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Today

• Recap + Overview of PG 

• Today:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods


1. Fitted Policy Evaluation

2. Fitted Q-Value Iteration 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Recap + Overview of PG
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Recap: Policy Parameterization

1. Softmax linear Policy

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) =
exp(θ⊤ϕ(s, a))

∑a′￼
exp(θ⊤ϕ(s, a′￼))

2. Neural Policy:

Neural network  
fθ : S × A ↦ ℝ

πθ(a |s) =
exp( fθ(s, a))

∑a′￼
exp( fθ(s, a′￼))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s
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Policy Parameterization Example for “Controls”

3. Example: Neural policy for 
continuous action case

• Neural network  

• Parameters: ,  

• Policy: sample action from a (multivariate) Normal 
with mean  and variance , i.e. 
	  

• Implicitly, this is the same functional form as 2: 

	

gθ : S ↦ ℝk

θ ∈ Rd σ ∈ R+

gθ(s) σ2I
πθ,σ(a |s) = 𝒩(gθ(s), σ2I)

fθ,σ(s, a) =
∥a − gθ(s)∥2

2σ2k

2. Neural Policy:

Neural network  
fθ : S × A ↦ ℝ

πθ(a |s) =
exp( fθ(s, a))

∑a′￼
exp( fθ(s, a′￼))

Suppose , as it might be for a control problem.a ∈ Rk
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The Advantage Function (finite horizon)

• The Advantage function is defined as: 
	 


• We have that: 

	

Aπ
h (s, a) = Qπ

h (s, a) − Vπ
h (s)

Ea∼π(⋅|s)[Aπ
h (s, a) s, h] = ∑

a

π(a |s)Aπ
h (s, a) = 0
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The PG:  baseline and advantage versions

• The second step follows by choosing .

• The most common approach is to use  to approximate .

• The REINFORCE version is not used in practice.  

bh(s) = Vπ
h (s)

bh(s) Vπ
h (s)

= 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)A
πθ
h (sh, ah)]

∇J(θ) = 𝔼τ∼ρθ(τ)

H−1

∑
h=0

∇θln πθ(ah |sh)((
H−1

∑
t=h

rt) − bh(sh))
= 𝔼τ∼ρθ(τ) [

H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]



PG for the (softmax) linear policies
• We can simplify this to: 


∇J(θ) = 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

Aπθ
h (sh, ah)ϕ(sh, ah)]
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“Review”

• For a random variable , what is: 
	 


• Now let us look at the “function” case where we have a distribution over  pairs 
	  

(where  is the class of all possible functions) 
What is  

y ∈ R
arg min

c
Ey∼D[(c − y)2] = ??

(x, y)
f ⋆ = arg min

f∈ℱ
E(x,y)∼D[( f(x) − y)2]

ℱ
f ⋆(x) = ??
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Recap + Overview of PG
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A PG procedure:  
(this is sometimes referred to as actor-critic approach)

1. Initialize , samples sizes M,N, parameters: 

2. For t = 0, … : 


1. [Policy Eval Subroutine] 
Using  sampled trajectories, , try to learn a  s.t.  



2. [Mini-Batch PG Update]  

Init  and do  times: 
Obtain a trajectory  

Set  

Set  

3. Update: 

θ0 η1, η2, …

N τ1, …τN ∼ ρθt
b̃

b̃(s) ≈ Vπθt
h (s)

g = 0 M
τ ∼ ρθt

g = g +
H−1

∑
h=0

∇ln πθt
(ah |sh)(Rh(τ) − b̃(sh))

∇̃ θJ(θt) :=
1
M

g

θt+1 = θt + ηt ∇̃ θJ(θt)
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Baseline/Value Function Parameterizations

1. Linear Functions

Feature vector , and 
parameter 

ψ(s) ∈ ℝk

w ∈ ℝk

fw(s) = w⊤ψ(s)

2. Neural Policy:

Neural network  fw : S ↦ ℝ

Now let us consider parameterized classes of functions , where for each , ℱ f ∈ ℱ f : S → R
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Let’s assume the current time in the episode is contained in the state.  
(e.g. you can always add the time into the “list” that specifies the state).

s ← (s, h)



Example [Policy Eval Subroutine]: 
Directly fit unbiased estimates of Vπ(s)

input: policy , sample size 

1. Sample trajectories  

(each trajectory is of the form )

2. Construct an empirical loss function: 

	  

 

3. (approximately) find a minimizer 

	  

(often done with SGD)

4. Return the function 

π N
τ1, …τN ∼ ρπ

τi = {s0, a0, r0, …sH−1, aH−1, rH−1,}

L̃(w) =
1
N

N

∑
i=1

∑
sh∈τi

(fw(sh) − Rh(τi))
2

w̃ ≈ arg min
w

L̃(w)

b̃ = f w̃
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Today:

Fitted Value Function & Dynamic Programming Methods
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Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods


1. Fitted Policy Evaluation

2. Fitted Q-Value Iteration
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Implications of appending the timestep  to the state h s
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• Option 1 (without appending ):

• Try to find parameters  parameters , with each in  s.t. .

• This is means building  models (or neural nets) so we have  parameters. 

• Option 2 (building just one model):

• try to learn a single  s.t. .

• Let us assume:  (i.e. that  is implicitly contained in ) 
 

• We can implicitly consider this to be an infinite horizon  problem,  
but one which happens to terminate in  steps (i.e. at state  the trajectory ends). 

• It is helpful to use with the discounted algorithms work — Iterative PE, Value Iteration, Policy 
Iteration — because our parameter  should be effective for all .

h
H w0, …wH−1 wi ∈ Rk fwh(s) ≈ Vπ

h (s)
H H ⋅ k

w ∈ Rk fw(s, h) ≈ Vπ
h (s), ∀h

s ← (s, h) h s

γ = 1
H (s, H − 1)

w h



Is there an iterative version of Policy Evaluation? 
(that is faster, but approximate?)

Algorithm (Iterative PE):  

1. Initialization:  


2. Iterate until convergence: 

    Equivalently, 
	

V0 : ∥V0∥∞ ∈ [0,
1

1 − γ ]
Vk+1 ← R + γPVk

∀s, Vk+1(s) = r(s, π(s)) + γ𝔼s′￼∼P(s,π(s))Vk(s′￼)
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This is a “fixed point” algorithm trying to enforce Bellman consistency: 
	  
The Bellman consistency for the finite horizon case: 
	

∀s, Vπ(s) = r(s, π(s)) + γ𝔼s′￼∼P(s,π(s))Vπ(s′￼)

∀s, Vπ
h (s) = r(s, π(s)) + 𝔼s∼P(s,π(s))Vπ

h+1(s′￼)



Another [Policy Eval Subroutine]: 
Fit  using the iterative policy evaluation alg.Vπ(s)

[Iterative Policy Eval Subroutine/TD]  
input: policy , sample size , init 

1. Sample trajectories  

(each trajectory is of the form )

2. For k =  : 


1. Construct an empirical loss function: 

	 


2. Update: 
	 


3. Return the function 

π N w0
τ1, …τN ∼ ρπ

τi = {s0, a0, r0, …sH−1, aH−1, rH−1,}
0,…, K

L̃k(w) =
1
N

N

∑
i=1

∑
(sh,rh,sh+1)∈τi

(fw(sh) − (rh + fwk
(sh+1)))

2

wk+1 ≈ arg min
w

L̃k(w)

b̃ = fwK
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Temporal Difference Learning (TD) is an online variant to do the above.



Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods


1. Fitted Policy Evaluation

2. Fitted Q-Value Iteration
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This approach leads us to fitted dynamic programming…

Direct Policy Optimization:

• With PG, we tried to directly learn a good (parameterized) policy , for 


• Learning means we used only sampled trajectories (we didn’t assume the MDP is known).

• Fitted value functions were introduced for variance reduction. 

Fitted Dynamic Programming:

• Can we instead use a learning (fitting) approach to approximate dynamic programming? 

(where our goal is approximately find  and )


πθ θ ∈ Rd

Q⋆ π⋆
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Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods


1. Fitted Policy Evaluation

2. Fitted Q-Value Iteration
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Policy Iteration (PI)

• Initialization: choose a policy 

• For 


1. Policy Evaluation: compute 

2. Policy Improvement: set 

	

π0 : S ↦ A
k = 0,1,…

Qπk(s, a)

πk+1(s) := arg max
a

Qπk(s, a)
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Fitted Policy Iteration: 

1. Initialize staring policy , samples size M

2. For k = 0, … : 


1. [Q-Evaluation Subroutine] 
Using  sampled trajectories, , try to learn a  



2. Policy Update 

π0

N τ1, …τN ∼ ρπk
b̃

Q̃ k(s, a) ≈ Qπk
h (s, a)

πk+1(s) := arg max
a

Q̃ πk(s, a)
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Q-Function Parameterizations 
(nothing new at this point)

1. Linear Functions

Feature vector , and 
parameter 

ψ(s, a) ∈ ℝk

w ∈ ℝk

fw(s, a) = w⊤ψ(s, a)

2. Neural Policy:

Neural network  
fw : S × A ↦ ℝ

Now, for our parameterized classes of functions ,  we have for  , ℱ f ∈ ℱ f : S × A → R
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Example [Q-Eval Subroutine]: 
Directly fit unbiased estimates of Qπ(s, a)

input: policy , sample size 

1. Sample trajectories 

2. Construct an empirical loss function: 

	  


3. (approximately) find a minimizer 
	  

(often done with SGD)

4. Return the function 

π N
τ1, …τN ∼ ρπ

L̃(w) =
1
N

N

∑
i=1

∑
(sh,ah)∈τi

(fw(sh, ah) − Rh(τi))
2

w̃ ≈ arg min
w

L̃(w)

b̃ = f w̃
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As with the [V-Eval Subroutine], there is also an iterative (TD) approach to this.



Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods


1. Fitted Policy Evaluation

2. Fitted Q-Value Iteration
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Alternative Version: Bellman Operator  on  
(HW2 Q2 is the Q-version of the Bellman Equations)

𝒯 Q

• Given a function , define  as 
	 


• (Bellman equations for Q) 
 is equal to  if and only if .


Q : S × A ↦ ℝ 𝒯Q : S × A ↦ ℝ
(𝒯Q)(s, a) := r(s, a) + γ𝔼s′￼∼P(s,a) max

a′￼∈A
Q(s′￼, a′￼)

Q Q⋆ 𝒯Q = Q
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Q-Value Iteration Algorithm:

1. Initialization:  


2. Iterate until convergence:  
 

Q0 : ∥Q0∥∞ ∈ [0,
1

1 − γ ]
Qk+1 ← 𝒯Qk

Qk+1(s, a) = r(s, a) + γ𝔼s′￼∼P(s,a) max
a′￼∈A

Qk(s′￼, a′￼)

• Guarantees of Q-VI: analogous contraction properties to VI.

• What about a fitted version of this algorithm?
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Fitted Q-Iteration

1. Initialize: 

2. For  : 


1. Approximately try to estimate  with samples 
	 


What distribution should use to for this fitting??

Q0
k = 0,1,…

𝒯Qk
Qk+1(s, a) ≈ r(s, a) + γ𝔼s′￼∼P(s,a) max

a′￼∈A
Qk(s′￼, a′￼)
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The Offline Learning Setting: 
We don’t know the MDP and our data collection is under some fixed distribution.

The Finite Horizon, Offline Learning Setting:

• We have  trajectories 


•  is often referred to as our data collection policy.
N τ1, …τN ∼ ρπdata

πdata
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Fitted Q-Iteration

input: offline dataset 

1. Initialize parameter  

(each trajectory is of the form )

2. For  : 


1. Construct an empirical loss function: 

	  

 

2. Update: 

	 


3. Return the function  as an estimate of 

τ1, …τN ∼ ρπdata

w0
τi = {s0, a0, r0, …sH−1, aH−1, rH−1,}

k = 0,1,…K

L̃k(w) =
1
N

N

∑
i=1

∑
(sh,ah,rh,sh+1)∈τi

(fw(sh, ah) − (rh + max
a

fwk
(sh+1, a)))

2

wk+1 ≈ arg min
w

L̃k(w)

f w̃ K
Q⋆
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Q-Learning is an online variant to do the above.



Summary:
1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods


1. Fitted Policy Evaluation

2. Fitted Q-Value Iteration 

Next up: fitted DP methods or PG methods?  
TRPO and Natural PG connects these two ideas

1-minute feedback form: https://bit.ly/3RHtlxy 
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https://bit.ly/3RHtlxy

