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Today

• Announcements: 
If you are an undergraduate student at Harvard and are possibly interested in pursuing 
research, formally or informally, with the ML foundations group, please fill in the following 
form: https://forms.gle/yCiTfbXn31x2RQtHA  

• Recap 

• Today:

1. Convergence of Fitted Policy Iteration

2. Trust Region Policy Optimization
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Recap
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[Policy Eval Subroutine]: TD Learning for “tabular” case

[Iterative Policy Eval Subroutine/TD]  
input: policy , sample size , init 

1. Sample trajectories  which gives us a dataset  

(each trajectory is of the form )

2. For k =  : 


1. Sample a transition  and update: 

	 


3. Return the function   as an estimate of 

π N w0
τ1, …τN ∼ ρπ D

τi = {s0, a0, r0, …sH−1, aH−1, rH−1,}
0,…, K

(sh, rh, sh+1,) ∈ D
Vk+1(sh) = Vk(sh) − ηk(Vk(sh) − (rh + Vk(sh+1)))

VK Vπ
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Q-Learning for “tabular” case

[Iterative Policy Eval Subroutine/TD]  
input: offline dataset 

1. For k =  : 


1. Sample a transition  and update: 

	 


2. Return the function   as an estimate of 

τ1, …τN ∼ ρπdata

0,…, K
(sh, ah, rh, sh+1) ∈ D

Qk+1(sh, ah) = Qk(sh, ah) − ηk(Qk(sh, ah) − (rh + max
a′￼

Qk(sh+1, a′￼)))
QK Q⋆
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Fitted Policy Iteration:  
(aka Approximate Policy Iteration API)

1. Initialize staring policy , samples size M

2. For k = 0, … : 


1. [Q-Evaluation Subroutine] 
Using M sampled trajectories, ,  



2. Policy Update 




3. Return  and  as an estimate of  and 

π0

τ1, …τN ∼ ρπk

Q̃ k(s, a) ≈ Qπk
h (s, a)

πk+1(s) := arg max
a

Q̃ πk(s, a)

Q̃ K πK Q⋆ π⋆
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Recap on Supervised Learning: regression

We have a data distribution ,  , ,  where noise 𝒟 xi ∼ 𝒟 yi = f ⋆(xi) + ϵi 𝔼[ϵi] = 0, |ϵi | ≤ c

̂f = arg min
f∈ℱ

N

∑
i=1

(f(xi) − yi)2

Supervised learning theory (e.g., VC theory) says that we can indeed generalize, 

i.e., we can predict well under the same distribution:

𝔼x∼𝒟 ( ̂f(x) − f ⋆(x))
2

≤ δ

Assume  (this is called realizability), we can expect:f ⋆ ∈ ℱ
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Supervise Learning can fail if there is train-test distribution mismatch

However, for some ,   might be arbitrarily large𝒟′￼ ≠ 𝒟 𝔼x∼𝒟′￼
( f(x) − f ⋆(x))2

M̂

Deeper neural nets and larger datasets are typically 
not enough to address “distribution shift”
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Fitted Policy Improvement Guarantees
•For all k, suppose that: 

, and   


•   : the average case supervised learning error (reasonable to expect this can be made small) 
 : the worse case error (often unreasonable to expect to be small) 

[Theorem:] We have that: 

•One step performance degradation is bounded by the worst case error:  
	 	   (and equality possible in some examples).


•For large enough , final performance also governed by the worst case error:  
	 	 


• (Intuition) If it somehow turns out that, for all iterations , the density under the next policy, uniformly does not 
differ from that of previous policy, i.e. that 

	 	  

then we can bound our sub-optimality by the average case error: 
	 	

Eτ∼ρπk[
H

∑
h=1

( Q̃ k(sh, ah) − Qπk
h (sh, ah))2] ≤ δ max

s,a
| Q̃ k(sh, ah) − Qπk

h (sh, ah) | ≤ δ∞

δ
δ∞

Qk+1(s) ≥ Qk(s) − 2Hδ∞
K

QπK(s) ≥ Q⋆(s) − 2H2δ∞
k

max
s,a,h (

Pr(sh = s, ah = a |πk+1)
Pr(sh = s, ah = a |πk) ) ≤ C∞

QπK(s) ≥ Q⋆(s) − 2H2 ⋅ C∞ ⋅ δ
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Today:

Optimality in Markov Decision Processes
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Outline:
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1. Quick intro on KL-divergence  
& the visitation measure


2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient



KL-divergence: measures the distance between two distributions

Given two distributions , where , 

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = 𝔼x∼P [ln
P(x)
Q(x) ]

Examples: 

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = 𝒩(μ1, σ2I), Q = 𝒩(μ2, σ2I) KL(P |Q) = ∥μ1 − μ2∥2
2/σ2

Fact: 

, and being  if and only if KL(P |Q) ≥ 0 0 P = Q
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Outline:
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1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient



A trust region formulation for policy update:

max
θ

𝔼s0,…sH−1∼ρθt [
H−1

∑
h=0

𝔼a∼πθ(s)A
πθt(s, a)]

s.t., KL (ρπθt
|ρπθ) ≤ δ

At iteration t, with  at hand, we compute  as follows: πθt
θt+1

We want to maximize local advantage against , but we want 
the new policy to be close to  (in the KL sense)

πθt

πθt
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Some Helpful Notation: Visitation Measures
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• Visitation probability at time :  
(recall that we absorb ,  into the state, i.e.  )


• Average Visitation Measure:   

	 


• With this def, we have: 

	

h ℙh(sh, ah |μ, π)
h s ← (s, h)

dπ
μ(s, a) =

1
H

H−1

∑
h=0

ℙh(s, a |μ, π)

J(θ) := Es0∼μ0 [Vπθ(s0)]
= E[

H−1

∑
h=0

r(sh, ah) μ0, πθ]
= H ⋅ 𝔼s∼dπθ

μ
Ea∼πθ(s)[r(s, a)]



Visitation Measures: the discounted case
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• Visitation probability at time :  
(recall that we absorb ,  into the state, i.e.  )


• Average Visitation Measure:   

	 


• With this def, we have: 

	

h ℙh(sh, ah |μ, π)
h s ← (s, h)

dπ
μ(s, a) = (1 − γ)

∞

∑
h=0

γhℙh(s, a |μ, π)

J(θ) := Es0∼μ0 [Vπθ(s0)]
= E[

∞

∑
h=0

γhrh μ0, πθ]
=

1
1 − γ

⋅ 𝔼s∼dπθ
μ

Ea∼π(s)[r(s, a)]



Equivalently,

max
θ

H ⋅ 𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with  at hand, we compute  as follows: πθt
θt+1

We want to maximize local advantage against , but we want 
the new policy to be close to  (in the KL sense)

πθt

πθt

How we can actually do the optimization here? 

After all, we don’t even know the analytical form of trajectory likelihood…
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Outline:
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1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient



A trust region formulation for policy update:

max
θ

H ⋅ 𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

At iteration t, with  at hand, we compute  as follows: πθt
θt+1

High-level strategy: 

1. First-order Taylor expansion on the objective at 


2.second-order Taylor expansion of the constraint at  
θt

θt
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Simplify Objective Function

max
θ

𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)]
Since the objective is also non-linear, 


let’s do first order-talyor expansion on it:

H 𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)] ≈ H 𝔼s∼dπθt
μ [𝔼a∼πθt(s)A

πθt(s, a)] + 𝔼s∼dπθt
μ [𝔼a∼πθt(s) ∇θln πθt

(a |s)Aπθt(s, a)]
∇θJ(πθt)

⋅ (θ − θt)

= ∇θJ(πθt
)⊤(θ − θt)
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Simplify Constraint via second-order Taylor Expansion:

KL(ρθt
|ρθ) := ℓ(θ)

ℓ(θ) ≈ ℓ(θt) + ∇ℓ(θt)⊤(θ − θt) +
1
2

(θ − θt)⊤ ∇2
θℓ(θt)(θ − θt)

ℓ(θt) = KL(ρθt
|ρθt

) = 0

We will show that  and  has a nice form!∇θℓ(θt) = 0, ∇2ℓ(θt)
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The gradient of the KL-divergence is zero at  θt

KL (ρπθt
|ρπθ) = 𝔼τ∼ρπθt

ln
ρπθt

(τ)

ρπθ
(τ)

= 𝔼τ∼ρπθt

H−1

∑
h=0

ln
πθt

(ah |sh)
πθ(ah |sh)

= H𝔼sh,ah∼dπθt
μ [ln

πθt
(ah |sh)

πθ(ah |sh) ] := ℓ(θ)

∇θℓ(θ) |θ=θt
= H𝔼s∼dπθt

μ ∑
a

πθt
(a |s)(−∇θln πθ(ah |sh) |θ=θt )

= − H𝔼s∼dπθt
μ ∑

a

πθt
(a |s)

∇θπθt
(a |s)

πθt
(a |s) = 0

Change from trajectory distribution to state-action distribution:
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Let’s compute the Hessian of the KL-divergence at θt

H ⋅ 𝔼s,a∼dπθt
μ [ln

πθt
(ah |sh)

πθ(ah |sh) ] := ℓ(θ)

= − 𝔼s∼dπθt
μ ∑

a

πθt
(a |s)(

∇2
θπθt

(a |s)
πθt

(a |s)
−

∇θπθt
(a |s)∇θπθt

(a |s)⊤

π2
θt
(a |s) )

1
H

∇2
θℓ(θ) |θ=θt

= 𝔼s∼dπθt
μ ∑

a

πθt
(a |s)(−∇2

θln πθ(a |s) |θ=θt )

= 𝔼s,a∼dπθt
μ [∇θln πθt

(a |s)(∇θln πθt
(a |s))

⊤] ∈ ℝdimθ×dimθ

It’s called fisher Information Matrix!
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Summary so far:

1
H

KL (ρπθt
|ρπθ) ≈

1
2

(θ − θt)⊤Fθt
(θ − θt)

We did second-order Taylor expansion on the KL constraint, and we get:

Fθt
:= 𝔼s,a∼dπθt

μ [∇θln πθt
(a |s)(∇θln πθt

(a |s))
⊤] ∈ ℝdimθ×dimθ

This leads to the following simplified constrained optimization:

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ
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Outlines

1. Quick intro on KL-divergence

2. A Trust-Region Formulation for Policy Optimization

3. Algorithm: Natural Policy Gradient
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Put everything together, we get:

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

Linear objective and quadratic convex constraint, we can solve it optimally!

Indeed this gives us:

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)

Where η =
δ

∇θJ(πθt
)⊤F−1

θt
∇θJ(πθt

)

(dropping the H factors) At iteration t, we update to  via:θt+1
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Algorithm: Natural Policy Gradient

Where η =
δ

∇θJ(πθt
)⊤F−1

θt
∇θJ(πθt

)

Initialize θ0

For t = 0, … 

Estimate PG ∇θJ(πθt
)

Estimate Fisher info-matrix Fθt
:= 𝔼s,a∼dπθt

μ
∇θln πθt

(a |s)(∇θln πθt
(a |s))⊤

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)Natural Gradient Ascent:

(We will implement it in HW4 on Cartpole)
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Example of Natural Gradient on 1-d problem:

1

1

p[1]

p[2]

θ0

(pθ0
[1], pθ0

[2]) := ( exp(θ0)
1 + exp(θ0)

,
1

1 + exp(θ0) ) i.e., Plain GA in  will move to  at a 
constant speed, 


while Natural GA can traverse faster and 
faster when  gets bigger 


(subject to the same learning rate)

θ θ = ∞

θ

pθ = ( exp(θ)
1 + exp(θ)

,
1

1 + exp(θ) )
g(θ) = 100 ⋅ pθ[1] + 1 ⋅ pθ[2]

∞−∞

θ⋆

Fisher information scalar: fθ0
=

exp(θ0)
(1 + exp(θ0))2

NPG: θ1 = θ0 + η
g′￼(θ0)

fθ0

GA: θ1 = θ0 + ηg′￼(θ0)

Hence: fθ0
→ 0+, as θ0 → ∞
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Summary for NPG:

Trust Region Policy Optimization and NPG

max
πθ

𝔼s∼dπθt
μ [𝔼a∼πθ(s)A

πθt(s, a)]
s.t., KL (ρπθt

|ρπθ) ≤ δ

First-order Taylor expansion at θt

second-order Taylor expansion at θt

max
θ

∇θJ(πθt
)⊤(θ − θt)

s.t. (θ − θt)⊤Fθt
(θ − θt) ≤ δ

(Exercise: work out the )arg max
θ

Intuition: maximize local adv subject 
to being incremental (in KL);

At iteration t:

θt+1 = θt + ηF−1
θt

∇θJ(πθt
)

NPG
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An extension of NPG (even faster in practice): 

Given an current policy , we perform policy update to πt πt+1

fifth attempt (new): Proximal Policy Optimization (PPO)

max
θ

𝔼s∼dπθt
μ [𝔼a∼πθ(⋅|s)A

πθt(s, a)] −λ𝔼s∼dπt
μ [KL (πθt

(a |s) |πθ(a |s))]
regularization

Use importance weighting & expand KL divergence: 

ℓ(θ) := 𝔼s∼dπθt
μ [𝔼a∼πθt(⋅|s)

πθ(a |s)
πθt

(a |s)
Aπθt(s, a)] − λ𝔼s∼dπθt

μ
𝔼a∼πθt(⋅|s) [−ln πθ(a |s)]

PPO: Perform a few steps of mini-batch SGA on  to approximate ℓ(θ) arg max
θ

ℓ(θ)
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Next a few lectures:

Imitation Learning  
(Learning from Demonstrations)

Can we learn a good policy purely from expert demonstrations?
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Summary:

1. Convergence of Fitted Policy Iteration

2. Trust Region Policy Optimization


1. Quick intro on KL-divergence

2. TRPO formulation 

1-minute feedback form: https://bit.ly/3RHtlxy 
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