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Recap: Policy Parameterization

Recall that we consider parameterized policy zy( - |s) € A(A), Vs

1. Softmax linear Policy

Feature vector ¢(s, a) € RY, and
parameter § € R?

exp(0' (s, a))
Za, exp(0T¢p(s,a’))

rg(a |s) =

2. Neural Policy:

Neural network
fo: SXA-R

exp(fy(s, a))

rg(a |s) =

>, exXp(fls, @)



Policy Parameterization Example for “Controls”

Suppose a € Rk, as it might be for a control problem.

2. Neural Policy:

Neural network

f:SXA - R

exp(fo(s, a))
2 exp(fo(s, a"))

rg(a |s) =




Policy Parameterization Example for “Controls”

Suppose a € Rk, as it might be for a control problem.

3. Example: Neural policy for
2. Neural Policy: continuous action case

Neural network

f:SXA - R

exp(fo(s, a))
2 exp(fo(s, a"))

rg(a |s) =




Policy Parameterization Example for “Controls”

Suppose a € Rk, as it might be for a control problem.

3. Example: Neural policy for
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Policy Parameterization Example for “Controls”

Suppose a € Rk, as it might be for a control problem.

3. Example: Neural policy for
2. Neural Policy: continuous action case

- Neural network g, : S — R

Neural network e Parameters: ) € R, 6 € R

f:SXA - R

* Policy: sample action from a (multivariate) Normal
exp(fy(s, a)) with mean g,(s) and variance ol i.e.

2., XP(fy(s, a’) Ty (als) = N(gy(s),o°D)

rg(a |s) =




Policy Parameterization Example for “Controls”

Suppose a € Rk, as it might be for a control problem.

3. Example: Neural policy for

2. Neural Policy: continuous action case
- Neural network g, : S — R

Neural network e Parameters: ) € R, 6 € R

fo: SXA PR ‘
* Policy: sample action from a (multivariate) Normal

@ls) exp(fy(s, a)) with mean g,(s) and variance ol i.e.
Ty(als) = 2
9 Y, exp(fils, @) Ty olals) = N (gys), *I)

Implicitly, this is the same functional form as 2:
la — gg(s)1I>
(s,a) =
oo 20%k




The Advantage Function (finite horizon)



The Advantage Function (finite horizon)

* The Advantage function is defined as:



The Advantage Function (finite horizon)

* The Advantage function is defined as:

 \WWe have that:
E

a~n(-|s)

A7 (s, a)

s.h| =) n(a] $)Af(s,a) = 0



The PG: baseline and advantage versions

VJO) =L

T~p(T)

T~pp(T)

T~ pp(7)

H-1
Veln ﬂe(ah | Sh)
h=0

H-1

| h=0
[ -1

| h=0

Y Voln7a| sh)(Qh”“’(Sh, a,) - bh(sh)>

Q(CFS/'
o 17 o
( tzzh I”t> — bh(sh) S, 1050 C‘

Z V@ln ﬂ'g(ah | Sh)A];[()(Sh’ ah)]

« The second step follows by choosing b;,(s) = V/(s).

« The most common approach is to use b,,(s) to approximate V/(s).
 The REINFORCE version is not used in practice.



PG for the (softmax) linear policies

* We can simplify this to:

H-1
VJ(Q) = [ETNpg(T) [ Z A;ZTH(Sh’ ah)¢(sh’ ah)]

h=0



“Review”

« For arandom variable y € R, what is:
arg min EyND[(c - y)z] =77

C
* Now let us look at the “function” case where we have a distribution over (x, y) pairs

f* = arg min E(x,y)ND[(f(x) - y)2]
feF

(where F is the class of all possible functions)

What is f*(x) = ?? ,JQ@% N
A E/
5 /x)



Recap + Overview of PG



A PG procedure:

(this is sometimes referred to as actor-critic approach)

1. Initialize (90, samples sizes M,N, parameters: 77, 1,, ...
2. Fort=0,...:
1. [Policy Eval Subroutineg]

2.

3. Update: 6,,, = 0, + 1, V ,J(0)

Using N sampled trajectories, 7y, ...7y ~ py, try to learn a b s.t.
b(s) = V,*(s)

[Mini-Batch PG Update] H-
Init ¢ = 0 and do M times: (Qn[tx = 3
Obtain a trajectory 7 ~ Po, L &
H-1
Setg =g+ ) Vinm(ay|s,)(Ry®) - b(sy)
h=0

—~ 1
Set V,J(0) .= —
7] ( z) Mg

|
—

1Y)
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Baseline/Value Function Parameterizations

Now let us consider parameterized classes of functions 7, where foreachfe€ &,/ : S — R

1. Linear Functions 2. Neural Policy:

Feature vector y/(s) € R, and Neural network f, : S — R
parameter w & RX

£u(8) = wlyr(s)

Let’s assume the current time in the episode is contained in the state. s < (s, /1)
(e.g. you can always add the time into the “list” that specifies the state).

12



Example [Policy Eval Subroutine]:
Directly fit unbiased estimates of V*(s)

input: policy 7, sample size N

1. Sample trajectories 7, ...Ty ~ p,. i 1
(each trajectory is of the form ©; = {y; dg, s - - -Sg—1> Qg1 T 15 })

2. Construct an empirical loss function:

N
Lw) = % > (s - Rhw,.))2

— t

i=1 s,€7; H -
_ E [é (/fw (

3. (approximately) find a mfigimizer
‘W ~ arg min L(w) 3T

w
(often done with SGD)
4. Return the function b = f—

13



Today:

Fitted Value Function & Dynamic Programming Methods



Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value Iteration
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Implications of appending the timestep /i to the state s
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Implications of appending the timestep /i to the state s
« Option 1 (without appending h):

. Try to find parameters H parameters w", ...1w"~!, with each in w; € RFs.t.
 This is means building H models (or neural nets) so we have /7 - k parameters.
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« Option 1 (without appending h):
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e Option 2 (building just one model):
. try to learn a single w € R¥s.t.
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* We can implicitly consider this to be an infinite horizon problem,
but one which happens to terminate in H steps (i.e. at state (s, H — 1) the trajectory ends).
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Is there an iterative version of Policy Evaluation?
(that is faster, but approximate?)
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Is there an iterative version of Policy Evaluation?
(that is faster, but approximate?)

Algorithm (lterative PE):

e 0 0 1

1. Initialization: V* : || VY| € 0,1—
-7V

2. lterate until convergence: V™! « R 4+ yPV!
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Is there an iterative version of Policy Evaluation?
(that is faster, but approximate?)

Algorithm (lterative PE):

NP, 0 0 1
1. Initialization: V* : || VY| € 0,1—
-7V
2. lterate until convergence: V™! « R 4+ yPV!
Equivalently,

Vs, VI (s) = r(s, () + YE g p(snisy V'(S)
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Is there an iterative version of Policy Evaluation?
(that is faster, but approximate?)

Algorithm (lterative PE): g _— )/ <
W
1. Initialization: VO : ||VY||, € [0,—— 3
—7
2. lterate until convergence: V&' « R + yPV=

Equwalently, o~
Vs,V 1(S) = r(s () + vEgp. ﬂ(s))fos

This is a “fixed point” algorithm trying to enforce Bellman consistency:
Vs, VA(s) = r(s, 71(s)) + YEgp(s.a(s)) V() f=4, s é/ c4)
The Bellman consistency for the finite horizon case:
T Sa « XK
Vs, Vi(s) = r(s, n(s)) + [ESNP(S ﬂ(s)) 1(S)

Q&%S "5 “c

R Ny

17



Another
Fit V”(s) using the iterative policy evaluation alg.
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Another [Policy Eval Subroutine]:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy z, sample size N
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Another [Policy Eval Subroutine]:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy z, sample size N '4 ;7[ ()
1. Sample trajectories 7y, ...7\y ~ p,
(each trajectory is of the form z; = {sy, Gg, 7 - - -Sgr—_1> Agy—15 Vir—15})
2. Fork=0,....K: /
1. Construct an empirical loss function: L

. 1 & 2
Lon == X (flo) = (n+hu) )

i=1 (87841 ET,;

9]
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Another [Policy Eval Subroutine]:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy x, sample size N
1. Sample trajectories 7y, ...7\y ~ p,
(each trajectory is of the form z; = {sy, Gg, 7 - - -Sgr—_1> Agy—15 Vir—15})

2. Fork=0,....K:
1. Construct an empirical loss function:

- 1 & 2
Lon==2 X (o) = (n+hii) )
i=1 (87841 ET,; W

2. Update:

W, ~ argmin L (w) PQH (-
w .
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Another [Policy Eval Subroutine]:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy x, sample size N
1. Sample trajectories 7y, ...7\y ~ p,
(each trajectory is of the form z; = {sy, Gg, 7 - - -Sgr—_1> Agy—15 Vir—15})

2. Fork=0,....K:
1. Construct an empirical loss function:

- | - 2
Lon == X (flo) = (n+hu) )
=1 (8,751 ET;
2. Update:

W, ~ argmin L (w)
w

3. Return the function Z =fW
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Another [Policy Eval Subroutine]:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy x, sample size N e 4 wl/% ,Q
1. Sample trajectories 7y, ...7\y ~ p,
(each trajectory is of the form z; = {sy, Gg, 7 - - -Sgr—_1> Agy—15 Vir—15})

2. Fork=0,....K:
1. Construct an empirical loss function:

- | - 2
Lon == X (flo) = (n+hu) )
=1 (8,751 ET;
2. Update:

W, ~ argmin L (w)
w

3. Return the function b =f’v71/

Temporal Difference Learning (TD) is an online variant to do the above.
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Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value Iteration
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This approach leads us to fitted dynamic programming...
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This approach leads us to fitted dynamic programming...

Direct Policy Optimization:
« With PG, we tried to directly learn a good (parameterized) policy 7, for 0 € R4

» Learning means we used only sampled trajectories (we didn’t assume the MDP is known).
* Fitted value functions were introduced for variance reduction.
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This approach leads us to fitted dynamic programming...

Direct Policy Optimization:
« With PG, we tried to directly learn a good (parameterized) policy 7, for 0 € R4

» Learning means we used only sampled trajectories (we didn’t assume the MDP is known).
* Fitted value functions were introduced for variance reduction.

Fitted Dynamic Programming:
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Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value Iteration
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Policy lteration (PI)

« Initialization: choose a policy 7 : S — A
e Fort=0,1,...
1. Policy Evaluation: compute Q”t(s, a)
2. Policy Improvement: set

7 *1(s) := arg max Q% (s, a)

22




Fitted Policy lteration:
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Fitted Policy lteration:

1. Initialize staring policy ), samples size M

23




Fitted Policy lteration:

1. Initialize staring policy ), samples size M
2. Fort=0, ...:
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Fitted Policy lteration:

1. Initialize staring policy ), samples size M

2. Fort=0, ...:
1. [Q-Evaluation Subroutine]

Using N sampled trajectories, 7y, ...7y ~ p,,, try to learn a b

—~—

ar
0'(s,a) ~ 0™(s, a)

23




Fitted Policy lteration:

1. Initialize staring policy ), samples size M

2. Fort=0, ...:
1. [Q-Evaluation Subroutine] —(‘%(57

Using N sampled trajectories, 7, ... 7y ~ P, trytolearn a bl o 7
0'(s,a) ~ 0"%{s, a) LR J

2. Policy Update )
ﬂt+1(S) .— arg max Q"(s,a) ) f (S,Q\ s Qa MQ

a ]

o ol

23



Q-Function Parameterizations

(nothing new at this point)

Now, for our parameterized classes of functions %, we havefor f€ &F,f: S XA — R

1. Linear Functions 2. Neural Policy:

Neural network

Feature vector y/(s, a) € R¥ and
V(s. ) £ iSxAB R

parameter

f(s,a) = w'y(s, a)

24



Example
Directly fit unbiased estimates of OQ”(s, a)
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Example [Q-Eval Subroutine]:
Directly fit unbiased estimates of OQ”(s, a)

input: policy 7, sample size N
1. Sample trajectories 7, ...7y ~ p,

2. Construct an empirical loss function:
N

=23 (Aora)-R@)

i=1 (Sh,ah)ETi
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Example [Q-Eval Subroutinel: f[ﬁh (2|5, a, }
Directly fit unbiased estimates of OQ”(s, a)

—
(s

input: policy 7, sample size N

1. Sample trajectories 7, ...7y ~ p, 4

2. Construct an empirical loss function:

N
=23 (Aora)-R@)

i=1 (s,.a,)€T;
3. (approximately) find a minimizer

‘W ~ arg min L(w)

w
(often done with SGD)

25



Example [O-Eval Subroutine]:
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input: policy z, sample size N
1. Sample trajectories 7, ...7y ~ p,
2. Construct an empirical loss function:

~ ] & 2
Im==% 2 (fbpa)-R)
N 4
i=1 (sy.a;,)€T;
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‘W ~ arg min L(w)
w
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4. Return the function b = f~
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Example [O-Eval Subroutine]:
Directly fit unbiased estimates of OQ”(s, a)

input: policy z, sample size N
1. Sample trajectories 7, ...7y ~ p,

2. Construct an empirical loss function:
N

Liw) = % Z:, ( 2)‘, (V) — R,,cc,-))2

3. (approximately) find a minimizer

w = arg min L(w)

W
(often done with SGD)
4. Return the function b = f~

As with the [V-Eval Subroutine], there is also an iterative (TD) approach to this.
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Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value Iteration

26



Alternative Version: Bellman Operator & on Q
(HW2 Q2 is the Q-version of the Bellman Equations)

« GivenafunctionQ ;S XA~ R,define 70 :SXA— R as
(P/”Q)(S, a) ;= r(s,a) + YEg _pes.a) n/lajf O(s’, a') ;"Q [ga)
a'e -

* (Bellman equations for Q S
Q is equal to Q™ if and only if 7O = O. 5 A Ro ©

o Vg VT S T V=y

v E V(S’)]

st — < $ &
/Z/\/[S)P gm‘\\[ )((F >+ 5156



. . ZCC T AMay
Q-Value lteration Algorithm: o - Wy

1
0,——
l—y
2. Iterate until convergence: Q.| < J O,
(€. V§ﬁ

Orr1(s,a) = 1(s,a) + yEypgs.0) max Qi (s’,a)
a

1. Initialization: Q° : ||QY||, €




Q-Value lteration Algorithm:

1
0,——
l—y
2. Iterate until convergence: Q.| < J O,

1. Initialization: Q° : ||QY||, €

Qk+1(S9 a) — r(Sa a) + }/[Es’NP(s,a) n}eaji Qk(s/a Cl/)
a

analogous contraction properties to VI.
« What about a fitted version of this algorithm?

28



Fitted Q-lteration

29



Fitted Q-lteration

1. Initialize: Q,

2. Fork=0,1,...: AfQ/C

1. Approximately try to estimate % with samples

Ori1(8,a) = r(s,a) + YEg _pis .0 n}eajf O (s, a’)
a

29




Fitted Q-lteration

1. Initialize: Q,
2. Fork=0,1,...:
1. Approximately try to estimate 7 f,, with samples
Orr1(8,a) = 1r(s,a) + YEy pia n}ajf Q,(s’,a’)
ae

What distribution should use to for this fitting??

29




The Offline Learning Setting:

We don’t know the MDP and our data collection is under some fixed distribution.
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The Offline Learning Setting:

We don’t know the MDP and our data collection is under some fixed distribution.

The Finite Horizon, Learning Setting:
- We have N trajectories 7, ...7y ~ p,
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The Offline Learning Setting:

We don’t know the MDP and our data collection is under some fixed distribution.

The Finite Horizon, Offline Learning Setting:
- We have N trajectories 7, ...7y ~ p,

0
. 1, 1S Often referred to as our data collection policy. AQ& ( a ) 5)
(0 CZ ) -
Q)Q N e ey w0 ks N )
\_/Lu
D
5

CQ,{L! 9/(0 j— S
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Fitted Q-lteration
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Fitted Q-lteration

input: offline dataset 7, ...7y ~ p,

1. Initialize parameter w),
(each trajectory is of the form z; = {5y, Ay, ¥p> - - -Sgr—_1> Ax—1> TH—15 })
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Fitted Q-lteration

input: offline dataset 7, ...7y ~ p,

1. Initialize parameter w),

7
(each trajectory is of the form z; = {5y, Ay, ¥p> - - -Sgr—_1> Ax—1> TH—15 }) _ %’L,Q < (C» Lk ))
2. Fork=0,1,...K: (¢ -
29+ ) /CA )r
1. Construct an emplr/cal loss function: Y ) / A3 )

Lw) = 2 2 (fw(sh’ a,) — (r, + m;txf w15 @) ) )2

=1 (84,1184 1) ET;
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Fitted Q-lteration

input: offline dataset 7, ...7y ~ p,

1. Initialize parameter w),
(each trajectory is of the form z; = {5y, Ay, ¥p> - - -Sgr—_1> Ax—1> TH—15 })

2. Fork=0,1,...K:
1. Construct an empirical loss function:

N | & 2
Li(w) = N 2 2 <fw(sh’ a,) — (” nt mjxfwk(sh+1’ a) ))

=1 (84,1184 1) ET;

2. Update:

W,y ~ argmin L, (w)
w
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Fitted Q-lteration

input: offline dataset 7, ...7y ~ p,

1. Initialize parameter w,
(each trajectory is of the form z; = {5y, Ay, ¥p> - - -Sgr—_1> Ax—1> TH—15 })

2. Fork=0,1,...K:
1. Construct an empirical loss function:

N | & 2
Li(w) = N 2 2 (fw(Sh, a) — (” nt mfxfwk(sh+1’ a) ))

=1 (83,018 41)ET;

2. Update:

W,y ~ argmin L, (w)
w

3. Return the function f;; as an estimate of Q™
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Fitted Q-lteration

input: offline dataset 7, ...7y ~ p,

1. Initialize parameter w,
(each trajectory is of the form z; = {5y, Ay, ¥p> - - -Sgr—_1> Ax—1> TH—15 })

2. Fork=0,1,...K:
1. Construct an empirical loss function:

N | & 2
Li(w) = N z Z (fw(Sh, a) — (” nt mfxfwk(sh+1’ a) ))

=1 (83,018 41)ET;

2. Update:

W,y ~ argmin L, (w)
w

3. Return the function f;; as an estimate of Q™

Q-Learning is an online variant to do the above.
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Summary:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value lteration

1-minute feedback form: https://bit.ly/3RHtIxy


https://bit.ly/3RHtlxy

