fitted Value function methods 8 fitted Dynamic Programming

Lucas Janson and Sham Kakade **CS/Stat 184: Introduction to Reinforcement Learning** Fall 2022

- Recap + Overview of PG
- Today:
 - 1. Fitted Policy Evaluation
 - 2. Fitted Dynamic Programming Methods
 - 1. Fitted Policy Evaluation
 - 2. Fitted Q-Value Iteration

Recap + Overview of PG

Recap: Policy Parameterization

1. Softmax linear Policy

Feature vector $\phi(s, a) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a))}$$

Recall that we consider parameterized policy $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$

Policy Parameterization Example for "Controls"

Suppose $a \in \mathbb{R}^k$, as it might be for a control problem.

2. Neural Policy:

Neural network $f_{\theta}: S \times A \mapsto \mathbb{R}$

$$\pi_{\theta}(a \mid s) = \frac{\exp(f_{\theta}(s, a))}{\sum_{a'} \exp(f_{\theta}(s, a'))}$$

3. Example: Neural policy for continuous action case

• Neural network $g_{\theta} : S \mapsto \mathbb{R}^k$ • Parameters: $\theta \in \mathbb{R}^d$, $\sigma \in \mathbb{R}^+$

 Policy: sample action from a (multivariate) Normal with mean $g_{\theta}(s)$ and variance $\sigma^2 I$, i.e. $\pi_{\theta,\sigma}(a \mid s) = \mathcal{N}(g_{\theta}(s), \sigma^2 I)$

Implicitly, this is the same functional form as 2: $f_{\theta,\sigma}(s,a) = \frac{\|a - g_{\theta}(s)\|^2}{2}$ $2\sigma^2 k$

The Advantage Function (finite horizon)

- The Advantage function is defined as: $A_{h}^{\pi}(s,a) = Q_{h}^{\pi}(s,a) - V_{h}^{\pi}(s)$
- We have that:

$$E_{a \sim \pi(\cdot|s)} \left[A_h^{\pi}(s,a) \, \middle| \, s,h \right] =$$

 $= \sum_{\alpha} \pi(a \mid s) A_h^{\pi}(s, a) = 0$ a

The PG: baseline and advantage versions

- The second step follows by choosing $b_h(s) = V_h^{\pi}(s)$.
- The most common approach is to use $b_h(s)$ to approximate $V_h^{\pi}(s)$.
- The REINFORCE version is not used in practice.

$$n \pi_{\theta}(a_h | s_h) \left(\left(\sum_{t=h}^{H-1} r_t \right) - b_h(s_h) \right) \right]$$
$$n \pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right) \right]$$

PG for the (softmax) linear policies

• We can simplify this to: $\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} A_{h}^{\pi_{\theta}}(s_{h}, a_{h}) \phi(s_{h}, a_{h}) \right]$

- For a random variable $y \in R$, what is: $\arg\min_{c} E_{y \sim D}[(c - y)^2] = ??$
- Now let us look at the "function" case where we have a distribution over (x, y) pairs $f^{\star} = \arg\min_{f \in \mathscr{F}} E_{(x,y) \sim D}[(f(x) - y)^2]$ (where \mathcal{F} is the class of all possible functions)

What is $f^{\star}(x) = ??$

"Review"

Recap + Overview of PG

A PG procedure:

1. Initialize θ_0 , samples sizes M,N, parameters: η_1, η_2, \ldots 2. For t = 0, ...: 1. [Policy Eval Subroutine] $\widetilde{b}(s) \approx V_h^{\pi_{\theta_t}}(s)$ 2. [Mini-Batch PG Update] Init g = 0 and do M times: Obtain a trajectory $\tau \sim \rho_{\theta_{\star}}$ H-1Set $g = g + \sum \nabla \ln \pi_{\theta_{t}}(a_{h} | s_{h}) (R_{h}(\tau) - \tilde{b}(s_{h}))$ $\overset{h=0}{\operatorname{Set}} \widetilde{\nabla}_{\theta} J(\theta_t) := \frac{1}{M} g$

3. Update: $\theta_{t+1} = \theta_t + \eta_t \widetilde{\nabla}_{\theta} J(\theta_t)$

(this is sometimes referred to as actor-critic approach)

Using N sampled trajectories, $\tau_1, \ldots \tau_N \sim \rho_{\theta_t}$, try to learn a b s.t.

Baseline/Value Function Parameterizations

Now let us consider parameterized classes of functions \mathcal{F} , where for each $f \in \mathcal{F}$, $f : S \to R$

1. Linear Functions

Feature vector $\psi(s) \in \mathbb{R}^k$, and parameter $w \in \mathbb{R}^k$

 $f_w(s) = w^{\mathsf{T}} \psi(s)$

Let's assume the current time in the episode is contained in the state. $s \leftarrow (s, h)$ (e.g. you can always add the time into the "list" that specifies the state).

Example [Policy Eval Subroutine]: Directly fit unbiased estimates of $V^{\pi}(s)$

input: policy π , sample size N

1. Sample trajectories τ_1, \ldots

(each trajectory is of the form

2. Construct an empirical lo

$$\widetilde{L}(w) = \frac{1}{N} \sum_{i=1}^{N} \sum_{s_h \in \tau_i} \left(f_w(s_h) - R_h(\tau_i) \right)^2$$

- (approximately) find a minimizer 3. $\widetilde{w} \approx \arg\min L(w)$ (often done with SGD)
- 4. Return the function $b = f_{\widetilde{w}}$

$$\tau_{N} \sim \rho_{\pi}$$

in $\tau_{i} = \{s_{0}, a_{0}, r_{0}, \dots s_{H-1}, a_{H-1}, r_{H-1}, \}$
oss function:

Today: Fitted Value Function & Dynamic Programming Methods

Outline:

- 1. Fitted Policy Evaluation
- - 1. Fitted Policy Evaluation
 - 2. Fitted Q-Value Iteration

2. Fitted Dynamic Programming Methods

Implications of appending the timestep h to the state s

- Option 1 (without appending h):
- Option 2 (building just one model):
 - try to learn a single $w \in \mathbb{R}^k$ s.t. $f_w(s,h) \approx V_h^{\pi}(s), \forall h$.
 - Let us assume: $s \leftarrow (s, h)$ (i.e. that h is implicitly contained in s)

- We can implicitly consider this to be an infinite horizon $\gamma = 1$ problem,
- Iteration because our parameter w should be effective for all h.

• Try to find parameters H parameters $w^0, \dots w^{H-1}$, with each in $w_i \in \mathbb{R}^k$ s.t. $f_{w^h}(s) \approx V_h^{\pi}(s)$. • This is means building H models (or neural nets) so we have $H \cdot k$ parameters.

but one which happens to terminate in H steps (i.e. at state (s, H - 1) the trajectory ends).

• It is helpful to use with the discounted algorithms work — Iterative PE, Value Iteration, Policy

Is there an iterative version of Policy Evaluation? (that is faster, but approximate?)

Algorithm (Iterative PE):

- 1. Initialization: $V^0 : ||V^0||_{\infty} \in$
- 2. Iterate until convergence: V Equivalently, $\forall s. V^{k+1}(s) = r(s, \pi(s)) = r(s) = r(s)$

This is a "fixed point" algorithm trying to enforce Bellman consistency: $\forall s, V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi(s))} V^{\pi}(s')$ The Bellman consistency for the finite horizon case: $\forall s, V_h^{\pi}(s) = r(s, \pi(s)) + \mathbb{E}_{s \sim P(s, \pi(s))} V_{h+1}^{\pi}(s')$

$$\in \begin{bmatrix} 0, \frac{1}{1-\gamma} \end{bmatrix}$$

$$V^{k+1} \leftarrow R + \gamma P V^{k}$$

$$(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi(s))} V^k(s')$$

Another [Policy Eval Subroutine]: Fit $V^{\pi}(s)$ using the iterative policy evaluation alg.

[Iterative I input: pol

1. Sampl (each tr

2. For
$$k = 0, ..., K$$
:

1. Co

Policy Eval Subroutine/TD]
icy
$$\pi$$
, sample size N , init w_0
le trajectories $\tau_1, \dots \tau_N \sim \rho_{\pi}$
rajectory is of the form $\tau_i = \{s_0, a_0, r_0, \dots s_{H-1}, a_{H-1}, r_{H-1}, \})$
= 0,..., K :
onstruct an empirical loss function:
 $\widetilde{L}_k(w) = \frac{1}{N} \sum_{i=1}^N \sum_{(s_h, r_h, s_{h+1}) \in \tau_i} \left(f_w(s_h) - \left(r_h + f_{w_k}(s_{h+1}) \right) \right)^2$
odate:
 $w_{k+1} \approx \arg\min_{w} \widetilde{L}_k(w)$
in the function $\widetilde{b} = f_{w_K}$

2. Up

Retur 3.

Temporal Difference Learning (TD) is an online variant to do the above.

Outline:

- 1. Fitted Policy Evaluation
- - 2. Fitted Q-Value Iteration

2. Fitted Dynamic Programming Methods 1. Fitted Policy Evaluation

This approach leads us to fitted dynamic programming...

Direct Policy Optimization:

- With PG, we tried to directly learn a good (parameterized) policy π_{θ} , for $\theta \in R^d$

 - Fitted value functions were introduced for variance reduction.

Fitted Dynamic Programming:

• Can we instead use a learning (fitting) approach to approximate dynamic programming? (where our goal is approximately find Q^{\star} and π^{\star})

• Learning means we used only sampled trajectories (we didn't assume the MDP is known).

Outline:

- 1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods 1. Fitted Policy Evaluation 2. Fitted Q-Value Iteration

Policy Iteration (PI)

- Initialization: choose a policy
- For k = 0, 1, ...
 - 1. Policy Evaluation: com 2. Policy Improvement: set $\pi^{k+1}(s) := \arg \max q$

$$xy \pi^0 : S \mapsto A$$

pute
$$Q^{\pi^k}(s, a)$$

et
 $Q^{\pi^k}(s, a)$

Fitted Policy Iteration:

1. Initialize staring policy π_0 , samples size M 2. For k = 0, ...: 1. [Q-Evaluation Subroutine] $\widetilde{Q}^k(s,a) \approx Q_h^{\pi_k}(s,a)$ 2. Policy Update $\pi_{k+1}(s) := \arg \max \widetilde{Q}^{\pi_k}(s, a)$

- Using N sampled trajectories, $\tau_1, \ldots \tau_N \sim \rho_{\pi_k}$, try to learn a b

Q-Function Parameterizations

Now, for our parameterized classes of functions \mathcal{F} , we have for $f \in \mathcal{F}, f : S \times A \to R$

1. Linear Functions

Feature vector $\psi(s, a) \in \mathbb{R}^k$, and parameter $w \in \mathbb{R}^k$

 $f_w(s,a) = w^{\mathsf{T}} \psi(s,a)$

(nothing new at this point)

Neural network $f_w: S \times A \mapsto \mathbb{R}$

Example [Q-Eval Subroutine]: Directly fit unbiased estimates of $Q^{\pi}(s, a)$

input: policy π , sample size N

- 1. Sample trajectories $\tau_1, \ldots \tau_N \sim \rho_{\pi}$
- 2. Construct an *empirical loss function*:

(approximately) find a minimizer 3.

As with the [V-Eval Subroutine], there is also an iterative (TD) approach to this.

Outline:

- 1. Fitted Policy Evaluation

2. Fitted Dynamic Programming Methods 1. Fitted Policy Evaluation 2. Fitted Q-Value Iteration

Alternative Version: Bellman Operator \mathcal{T} on Q(HW2 Q2 is the Q-version of the Bellman Equations)

- (Bellman equations for Q) Q is equal to Q^{\star} if and only if $\mathcal{T}Q = Q$.

• Given a function $Q: S \times A \mapsto \mathbb{R}$, define $\mathcal{T}Q: S \times A \mapsto \mathbb{R}$ as $(\mathcal{T}Q)(s,a) := r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} \max_{a' \in A} Q(s',a')$

Q-Value Iteration Algorithm:

- 2.

Initialization:
$$Q^0 : \|Q^0\|_{\infty} \in \left[0, \frac{1}{1-\gamma}\right]$$

Iterate until convergence: $Q_{k+1} \leftarrow \mathcal{T}Q_k$
 $Q_{k+1}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} \max_{a' \in A} Q_k(s', a')$

- What about a fitted version of this algorithm?

Guarantees of Q-VI: analogous contraction properties to VI.

Fitted Q-Iteration

- 1. Initialize: Q_0
- 2. For k = 0, 1, ...:

1. Approximately try to estimate $\mathcal{T}Q_k$ with samples $Q_{k+1}(s, a) \approx r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} \max_{a' \in A} Q_k(s', a')$ What distribution should use to for this fitting??

The Offline Learning Setting:

We don't know the MDP and our data collection is under some fixed distribution.

The Finite Horizon, Offline Learning Setting:

- We have *N* trajectories $\tau_1, \ldots \tau_N \sim \rho_{\pi_{data}}$
- π_{data} is often referred to as our data collection policy.

Fitted Q-Iteration

Q-Learning is an online variant to do the above.

$$s_0, a_0, r_0, \dots s_{H-1}, a_{H-1}, r_{H-1}, \})$$

$$\int_{a_1} \left(f_w(s_h, a_h) - \left(r_h + \max_a f_{w_k}(s_{h+1}, a) \right) \right)^2$$

- 1. Fitted Policy Evaluation
- 2. Fitted Dynamic Programming Methods
 - 1. Fitted Policy Evaluation
 - 2. Fitted Q-Value Iteration

Next up: fitted DP methods or PG methods? TRPO and Natural PG connects these two ideas

1-minute feedback form: <u>https://bit.ly/3RHtlxy</u>

