fitted Value function methods

&
fitted Dynamic Programming

CS/Stat 184: Introduction to Reinforcement Learning
Fall 2022

Today

 Recap + Overview of PG

 Joday:
1. Fitted Policy Evaluation

1. Fitted Policy Evaluation
2. Fitted Q-Value lteration

Recap + Overview of PG

Recap: Policy Parameterization

Recall that we consider parameterized policy 7,(- |s) € A(A), Vs

1. Softmax linear Policy 2. Neural Policy:

Neural network

Feature vector ¢(s, a) € R, and
Ps, @) fo: SXA PR

parameter 8 € R?

exp(0' @(s, a)) exp(fy(s, a))

my(a | 5) =

my(a | 5) =

Za/ exp(0' (s, a")) Za, exp(fy(s,a’))

Policy Parameterization Example for “Controls”

Suppose a & Rk, as it might be for a control problem.

3. Example: Neural policy for

2. Neural Policy: continuous action case

. Neural network g, : 5 — R"

Neural network Parameters: 0 & Rd, c €ERT

fo: S XA PR

* Policy: sample action from a (multivariate) Normal
with mean g,4(s) and variance o’l, i.e.

Tyoals) = N (gy(s), 0°])

exp(fo(s,a))
2. €xp(fy(s,a’))

my(a | 5) =

* Implicitly, this is the same functional form as 2:

la — go()II°
fH,g(Sa a) T 202]{

The Advantage Function (finite horizon)

 The Advantage function is defined as:

e \WWe have that:
E

a~7(-|s)

[A;f(s, a)

S, h] — Z n(al|s)A;(s,a) = 0

The PG: baseline and advantage versions

H-1 H-1
VJ(O) = = e p(7) Voln my(ay, | s,) (Z ’”t) — by (sp)

h=0 t=h
H-1

— _TNPQ(T) Z V@ln ﬂe(ah ‘ Sh) (Q;:H(Sha ah) R bh(sh))
h=0
H-1

Eppo | 3 Vol miay | 5)AT G
h=0

- The second step follows by choosing b, (s) = V/'(s).

» The most common approach is to use b, (s) to approximate V' (s).
* The REINFORCE version is not used in practice.

PG for the (softmax) linear policies

* We can simplify this to:

H-1
VJ(H) = _TN,OQ(T) l Z A;lz-@(sh, Clh)¢(sh, ah)]
h=0

“Review”

e For arandom variable y € R, what is:
argmin £, _p[(c — y)°] =27

C
« Now let us look at the “function” case where we have a distribution over (x, y) pairs

f* — alg min E(x,y)ND[(f(x) o y)2]

fe&F
(Where F is the class of all possible functions)
What is f*(x) = ??

Recap + Overview of PG

A PG procedure:

(this is sometimes referred to as actor-critic approach)

1. Initialize 6,, samples sizes M,N, parameters: 7,, 1},, ...

2. Fort=0, ...:
1. [Policy Eval Subroutine]

Using NV sampled trajectories, 7, ... 7Ty ~ py, try to learn a b s.t.

b(s) & V. (s)
2. [Mini-Batch PG Update]
Init ¢ = 0 and do M times:

Obtain a trajectory 7 ~ p,

H-1
Set g = g + Z Vinz,(a,| sp) (Rh(T) — b(Sh))
h=0

~ 1
Set V@J(Ht) = Mg

3. Update: 0, | = 0, + ntvgf(é’t)

11

Baseline/Value Function Parameterizations

Now let us consider parameterized classes of functions %, where foreachf € &,/ : S — R

1. Linear Functions 2. Neural Policy:

Feature vector u/(s) € R, and

X Neural network f : 5 — R
parameter w & R

£.(5) = wly(s)

Let’s assume the current time in the episode is contained in the state. s « (s, /)
(e.g. you can always add the time into the “list” that specifies the state).

12

Example [Policy Eval Subroutinel:
Directly fit unbiased estimates of V*(s)

input: policy 7, sample size N
1. Sample trajectories 7y, ...7y ~ P,

(each trajectory is of the form 7, = {5y, dg, ¥y - - -SH_1> Ary—15 FE7—15)
2. Construct an empirical loss function:

N
Ion=—2 3 (he0 - R

3. (approximately) find a minimizer

—/

W & arg min L(w)

,
(often done with SGD)
4. Return the function b = f~

13

lToday:

Fitted Value Function & Dynamic Programming Methods

Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value Iteration

15

Implications of appending the timestep /1 to the state s

» Option 1 (without appending A):
. Try to find parameters H parameters w", ...w'~!, with each in wW: € R¥s.t.
 This is means building H models (or neural nets) so we have /1 - k parameters.

* Option 2 (building just one model):
. try to learn a single w € R* s 1.

e Let us assume: s < (s, h) (i.e. that A is implicitly contained in)

« We can implicitly consider this to be an infinite horizon y = 1 problem,
but one which happens to terminate in H steps (i.e. at state (s, H — 1) the trajectory ends).

16

Is there an iterative version of Policy Evaluation?
(that is faster, but approximate?)

Algorithm (lterative PE):

1. Initialization: VO : ||[VY]| €

2. lterate until convergence: V¥ «— R 4+ yPV*
Equivalently,

Vs, V¥ (s) = (s, 7(5)) + YE_ps.n(sy V(5"

This is a “fixed point” algorithm trying to enforce Bellman consistency:

Vs, VA(s) = (s, 7($)) + Yy pisasn V" (5)
The Bellman consistency for the finite horizon case:

Vs, V7(s) = r(s, n(s)) + £ SNP(s,n(s))V;]f H(S’)

17

Another [Policy Eval Subroutinel:
Fit V*(s) using the iterative policy evaluation alg.

[Iterative Policy Eval Subroutine/TD]
input: policy z, sample size NV, init wy,
1. Sample trajectories 7, ... Ty ~ P,
(each trajectory is of the form 7, = {sy, dg, ¥y - - -SE—1> Ary—15 FE/—15)

2. Fork=0,...,K:
1. Construct an empirical loss function:

-] &)
Ln=22 % (A= (n+As))

=1 (Sh,r'h,Sh+1)€Tl-

2. Update:

Wiy = arg min L, (w)
W

3. Return the function b = S,

Temporal Difference Learning (TD) is an online variant to do the above.

18

Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value Iteration

19

This approach leads us to fitted dynamic programming...

Direct Policy Optimization:
» With PG, we tried to directly learn a good (parameterized) policy 7, for 0 € R¢

* [Learning means we used only sampled trajectories (we didn’t assume the MDP is known).
 Fitted value functions were introduced for variance reduction.

Fitted Dynamic Programming:

20

Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value Iteration

21

Policy Iteration (Pl)

+ Initialization: choose a policy 7¥ : S — A
e Fork=0,1,...
k
1. Policy Evaluation: compute Q% (s, a)

2. Policy Improvement: set

71 (s) := arg max 0% (s, a)

22

Fitted Policy lteration:

1. Initialize staring policy 7;, samples size M

2. Fork=0, ...:
1. [Q-Evaluation Subroutine]

Using N sampled trajectories, 7y, ...y ~ P, try tolearn a b

0X(s,a) ~ Q™(s, a)
2. Policy Update

T, 1(8) := arg max E”k(s, a)

23

Q-Function Parameterizations

(nothing new at this point)

Now, for our parameterized classes of functions %, we havefor f€ &,/ : S XA — R

1. Linear Functions 2. Neural Policy:

Neural network

Feature vector /(5. a) € R*, and
Vs, a) fiSXxA> R

parameter

fu(s, @) = wly(s, a)

24

Example [Q-Eval Subroutinel:
Directly fit unbiased estimates of O”(s, a)

input: policy , sample size NV
1. Sample trajectories 7, ... Ty ~ P
2. Construct an empirical loss function:

N
Z(w) = %Z Z (fw(sh, a,) — Rh(fi))z

=1 (s,,ap)€T;
3. (approximately) find a minimizer

—/

W & arg min L(w)

"
(often done with SGD)
4. Return the function b = f~

As with the [V-Eval Subroutine], there is also an iterative (TD) approach to this.

25

Outline:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value Iteration

26

Alternative Version: Bellman Operator & on Q
(HW?2 Q2 is the Q-version of the Bellman Equations)

« GivenafunctionQ : S XA — R, define S0 : S XA — R as

(5’7Q)(S, a) = r(s,a) + vy pia II,laj(O(s',a’)
aec

e (Bellman equations for Q)
O is equal to OQ* ifand only if 7 O = O.

Q-Value lteration Algorithm:

|
1. Initialization: Q" : ||QY|l, € 0’1—
—Y
2. Iterate until convergence: Q. < I O,

Ori1(s,a) = r(s,a) + vy pgs.0 majc Q.(s',a’)
a'e

analogous contraction properties to VI.
 What about a fitted version of this algorithm?

28

Fitted Q-Iteration

1. Initialize: Q,
2. Fork=0,1,...:
1. Approximately try to estimate & Q, with samples

Ori1(s,a) (s, a) + vy _pgs 0 majc Q.(s',a’)
a'e
What distribution should use to for this fitting??

29

The Offline Learning Setting:

We don’t know the MDP and our data collection is under some fixed distribution.

The Finite Horizon, Learning Setting:
- We have N trajectories 7y, ...7y ~ p,

« 1, 1S often referred to as our data collection policy.

30

Fitted Q-Iteration

input: offline dataset 7,, ...7y ~ p,

1. Initialize parameter w,,
(each trajectory is of the form 7; = { Sy, dg, 7> -+ -SH—_1> Ari—1> TE—15)

2. Fork=0,1,...K:
1. Construct an empirical loss function:

—] &)
L,(w) = v Z Z (fw(sh, a,) — (rh + maxf,, (5,41, a)))

: A
=1 (Sh,ah,rh,sh+1)€Ti

2. Update:

Wiy & arg min Zk(w)
14%

3. Return the function f5; as an estimate of Q*

Q-Learning is an online variant to do the above.

31

Summary:

1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods
1. Fitted Policy Evaluation
2. Fitted Q-Value lteration

1-minute feedback form: https://bit.ly/3RHtIxy

https://bit.ly/3RHtlxy

