fitted Value function methods
&
fitted Dynamic Programming

CS/Stat 184: Introduction to Reinforcement Learning
Fall 2022

Today

 Recap + Overview of PG

« Today:
1. Fitted Policy Evaluation

1. Fitted Policy Evaluation
2. Fitted Q-Value lteration

Recap + Overview of PG

Recap: Policy Parameterization

Recall that we consider parameterized policy zy(- |s) € A(A), Vs

1. Softmax linear Policy

Feature vector ¢(s, a) € RY, and
parameter § € R?

exp(0' (s, a))
Za, exp(0T¢p(s,a’))

rg(a |s) =

2. Neural Policy:

Neural network
fo: SXA-R

exp(fy(s, a))

rg(a |s) =

>, exXp(fls, @)

Policy Parameterization Example for “Controls”

Suppose a € Rk, as it might be for a control problem.

2. Neural Policy:

Neural network

f:SXA - R

exp(fo(s, a))
2 exp(fo(s, a"))

rg(a |s) =

Policy Parameterization Example for “Controls”

Suppose a € Rk, as it might be for a control problem.

3. Example: Neural policy for
2. Neural Policy: continuous action case

Neural network

f:SXA - R

exp(fo(s, a))
2 exp(fo(s, a"))

rg(a |s) =

Policy Parameterization Example for “Controls”

Suppose a € Rk, as it might be for a control problem.

3. Example: Neural policy for

2. Neural Policy: continuous action case
« Neural network g, : S — RF

Neural network e Parameters:) € R, 6 € R

fo: SXA PR

exp(fo(s, a))
2 exp(fo(s, a"))

my(a |s) =

Policy Parameterization Example for “Controls”

Suppose a € Rk, as it might be for a control problem.

3. Example: Neural policy for
2. Neural Policy: continuous action case

- Neural network g, : S — R

Neural network e Parameters:) € R, 6 € R

f:SXA - R

* Policy: sample action from a (multivariate) Normal
exp(fy(s, a)) with mean g,(s) and variance ol i.e.

2., XP(fy(s, a’) Ty (als) = N(gy(s),o°D)

rg(a |s) =

Policy Parameterization Example for “Controls”

Suppose a € Rk, as it might be for a control problem.

3. Example: Neural policy for

2. Neural Policy: continuous action case
- Neural network g, : S — R

Neural network e Parameters:) € R, 6 € R

fo: SXA PR ‘
* Policy: sample action from a (multivariate) Normal

@ls) exp(fy(s, a)) with mean g,(s) and variance ol i.e.
Ty(als) = 2
9 Y, exp(fils, @) Ty olals) = N (gys), *I)

Implicitly, this is the same functional form as 2:
la — gg(s)1I>
(s,a) =
oo 20%k

The Advantage Function (finite horizon)

The Advantage Function (finite horizon)

* The Advantage function is defined as:

The Advantage Function (finite horizon)

* The Advantage function is defined as:

 \WWe have that:
E

a~n(-|s)

A7 (s, a)

s.h| =) n(a] $)Af(s,a) = 0

The PG: baseline and advantage versions

VJO) =L

T~p(T)

T~pp(T)

T~ pp(7)

H-1
Veln ﬂe(ah | Sh)
h=0

H-1

| h=0
[-1

| h=0

Y Voln7a| sh)(Qh”“’(Sh, a,) - bh(sh)>

Q(CFS/'
o 17 o
(tzzh I”t> — bh(sh) S, 1050 C‘

Z V@ln ﬂ'g(ah | Sh)A];[()(Sh’ ah)]

« The second step follows by choosing b;,(s) = V/(s).

« The most common approach is to use b,,(s) to approximate V/(s).
 The REINFORCE version is not used in practice.

PG for the (softmax) linear policies

* We can simplify this to:

H-1
VJ(Q) = [ETNpg(T) [Z A;ZTH(Sh’ ah)¢(sh’ ah)]

h=0

“Review”

« For arandom variable y € R, what is:
arg min EyND[(c - y)z] =77

C
* Now let us look at the “function” case where we have a distribution over (x, y) pairs

f* = arg min E(x,y)ND[(f(x) - y)2]
feF

(where F is the class of all possible functions)

What is f*(x) = ?? ,JQ@% N
A E/
5 /x)

Recap + Overview of PG

A PG procedure:

(this is sometimes referred to as actor-critic approach)

1. Initialize (90, samples sizes M,N, parameters: 77, 1,, ...
2. Fort=0,...:
1. [Policy Eval Subroutineg]

2.

3. Update: 6,,, = 0, + 1, V ,J(0)

Using N sampled trajectories, 7y, ...7y ~ py, try to learn a b s.t.
b(s) = V,*(s)

[Mini-Batch PG Update] H-
Init ¢ = 0 and do M times: (Qn[tx = 3
Obtain a trajectory 7 ~ Po, L &
H-1
Setg =g+) Vinm(ay|s,)(Ry®) - b(sy)
h=0

—~ 1
Set V,J(0) .= —
7] (z) Mg

|
—

1Y)

11

Baseline/Value Function Parameterizations

Now let us consider parameterized classes of functions 7, where foreachfe€ &,/ : S — R

1. Linear Functions 2. Neural Policy:

Feature vector y/(s) € R, and Neural network f, : S — R
parameter w & RX

£u(8) = wlyr(s)

Let’s assume the current time in the episode is contained in the state. s < (s, /1)
(e.g. you can always add the time into the “list” that specifies the state).

12

Example [Policy Eval Subroutine]:
Directly fit unbiased estimates of V*(s)

input: policy 7, sample size N

1. Sample trajectories 7, ...Ty ~ p,. i 1
(each trajectory is of the form ©; = {y; dg, s - - -Sg—1> Qg1 T 15 })

2. Construct an empirical loss function:

N
Lw) = % > (s - Rhw,.))2

— t

i=1 s,€7; H -
_ E [é (/fw (

3. (approximately) find a mfigimizer
‘W ~ arg min L(w) 3T

w
(often done with SGD)
4. Return the function b = f—

13

Today:

Fitted Value Function & Dynamic Programming Methods

Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value Iteration

15

Implications of appending the timestep /i to the state s

16

Implications of appending the timestep /i to the state s
« Option 1 (without appending h):

. Try to find parameters H parameters w", ...1w"~!, with each in w; € RFs.t.
 This is means building H models (or neural nets) so we have /7 - k parameters.

16

Implications of appending the timestep /i to the state s

« Option 1 (without appending h):
. Try to find parameters H parameters w", ...1w"~!, with each in w; € RFs.t.
 This is means building H models (or neural nets) so we have /7 - k parameters.

e Option 2 (building just one model):
. try to learn a single w € R¥s.t.

 Let us assume: s « (s, 1) (i.e. that A is implicitly contained in s)

16

Implications of appending the timestep /i to the state s

« Option 1 (without appending h):
. Try to find parameters H parameters w", ...1w"~!, with each in w; € RFs.t.
 This is means building H models (or neural nets) so we have /7 - k parameters.

e Option 2 (building just one model):
. try to learn a single w € R¥s.t.

 Let us assume: s « (s, 1) (i.e. that A is implicitly contained in s)

* We can implicitly consider this to be an infinite horizon problem,
but one which happens to terminate in H steps (i.e. at state (s, H — 1) the trajectory ends).

16

Implications of appending the timestep /i to the state s

« Option 1 (without appending h):
. Try to find parameters H parameters w", ...1w"~!, with each in w; € RFs.t.
 This is means building H models (or neural nets) so we have /7 - k parameters.

e Option 2 (building just one model):
. try to learn a single w € R¥s.t.

 Let us assume: s « (s, h) (i.e. that & is implicitly contalned in s) ’7LL1 A/ 7

* We can implicitly consider this to be an infinite horizon problem,
but one which happens to terminate in H steps (i.e. at state (s, H — 1) the trajectory ends).

16

Is there an iterative version of Policy Evaluation?
(that is faster, but approximate?)

17

Is there an iterative version of Policy Evaluation?
(that is faster, but approximate?)

Algorithm (lterative PE):

e 0 0 1

1. Initialization: V* : || VY| € 0,1—
-7V

2. lterate until convergence: V™! « R 4+ yPV!

17

Is there an iterative version of Policy Evaluation?
(that is faster, but approximate?)

Algorithm (lterative PE):

NP, 0 0 1
1. Initialization: V* : || VY| € 0,1—
-7V
2. lterate until convergence: V™! « R 4+ yPV!
Equivalently,

Vs, VI (s) = r(s, () + YE g p(snisy V'(S)

17

Is there an iterative version of Policy Evaluation?
(that is faster, but approximate?)

Algorithm (lterative PE): g _—)/ <
W
1. Initialization: VO : ||VY||, € [0,—— 3
—7
2. lterate until convergence: V&' « R + yPV=

Equwalently, o~
Vs,V 1(S) = r(s () + vEgp. ﬂ(s))fos

This is a “fixed point” algorithm trying to enforce Bellman consistency:
Vs, VA(s) = r(s, 71(s)) + YEgp(s.a(s)) V() f=4, s é/ c4)
The Bellman consistency for the finite horizon case:
T Sa « XK
Vs, Vi(s) = r(s, n(s)) + [ESNP(S ﬂ(s)) 1(S)

Q&%S "5 “c

R Ny

17

Another
Fit V”(s) using the iterative policy evaluation alg.

18

Another [Policy Eval Subroutine]:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy z, sample size N

18

Another [Policy Eval Subroutine]:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy x, sample size N
1. Sample trajectories 7y, ...7\y ~ p,
(each trajectory is of the form z; = {sy, Gg, 7 - - -Sgr—_1> Agy—15 Vir—15})

18

Another [Policy Eval Subroutine]:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy x, sample size N
1. Sample trajectories 7y, ...7\y ~ p,
(each trajectory is of the form z; = {sy, Gg, 7 - - -Sgr—_1> Agy—15 Vir—15})
2. Fork=0,....K:

18

Another [Policy Eval Subroutine]:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy z, sample size N '4 ;7[()
1. Sample trajectories 7y, ...7\y ~ p,
(each trajectory is of the form z; = {sy, Gg, 7 - - -Sgr—_1> Agy—15 Vir—15})
2. Fork=0,....K: /
1. Construct an empirical loss function: L

. 1 & 2
Lon == X (flo) = (n+hu))

i=1 (87841 ET,;

9]

18

Another [Policy Eval Subroutine]:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy x, sample size N
1. Sample trajectories 7y, ...7\y ~ p,
(each trajectory is of the form z; = {sy, Gg, 7 - - -Sgr—_1> Agy—15 Vir—15})

2. Fork=0,....K:
1. Construct an empirical loss function:

- 1 & 2
Lon==2 X (o) = (n+hii))
i=1 (87841 ET,; W

2. Update:

W, ~ argmin L (w) PQH (-
w .

18

Another [Policy Eval Subroutine]:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy x, sample size N
1. Sample trajectories 7y, ...7\y ~ p,
(each trajectory is of the form z; = {sy, Gg, 7 - - -Sgr—_1> Agy—15 Vir—15})

2. Fork=0,....K:
1. Construct an empirical loss function:

- | - 2
Lon == X (flo) = (n+hu))
=1 (8,751 ET;
2. Update:

W, ~ argmin L (w)
w

3. Return the function Z =fW

18

Another [Policy Eval Subroutine]:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy x, sample size N e 4 wl/% ,Q
1. Sample trajectories 7y, ...7\y ~ p,
(each trajectory is of the form z; = {sy, Gg, 7 - - -Sgr—_1> Agy—15 Vir—15})

2. Fork=0,....K:
1. Construct an empirical loss function:

- | - 2
Lon == X (flo) = (n+hu))
=1 (8,751 ET;
2. Update:

W, ~ argmin L (w)
w

3. Return the function b =f’v71/

Temporal Difference Learning (TD) is an online variant to do the above.

18

Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value Iteration

19

This approach leads us to fitted dynamic programming...

20

This approach leads us to fitted dynamic programming...

Direct Policy Optimization:
« With PG, we tried to directly learn a good (parameterized) policy 7, for 0 € R4

» Learning means we used only sampled trajectories (we didn’t assume the MDP is known).
* Fitted value functions were introduced for variance reduction.

20

This approach leads us to fitted dynamic programming...

Direct Policy Optimization:
« With PG, we tried to directly learn a good (parameterized) policy 7, for 0 € R4

» Learning means we used only sampled trajectories (we didn’t assume the MDP is known).
* Fitted value functions were introduced for variance reduction.

Fitted Dynamic Programming:

20

Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value Iteration

21

Policy lteration (PI)

« Initialization: choose a policy 7 : S — A
e Fort=0,1,...
1. Policy Evaluation: compute Q”t(s, a)
2. Policy Improvement: set

7 *1(s) := arg max Q% (s, a)

22

Fitted Policy lteration:

23

Fitted Policy lteration:

1. Initialize staring policy), samples size M

23

Fitted Policy lteration:

1. Initialize staring policy), samples size M
2. Fort=0, ...:

23

Fitted Policy lteration:

1. Initialize staring policy), samples size M

2. Fort=0, ...:
1. [Q-Evaluation Subroutine]

Using N sampled trajectories, 7y, ...7y ~ p,,, try to learn a b

—~—

ar
0'(s,a) ~ 0™(s, a)

23

Fitted Policy lteration:

1. Initialize staring policy), samples size M

2. Fort=0, ...:
1. [Q-Evaluation Subroutine] —(‘%(57

Using N sampled trajectories, 7, ... 7y ~ P, trytolearn a bl o 7
0'(s,a) ~ 0"%{s, a) LR J

2. Policy Update)
ﬂt+1(S) .— arg max Q"(s,a)) f (S,Q\ s Qa MQ

a]

o ol

23

Q-Function Parameterizations

(nothing new at this point)

Now, for our parameterized classes of functions %, we havefor f€ &F,f: S XA — R

1. Linear Functions 2. Neural Policy:

Neural network

Feature vector y/(s, a) € R¥ and
V(s.) £ iSxAB R

parameter

f(s,a) = w'y(s, a)

24

Example
Directly fit unbiased estimates of OQ”(s, a)

25

Example [Q-Eval Subroutine]:
Directly fit unbiased estimates of OQ”(s, a)

input: policy 7, sample size N

25

Example [Q-Eval Subroutine]:
Directly fit unbiased estimates of OQ”(s, a)

input: policy 7, sample size N
1. Sample trajectories 7, ...7y ~ p,

25

Example [Q-Eval Subroutine]:
Directly fit unbiased estimates of OQ”(s, a)

input: policy 7, sample size N
1. Sample trajectories 7, ...7y ~ p,

2. Construct an empirical loss function:
N

=23 (Aora)-R@)

i=1 (Sh,ah)ETi

25

Example [Q-Eval Subroutinel: f[ﬁh (2|5, a, }
Directly fit unbiased estimates of OQ”(s, a)

—
(s

input: policy 7, sample size N

1. Sample trajectories 7, ...7y ~ p, 4

2. Construct an empirical loss function:

N
=23 (Aora)-R@)

i=1 (s,.a,)€T;
3. (approximately) find a minimizer

‘W ~ arg min L(w)

w
(often done with SGD)

25

Example [O-Eval Subroutine]:
Directly fit unbiased estimates of OQ”(s, a)

input: policy z, sample size N
1. Sample trajectories 7, ...7y ~ p,
2. Construct an empirical loss function:

~] & 2
Im==% 2 (fbpa)-R)
N 4
i=1 (sy.a;,)€T;
3. (approximately) find a mmimizer
‘W ~ arg min L(w)
w

(often done with SGD)
4. Return the function b = f~

25

Example [O-Eval Subroutine]:
Directly fit unbiased estimates of OQ”(s, a)

input: policy z, sample size N
1. Sample trajectories 7, ...7y ~ p,

2. Construct an empirical loss function:
N

Liw) = % Z:, (2)‘, (V) — R,,cc,-))2

3. (approximately) find a minimizer

w = arg min L(w)

W
(often done with SGD)
4. Return the function b = f~

As with the [V-Eval Subroutine], there is also an iterative (TD) approach to this.

25

Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value Iteration

26

Alternative Version: Bellman Operator & on Q
(HW2 Q2 is the Q-version of the Bellman Equations)

« GivenafunctionQ ;S XA~ R,define 70 :SXA— R as
(P/”Q)(S, a) ;= r(s,a) + YEg _pes.a) n/lajf O(s’, a') ;"Q [ga)
a'e -

* (Bellman equations for Q S
Q is equal to Q™ if and only if 7O = O. 5 A Ro ©

o Vg VT S T V=y

v E V(S’)]

st — < $ &
/Z/\/[S)P gm‘\\[)((F >+ 5156

. . ZCC T AMay
Q-Value lteration Algorithm: o - Wy

1
0,——
l—y
2. Iterate until convergence: Q.| < J O,
(€. V§ﬁ

Orr1(s,a) = 1(s,a) + yEypgs.0) max Qi (s’,a)
a

1. Initialization: Q° : ||QY||, €

Q-Value lteration Algorithm:

1
0,——
l—y
2. Iterate until convergence: Q.| < J O,

1. Initialization: Q° : ||QY||, €

Qk+1(S9 a) — r(Sa a) + }/[Es’NP(s,a) n}eaji Qk(s/a Cl/)
a

analogous contraction properties to VI.
« What about a fitted version of this algorithm?

28

Fitted Q-lteration

29

Fitted Q-lteration

1. Initialize: Q,

2. Fork=0,1,...: AfQ/C

1. Approximately try to estimate % with samples

Ori1(8,a) = r(s,a) + YEg _pis .0 n}eajf O (s, a’)
a

29

Fitted Q-lteration

1. Initialize: Q,
2. Fork=0,1,...:
1. Approximately try to estimate 7 f,, with samples
Orr1(8,a) = 1r(s,a) + YEy pia n}ajf Q,(s’,a’)
ae

What distribution should use to for this fitting??

29

The Offline Learning Setting:

We don’t know the MDP and our data collection is under some fixed distribution.

30

The Offline Learning Setting:

We don’t know the MDP and our data collection is under some fixed distribution.

The Finite Horizon, Learning Setting:
- We have N trajectories 7, ...7y ~ p,

30

The Offline Learning Setting:

We don’t know the MDP and our data collection is under some fixed distribution.

The Finite Horizon, Offline Learning Setting:
- We have N trajectories 7, ...7y ~ p,

0
. 1, 1S Often referred to as our data collection policy. AQ& (a) 5)
(0 CZ) -
Q)Q N e ey w0 ks N)
_/Lu
D
5

CQ,{L! 9/(0 j— S

30

Fitted Q-lteration

31

Fitted Q-lteration

input: offline dataset 7, ...7y ~ p,

1. Initialize parameter w),
(each trajectory is of the form z; = {5y, Ay, ¥p> - - -Sgr—_1> Ax—1> TH—15 })

31

Fitted Q-lteration

input: offline dataset 7, ...7y ~ p,

1. Initialize parameter w),

7
(each trajectory is of the form z; = {5y, Ay, ¥p> - - -Sgr—_1> Ax—1> TH—15 }) _ %’L,Q < (C» Lk))
2. Fork=0,1,...K: (¢ -
29+) /CA)r
1. Construct an emplr/cal loss function: Y) / A3)

Lw) = 2 2 (fw(sh’ a,) — (r, + m;txf w15 @)))2

=1 (84,1184 1) ET;

31

Fitted Q-lteration

input: offline dataset 7, ...7y ~ p,

1. Initialize parameter w),
(each trajectory is of the form z; = {5y, Ay, ¥p> - - -Sgr—_1> Ax—1> TH—15 })

2. Fork=0,1,...K:
1. Construct an empirical loss function:

N | & 2
Li(w) = N 2 2 <fw(sh’ a,) — (” nt mjxfwk(sh+1’ a)))

=1 (84,1184 1) ET;

2. Update:

W,y ~ argmin L, (w)
w

31

Fitted Q-lteration

input: offline dataset 7, ...7y ~ p,

1. Initialize parameter w,
(each trajectory is of the form z; = {5y, Ay, ¥p> - - -Sgr—_1> Ax—1> TH—15 })

2. Fork=0,1,...K:
1. Construct an empirical loss function:

N | & 2
Li(w) = N 2 2 (fw(Sh, a) — (” nt mfxfwk(sh+1’ a)))

=1 (83,018 41)ET;

2. Update:

W,y ~ argmin L, (w)
w

3. Return the function f;; as an estimate of Q™

31

Fitted Q-lteration

input: offline dataset 7, ...7y ~ p,

1. Initialize parameter w,
(each trajectory is of the form z; = {5y, Ay, ¥p> - - -Sgr—_1> Ax—1> TH—15 })

2. Fork=0,1,...K:
1. Construct an empirical loss function:

N | & 2
Li(w) = N z Z (fw(Sh, a) — (” nt mfxfwk(sh+1’ a)))

=1 (83,018 41)ET;

2. Update:

W,y ~ argmin L, (w)
w

3. Return the function f;; as an estimate of Q™

Q-Learning is an online variant to do the above.

31

Summary:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value lteration

1-minute feedback form: https://bit.ly/3RHtIxy

https://bit.ly/3RHtlxy

