{t}} \mid \rho_{\theta}\right):=\ell(\theta)
$$

## Simplify Constraint via second-order Taylor Expansion:

$$
\begin{gathered}
K L\left(\rho_{\theta_{t}} \mid \rho_{\theta}\right):=\ell(\theta) \\
\ell(\theta) \approx \ell\left(\theta_{t}\right)+\nabla \ell\left(\theta_{t}\right)^{\top}\left(\theta-\theta_{t}\right)+\frac{1}{2}\left(\theta-\theta_{t}\right)^{\top} \nabla_{\theta}^{2} \ell\left(\theta_{t}\right)\left(\theta-\theta_{t}\right)
\end{gathered}
$$

## Simplify Constraint via second-order Taylor Expansion:

$$
\begin{gathered}
K L\left(\rho_{\theta_{t}} \mid \rho_{\theta}\right):=\ell(\theta) \\
\ell(\theta) \approx \ell\left(\theta_{t}\right)+\nabla \ell\left(\theta_{t}\right)^{\top}\left(\theta-\theta_{t}\right)+\frac{1}{2}\left(\theta-\theta_{t}\right)^{\top} \nabla_{\theta}^{2} \ell\left(\theta_{t}\right)\left(\theta-\theta_{t}\right) \\
\ell\left(\theta_{t}\right)=K L\left(\rho_{\theta_{t}} \mid \rho_{\theta_{t}}\right)=0
\end{gathered}
$$

## Simplify Constraint via second-order Taylor Expansion:

$$
\begin{gathered}
K L\left(\rho_{\theta_{t}} \mid \rho_{\theta}\right):=\ell(\theta) \\
\ell(\theta) \approx \ell\left(\theta_{t}\right)+\nabla \ell\left(\theta_{t}\right)^{\top}\left(\theta-\theta_{t}\right)+\frac{1}{2}\left(\theta-\theta_{t}\right)^{\top} \nabla_{\theta}^{2} \ell\left(\theta_{t}\right)\left(\theta-\theta_{t}\right) \\
\ell\left(\theta_{t}\right)=K L\left(\rho_{\theta_{t}} \mid \rho_{\theta_{t}}\right)=0
\end{gathered}
$$

We will show that $\nabla_{\theta} \ell\left(\theta_{t}\right)=0$, and $\nabla^{2} \ell\left(\theta_{t}\right)$ has a nice form!

## The gradient of the KL-divergence is zero at $\theta_{t}$

Change from trajectory distribution to state-action distribution:

The gradient of the KL-divergence is zero at $\theta_{t}$
Change from trajectory distribution to state-action distribution:

$$
\begin{array}{r}
K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right)=\mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \ln \frac{\rho_{\pi_{\theta}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}=\mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{l}}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)} \\
\int_{\pi}(\tau)=\theta_{0}\left(S_{0}\right) \pi_{\theta}\left(a_{0} \mid S_{\theta}\right) P\left(S_{l} \mid S_{\theta}, a_{0}\right) \cdots
\end{array}
$$

## The gradient of the KL-divergence is zero at $\theta_{t}$

Change from trajectory distribution to state-action distribution:

$$
\begin{aligned}
K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) & =\mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \ln \frac{\rho_{\pi_{\theta_{t}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}=\mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)} \\
& =H \mathbb{E}_{s_{h}, a_{h} \sim d_{\mu}^{\pi_{\theta}}}\left[\ln \frac{\pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)}\right]:=\ell(\theta)
\end{aligned}
$$

The gradient of the KL-divergence is zero at $\theta_{t}$
Change from trajectory distribution to state-action distribution:

$$
\begin{aligned}
& K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right)=\mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \ln \frac{\rho_{\pi_{\theta_{t}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}=\mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)} \\
&=H \mathbb{E}_{s_{h}, a_{h} \sim d_{\mu}}\left[\ln \frac{\pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)}\right]:=\ell(\theta) \\
&\left(y \cdot \mathbb{E}_{s \sim d^{\prime}} \sum_{a}^{\theta_{t}} \pi_{\theta_{t}}(a \mid s) \text { \&g } \frac{\pi_{\theta_{t}}(a \mid s)}{\pi_{\theta}(a / s)}\right. \\
&\left.\nabla_{\theta} \ell(\theta)\right|_{\theta=\theta_{t}}= H \mathbb{E}_{s \sim d_{\mu}^{\pi_{t}}} \sum_{a}^{\pi} \pi_{\theta_{t}}(a \mid s)\left(-\left.\nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right|_{\theta=\theta_{t}}\right)
\end{aligned}
$$

## The gradient of the KL-divergence is zero at $\theta_{t}$

Change from trajectory distribution to state-action distribution:

$$
\begin{aligned}
K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) & =\mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \ln \frac{\rho_{\pi_{\theta_{t}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}=\mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)} \\
& =H \mathbb{E}_{s_{h}, a_{h} \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\ln \frac{\pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)}\right]:=\ell(\theta) \\
\left.\nabla_{\theta} \ell(\theta)\right|_{\theta=\theta_{t}} & =H \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}} \sum_{a} \pi_{\theta_{t}}(a \mid s)\left(-\left.\nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right|_{\theta=\theta_{t}}\right) \\
& =-H \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \frac{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)}
\end{aligned}
$$

## The gradient of the KL-divergence is zero at $\theta_{t}$

Change from trajectory distribution to state-action distribution:

$$
\begin{aligned}
K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) & =\mathbb{E}_{\tau \sim \rho_{\pi_{\theta_{t}}}} \ln \frac{\rho_{\pi_{\theta_{t}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}=\mathbb{E}_{\tau \sim \rho_{\pi_{\theta}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)} \\
& =H \mathbb{E}_{s_{h}, a_{h} \sim d_{\mu}}\left[\ln \frac{\pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)}\right]:=\ell(\theta)=\nabla \sum_{a} a(c / s)
\end{aligned}
$$

$$
=\nabla 1
$$

$$
\begin{aligned}
\left.\nabla_{\theta} \ell(\theta)\right|_{\theta=\theta_{t}} & =H \mathbb{E}_{s \sim d_{\mu}^{\pi_{t}}} \sum_{a} \pi_{\theta_{t}}(a \mid s)\left(-\left.\nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right|_{\theta=\theta_{t}}\right) \\
& =-H \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \frac{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)}=0
\end{aligned}
$$

Let's compute the Hessian of the KL-divergence at $\theta_{t}$

$$
H \cdot \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}}\left[\ln \frac{\pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)}\right]:=\ell(\theta)
$$

Let's compute the Hessian of the KL-divergence at $\theta_{t}$

$$
\begin{array}{r}
H \cdot \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\ln \frac{\pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)}\right]:=\ell(\theta) \\
\left.\frac{1}{H} \nabla_{\theta}^{2} \ell(\theta)\right|_{\theta=\theta_{t}}=\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s)\left(-\left.\nabla_{\theta}^{2} \ln \pi_{\theta}(a \mid s)\right|_{\theta=\theta_{t}}\right)
\end{array}
$$

Let's compute the Hessian of the KL-divergence at $\theta_{t}$

$$
\begin{aligned}
& H \cdot \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\ln \frac{\pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)}\right]:=\ell(\theta) \\
& \left.\frac{1}{H} \nabla_{\theta}^{2} \ell(\theta)\right|_{\theta=\theta_{t}}=\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}} \sum_{a} \pi_{\theta_{t}}(a \mid s)\left(-\left.\nabla_{\theta}^{2} \ln \pi_{\theta}(a \mid s)\right|_{\theta=\theta_{t}}\right) \\
& \nabla \lg \pi_{\theta}=\frac{D \pi_{0}}{\pi_{\theta}} \\
& \begin{array}{c}
=-\mathbb{E}_{s \sim d_{\theta_{i}}^{\pi_{i}}} \sum_{a} \pi_{\theta_{\theta}(a \mid s)}\left(\frac{\nabla_{\theta}^{2} \pi_{\theta_{i}}(a \mid s)}{\pi_{\theta_{1}}(a \mid s)}\right. \\
\left.\sum_{a}-\frac{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s) \nabla_{\theta} \pi_{\theta}(a \mid s)^{\top}}{\pi_{\theta_{t}}^{2}(a \mid s)}\right) \quad \nabla^{2} \lg \pi_{\theta}=\frac{\nabla^{2} \pi_{\theta}}{\pi_{\theta}}+\nabla \pi_{\theta} \nabla\left(\frac{1}{\pi_{\theta}}\right) \\
\sum_{\theta}^{2}(a \mid s)=\sum_{a} \pi_{\theta}(a / s)=\nabla^{2} I=0
\end{array}
\end{aligned}
$$

Let's compute the Hessian of the KL-divergence at $\theta_{t}$

$$
H \cdot \mathbb{E}_{s, a \sim d_{\phi_{t}}^{\pi_{t}}}\left[\ln \frac{\pi_{\theta_{i}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)}\right]:=\ell(\theta)
$$

$$
\begin{aligned}
& \left.\frac{1}{H} \nabla_{\theta}^{2} \ell(\theta)\right|_{\theta=\theta_{t}}=\mathbb{E}_{s \sim d_{A}^{\pi_{t}}} \sum_{a} \pi_{\theta_{t}}(a \mid s)\left(-\left.\nabla_{\theta}^{2} \ln \pi_{\theta}(a \mid s)\right|_{\theta=\theta_{t}}\right) \\
& =-\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}} \sum_{a} \pi_{\theta_{t}}(a \mid s)\left(\frac{\nabla_{\theta}^{2} \pi_{\theta_{t}}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)}-\frac{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s) \nabla_{\theta} \pi_{\theta_{t}}(a \mid s)^{\top}}{\pi_{\theta_{t}}^{2}(a \mid s)}\right) \\
& =\mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}}\left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\left(\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\right)^{\top}\right] \in \mathbb{R}^{\operatorname{dim}_{\theta} \times d i m_{\theta}}
\end{aligned}
$$

Let's compute the Hessian of the KL-divergence at $\theta_{t}$

$$
H \cdot \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\ln \frac{\pi_{\theta_{t}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)}\right]:=\ell(\theta)
$$

$$
\left.\frac{1}{H} \nabla_{\theta}^{2} \ell(\theta)\right|_{\theta=\theta_{t}}=\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s)\left(-\left.\nabla_{\theta}^{2} \ln \pi_{\theta}(a \mid s)\right|_{\theta=\theta_{t}}\right)
$$

$$
=-\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}} \sum_{a} \pi_{\theta_{t}}(a \mid s)\left(\frac{\nabla_{\theta}^{2} \pi_{\theta_{t}}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)}-\frac{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s) \nabla_{\theta} \pi_{\theta_{t}}(a \mid s)^{\top}}{\pi_{\theta_{t}}^{2}(a \mid s)}\right)
$$

$$
=\mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}}\left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\left(\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\right)^{\top}\right] \in \mathbb{R}^{\operatorname{dim}_{\theta} \times \operatorname{dim}_{\theta}} \quad F_{\text {q. }} \quad \text { of d. of }
$$

It's called fisher Information Matrix!

$$
\{\pi(* / s) \mid s \in S\}
$$

## Summary so far:

We did second-order Taylor expansion on the KL constraint, and we get:

$$
\begin{gathered}
\frac{1}{H} K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) \approx \frac{1}{2}\left(\theta-\theta_{t}\right)^{\top} F_{\theta_{t}}\left(\theta-\theta_{t}\right) \\
F_{\theta_{t}}:=\mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\left(\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\right)^{\top}\right] \in \mathbb{R}^{\operatorname{dim}_{\theta} \times \operatorname{dim}_{\theta}}
\end{gathered}
$$

## Summary so far:

We did second-order Taylor expansion on the KL constraint, and we get:

$$
\begin{gathered}
\frac{1}{H} K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) \approx \frac{1}{2}\left(\theta-\theta_{t}\right)^{\top} F_{\theta_{t}}\left(\theta-\theta_{t}\right) \\
F_{\theta_{t}}:=\mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\left(\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\right)^{\top}\right] \in \mathbb{R}^{\operatorname{dim}_{\theta} \times \operatorname{dim}_{\theta}}
\end{gathered}
$$

This leads to the following simplified constrained optimization:

## Summary so far:

We did second-order Taylor expansion on the KL constraint, and we get:

$$
\begin{gathered}
\frac{1}{H} K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) \approx \frac{1}{2}\left(\theta-\theta_{t}\right)^{\top} F_{\theta_{t}}\left(\theta-\theta_{t}\right) \\
F_{\theta_{t}}:=\mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}}\left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\left(\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\right)^{\top}\right] \in \mathbb{R}^{\operatorname{dim}_{\theta} \times \operatorname{dim}_{\theta}}
\end{gathered}
$$

This leads to the following simplified constrained optimization:

$$
\begin{aligned}
& \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top}\left(\theta-\theta_{t}\right) \\
& \text { s.t. }\left(\theta-\theta_{t}\right)^{\top}{\underset{F}{24}}^{F_{t}}\left(\theta-\theta_{t}\right) \leq \delta
\end{aligned}
$$

## Outlines

1. Quick intro on KL-divergence
2. A Trust-Region Formulation for Policy Optimization
3. Algorithm: Natural Policy Gradient

## Put everything together, we get:

(dropping the H factors) At iteration t , we update to $\theta_{t+1}$ via:

$$
\begin{aligned}
& \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top}\left(\theta-\theta_{t}\right) \\
& \text { s.t. }\left(\theta-\theta_{t}\right)^{\top} F_{\theta_{t}}\left(\theta-\theta_{t}\right) \leq \delta
\end{aligned}
$$

## Put everything together, we get:

(dropping the H factors) At iteration t , we update to $\theta_{t+1}$ via:

$$
\begin{aligned}
& \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top}\left(\theta-\theta_{t}\right) \\
& \text { s.t. }\left(\theta-\theta_{t}\right)^{\top} F_{\theta_{t}}\left(\theta-\theta_{t}\right) \leq \delta
\end{aligned}
$$

Linear objective and quadratic convex constraint, we can solve it optimally!

## Put everything together, we get:

(dropping the H factors) At iteration t , we update to $\theta_{t+1}$ via:

$$
\begin{aligned}
& \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top}\left(\theta-\theta_{t}\right) \\
& \text { s.t. }\left(\theta-\theta_{t}\right)^{\top} F_{\theta_{t}}\left(\theta-\theta_{t}\right) \leq \delta
\end{aligned}
$$



Linear objective and quadratic convex constraint, we can solve it optimally!

Indeed this gives us:

$$
\theta_{t+1}=\theta_{t}+\eta F_{\theta_{t}}^{-1} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)
$$

## Put everything together, we get:

(dropping the H factors) At iteration t , we update to $\theta_{t+1}$ via:

$$
\begin{aligned}
& \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top}\left(\theta-\theta_{t}\right) \\
& \text { s.t. }\left(\theta-\theta_{t}\right)^{\top} F_{\theta_{t}}\left(\theta-\theta_{t}\right) \leq \delta
\end{aligned}
$$

has units
of

Linear objective and quadratic convex constraint, we can solve it optimally!
Indeed this gives us:

$$
\theta_{t+1}=\theta_{t}+\eta F_{\theta_{t}}^{-1} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)
$$

Where $\eta=\sqrt{\frac{\delta}{\nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top} F_{\theta_{t}}^{-1} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)}}$

## Algorithm: Natural Policy Gradient

Initialize $\theta_{0}$
For $t=0, \ldots$

## Algorithm: Natural Policy Gradient

Initialize $\theta_{0}$

For $t=0, \ldots$

$$
\text { Estimate PG } \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)
$$

## Algorithm: Natural Policy Gradient

Initialize $\theta_{0}$
For $t=0, \ldots$

$$
\text { Estimate PG } \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)
$$

Estimate Fisher info-matrix $F_{\theta_{t}}:=\mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\left(\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\right)^{\top}$

## Algorithm: Natural Policy Gradient

Initialize $\theta_{0}$
For $t=0, \ldots$

## Estimate $\mathrm{PG} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)$

Estimate Fisher info-matrix $F_{\theta_{t}}:=\mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\left(\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\right)^{\top}$
Natural Gradient Ascent: $\theta_{t+1}=\theta_{t}+\eta F_{\theta_{t}}^{-1} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)$

## Algorithm: Natural Policy Gradient

Initialize $\theta_{0}$
For $t=0, \ldots$

$$
\text { Estimate PG } \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)
$$

Estimate Fisher info-matrix $F_{\theta_{t}}:=\mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\left(\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\right)^{\top}$
Natural Gradient Ascent: $\theta_{t+1}=\theta_{t}+\eta \hat{F}_{\theta_{t}}^{-1} \hat{\nabla}_{\theta} J\left(\pi_{\theta_{t}}\right)$

$$
\text { Where } \eta=\sqrt{\frac{\delta}{\nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top} F_{\theta_{t}}^{-1} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)}}
$$

## Algorithm: Natural Policy Gradient

Initialize $\theta_{0}$

For $t=0, \ldots$

$$
\text { Estimate PG } \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)
$$

Estimate Fisher info-matrix $F_{\theta_{t}}:=\mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_{t}}}} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\left(\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s)\right)^{\top}$
Natural Gradient Ascent: $\theta_{t+1}=\theta_{t}+\eta F_{\theta_{t}}^{-1} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)$

$$
\text { Where } \eta=\sqrt{\frac{\delta}{\nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top} F_{\theta_{t}}^{-1} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)}}
$$

(We will implement it in HW4 on Cartpole)

## Example of Natural Gradient on 1-d problem:

$$
\begin{aligned}
p_{\theta} & =\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
g(\theta) & =100 \cdot p_{\theta}[1]+1 \cdot p_{\theta}[2]
\end{aligned}
$$

## Example of Natural Gradient on 1-d problem:

$$
\begin{aligned}
p_{\theta}= & \left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
g(\theta)= & 100 \cdot p_{\theta}[1]+1 \cdot p_{\theta}[2] \\
& -\infty<\theta^{\star}
\end{aligned}
$$

## Example of Natural Gradient on 1-d problem:

$$
\begin{aligned}
p_{\theta} & =\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
g(\theta) & =100 \cdot p_{\theta}[1]+1 \cdot p_{\theta}[2]
\end{aligned}
$$



## Example of Natural Gradient on 1-d problem:

$$
\begin{aligned}
p_{\theta} & =\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
g(\theta) & =100 \cdot p_{\theta}[1]+1 \cdot p_{\theta}[2]
\end{aligned}
$$



## Example of Natural Gradient on 1-d problem:

$$
\begin{array}{rlr}
p_{\theta} & =\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) & \text { Fisher information scalar: } f_{\theta_{0}}=\frac{\exp \left(\theta_{0}\right)}{\left(1+\exp \left(\theta_{0}\right)\right)^{2}} \\
g(\theta) & =100 \cdot p_{\theta}[1]+1 \cdot p_{\theta}[2] &
\end{array}
$$



## Example of Natural Gradient on 1-d problem:

$$
\begin{array}{rlr}
p_{\theta}=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) & \text { Fisher information scalar: } f_{\theta_{0}}=\frac{\exp \left(\theta_{0}\right)}{\left(1+\exp \left(\theta_{0}\right)\right)^{2}} \\
g(\theta)=100 \cdot p_{\theta}[1]+1 \cdot p_{\theta}[2] & \text { Hence: } f_{\theta_{0}} \rightarrow 0^{+}, \text {as } \theta_{0} \rightarrow \infty
\end{array}
$$



## Example of Natural Gradient on 1-d problem:

$$
\begin{aligned}
p_{\theta} & =\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) & \text { Fisher information scalar: } f_{\theta_{0}}=\frac{\exp \left(\theta_{0}\right)}{\left(1+\exp \left(\theta_{0}\right)\right)^{2}} \\
g(\theta) & =100 \cdot p_{\theta}[1]+1 \cdot p_{\theta}[2] & \text { Hence: } f_{\theta_{0}} \rightarrow 0^{+}, \text {as } \theta_{0} \rightarrow \infty
\end{aligned}
$$



$$
\text { NPG: } \theta_{1}=\theta_{0}+\eta \frac{g^{\prime}\left(\theta_{0}\right)}{f_{\theta_{0}}}
$$

## Example of Natural Gradient on 1-d problem:

$$
\begin{array}{rlr}
p_{\theta}=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) & \text { Fisher information scalar: } f_{\theta_{0}}=\frac{\exp \left(\theta_{0}\right)}{\left(1+\exp \left(\theta_{0}\right)\right)^{2}} \\
g(\theta)=100 \cdot p_{\theta}[1]+1 \cdot p_{\theta}[2] & \text { Hence: } f_{\theta_{0}} \rightarrow 0^{+}, \text {as } \theta_{0} \rightarrow \infty
\end{array}
$$



$$
\begin{aligned}
& \text { NPG: } \theta_{1}=\theta_{0}+\eta \frac{g^{\prime}\left(\theta_{0}\right)}{f_{\theta_{0}}} \\
& \text { GA: } \theta_{1}=\theta_{0}+\eta g^{\prime}\left(\theta_{0}\right)
\end{aligned}
$$

## Example of Natural Gradient on 1-d problem:

$$
\begin{aligned}
p_{\theta} & =\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
g(\theta) & =100 \cdot p_{\theta}[1]+1 \cdot p_{\theta}[2]
\end{aligned}
$$



Fisher information scalar: $f_{\theta_{0}}=\frac{\exp \left(\theta_{0}\right)}{\left(1+\exp \left(\theta_{0}\right)\right)^{2}}$
Hence: $f_{\theta_{0}} \rightarrow 0^{+}$, as $\theta_{0} \rightarrow \infty$

$$
\begin{aligned}
& \text { NPG: } \theta_{1}=\theta_{0}+\eta \frac{g^{\prime}\left(\theta_{0}\right)}{f_{\theta_{0}}} \\
& \text { GA: } \theta_{1}=\theta_{0}+\eta g^{\prime}\left(\theta_{0}\right)
\end{aligned}
$$

i.e., Plain GA in $\theta$ will move to $\theta=\infty$ at a constant speed,
while Natural GA can traverse faster and
faster when $\theta$ gets bigger
(subject to the same learning rate)

## Summary for NPG:

Trust Region Policy Optimization and NPG

## At iteration t :

$$
\begin{gathered}
\max _{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\left.\pi_{\theta_{t}}(s, a)\right]}\right. \\
\text { s.t., } K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) \leq \delta
\end{gathered}
$$

Intuition: maximize local adv subject to being incremental (in KL);

## Summary for NPG:

Trust Region Policy Optimization and NPG

## At iteration t :

$\max _{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(S, a)\right] \longrightarrow$ First-order Taylor expansion at $\theta_{t}$ s.t., $K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) \leq \delta \longrightarrow$ second-order Taylor expansion at $\theta_{t}$

Intuition: maximize local adv subject to being incremental (in KL);

## Summary for NPG:

Trust Region Policy Optimization and NPG

## At iteration t :

$\begin{aligned} & \max _{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}(S, a)}\right] \longrightarrow \text { First-order Taylor expansion at } \theta_{t} \\ & \text { s.t., } K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) \leq \delta \longrightarrow \text { second-order Taylor expansion at } \theta_{t}\end{aligned}$
Intuition: maximize local adv subject to being incremental (in KL);

$$
\begin{gathered}
\max _{\theta} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top}\left(\theta-\theta_{t}\right) \\
\text { s.t. }\left(\theta-\theta_{t}\right)^{\top} F_{\theta_{t}}\left(\theta-\theta_{t}\right) \leq \delta
\end{gathered}
$$

## Summary for NPG:

Trust Region Policy Optimization and NPG

## At iteration t :



Intuition: maximize local adv subject to being incremental (in KL);

$$
\begin{gathered}
\max _{\theta} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top}\left(\theta-\theta_{t}\right) \\
\text { s.t. }\left(\theta-\theta_{t}\right)^{\top} F_{\theta_{t}}\left(\theta-\theta_{t}\right) \leq \delta
\end{gathered}
$$

(Exercise: work out the arg max)

## Summary for NPG:

Trust Region Policy Optimization and NPG

## At iteration t :

$\begin{aligned} & \max _{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}(S, a)}\right] \\ & \text { s.t., } K L\left(\rho_{\pi_{\theta_{t}}} \mid \rho_{\pi_{\theta}}\right) \leq \delta \longrightarrow \text { First-order Taylor expansion at } \theta_{t} \\ &\end{aligned}$
Intuition: maximize local adv subject to being incremental (in KL);

$$
\theta_{t+1}=\theta_{t}+\eta F_{\theta_{t}}^{-1} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right) \longleftarrow \sim \quad \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta_{t}}\right)^{\top}\left(\theta-\theta_{t}\right)
$$

(Exercise: work out the arg max)

## An extension of NPG (even faster in practice):

Given an current policy $\pi^{t}$, we perform policy update to $\pi^{t+1}$
fifth attempt (new): Proximal Policy Optimization (PPO)

$$
\max _{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\pi_{\theta_{t}}(s, a)}\right]
$$

## An extension of NPG (even faster in practice):

Given an current policy $\pi^{t}$, we perform policy update to $\pi^{t+1}$
fifth attempt (new): Proximal Policy Optimization (PPO)


## An extension of NPG (even faster in practice):

Given an current policy $\pi^{t}$, we perform policy update to $\pi^{t+1}$
fifth attempt (new): Proximal Policy Optimization (PPO)


Use importance weighting \& expand KL divergence:

## An extension of NPG (even faster in practice):

Given an current policy $\pi^{t}$, we perform policy update to $\pi^{t+1}$
fifth attempt (new): Proximal Policy Optimization (PPO)

$$
\max _{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}}[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\left.\pi_{\theta_{t}}(s, a)\right]-\underbrace{\lambda \mathbb{E}_{s \sim d_{\mu}^{\pi_{\mu}^{t}}}\left[\mathrm{KL}\left(\pi_{\theta_{t}}(a \mid s) \mid \pi_{\theta}(a \mid s)\right)\right]}_{\text {regularization }}}
$$

Use importance weighting \& expand KL divergence:

$$
\ell(\theta):=\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}}\left[\mathbb{E}_{\left.a \sim \pi_{\theta_{t}} \cdot \mid s\right)} \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} A^{\pi_{\theta_{t}}(s, a)}\right]-\lambda \mathbb{E}_{s \sim d_{\mu}^{\pi_{t}} \mathbb{E}_{a \sim \pi_{\theta_{t}}(\cdot \mid s)}\left[-\ln \pi_{\theta}(a \mid s)\right]}
$$

## An extension of NPG (even faster in practice):

Given an current policy $\pi^{t}$, we perform policy update to $\pi^{t+1}$
fifth attempt (new): Proximal Policy Optimization (PPO)

$$
\max _{s} \mathbb{E}_{s \sim d_{\mu}}^{\pi_{\theta_{t}}}\left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\left.\pi_{\theta_{t}}(s, a)\right]-\lambda \mathbb{E}_{s \sim d_{\mu} \pi^{t}}\left[K L\left(\pi_{\theta_{t}}(a \mid s) \mid \pi_{\theta}(a \mid s)\right)\right]}\right.
$$

regularization
Use importance weighting \& expand KL divergence:

$$
\ell(\theta):=\mathbb{E}_{s \sim \sim_{\mu}^{\pi_{t}}}\left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(\cdot \mid s)} \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} A^{\pi_{\theta_{t}}(s, a)}\right]-\lambda \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}} \mathbb{E}_{a \sim \pi_{\theta_{t}}(\cdot \mid s)}\left[-\ln \pi_{\theta}(a \mid s)\right]
$$

PPO: Perform a few steps of mini-batch SGA on $\ell(\theta)$ to approximate $\arg \max \ell(\theta)$

## Next a few lectures:

## Imitation Learning <br> (Learning from Demonstrations)

Can we learn a good policy purely from expert demonstrations?

## Summary:

1. Convergence of Fitted Policy Iteration
2. Trust Region Policy Optimization
3. Quick intro on KL-divergence
4. TRPO formulation

1-minute feedback form: https://bit.|y/3RHtlxy


