
Contextual Bandits &
a Real-world RL Case Study

 
Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning 

Fall 2023

Today

2

• Contextual Bandits

• LinUCB

• Real world RL example

Contextual bandit environment

3

Formally, a contextual bandit is the following interactive learning process:

For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}

3. Learner observes reward from arm in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from

all data seen so far

πt

Note that if the context distribution always returns the same value (e.g., 0), then
the contextual bandit reduces to the original multi-armed bandit

νx

Independent of any previous data

UCB for contextual bandits

4

UCB algorithm conceptually identical as long as finite:
|𝒳|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |𝒳| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

xt ̂μ(k)
t N(k)

t

|𝒳|
̂μ(k)
t (x) K |𝒳| K

But when is really big (or even infinite), this will be really bad!|𝒳|
Solution: share information across contexts , i.e., don’t treat and as

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′)

Example: showing an ad on a NYT article on politics vs a NYT article on sports:

Not identical readership, but still both on NYT, so probably still similar readership!

Today

5

• Contextual Bandits

• LinUCB

• Real world RL example

Modeling in contextual bandits

6

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |𝒳| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Lower dimension makes learning easier, but model could be wrong/biased

Linear model fitting

7

Linear model for rewards: μ(k)(x) = x⊤θ(k)

Least squares estimator: ̂θ(k)
t = arg min

θ∈ℝd

t−1

∑
τ=0

(rτ − x⊤
τ θ)21{aτ=k}

Minimize squared error over time points when arm selectedk

̂θ(k)
t = (

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k})

−1 t−1

∑
τ=0

xτrτ1{aτ=k}

Uncertainty quantification

8

For UCB, recall that we need confidence bounds on

the expected reward of each arm (given context)xt

Hoeffding was the main tool so far, but it used the fact that our estimate for the
expected reward was a sample mean of the rewards we’d seen so far in the same

setting (action, context)

Chebyshev’s inequality: for a mean-zero random variable ,

 with probability

Y
|Y | ≤ β 𝔼[Y2] ≥ 1 − 1/β2

With a model, we can use rewards we’ve seen in other settings better estimation→
But not using sample mean as estimator, so need something other than Hoeffding

Apply to x⊤
t

̂θ(k)
t − x⊤

t θ(k)

Chebyshev confidence bounds + intuition

Intuition:

UCB term 1: large when context and coefficient estimate alignedx⊤
t

̂θ(k)

UCB term 2: , where

 is the empirical covariance

matrix of contexts when arm chosen

x⊤
t (A(k)

t)−1xt =
1

N(k)
t

x⊤
t (Σ(k)

t)−1xt

Σ(k)
t =

1
N(k)

t
A(k)

t =
1

N(k)
t

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}

k
Large when small or not aligned with historical dataN(k)

t xt
9

Chebyshev: with probability x⊤
t θ(k) ≤ x⊤

t
̂θ(k)
t + β x⊤

t (A(k)
t)−1xt ≥ 1 − 1/β2

A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k}

LinUCB algorithm

10

For t = 0 → T − 1

2. Observe context and choose xt at = arg max
k {x⊤

t
̂θ(k)
t + ct x⊤

t (A(k)
t)−1xt}

3. Observe reward rt ∼ ν(at)(xt)

1. , define and ∀ k A(k)
t =

t−1

∑
τ=0

xτx⊤
τ 1{aτ=k} + λI ̂θ(k)

t = (A(k)
t)−1

t−1

∑
τ=0

xτrτ1{aτ=k}

 similar to log term in (non-lin)UCB, in that it depends logarithmically on

i. (is probability you want the bound to hold with)

ii. and implicitly via

ct
1/δ δ
t d det(A(k)

t)
Can prove regret boundÕ(T)

Regularization makes invertibleA(k)
t

Today

11

• Contextual Bandits

• LinUCB

• Real world RL example

Case Study: RL for Supply Chains

12

13

Real-world RL is hard.

Many RL successes in
controlled domains. 
 
How can RL add value
in the real world?

Issues:

sample complexity?

how to use offline data?

exploration/counterfactual reasoning?

The Supply Chain Problem
• Supply Chain is about buying, storing, and

transporting goods.

• There is a lot of historical “off-policy” data

• e.g. Amazon, …

• Today: how can we use this data to solve the

inventory management problem?

• counterfactual issues?

14

Outline

Can we use historical data to solve inventory management problems  
in supply chain?  

• How to use historical data?

• Moving to real-world inventory management problems

• Real world results

Largely based on this paper:

 arxiv/2210.03137

15

https://arxiv.org/abs/2210.03137

I: Utilizing historical data

16

Warm up: Vehicle Routing 
(when using historical data might be ok)

• We want a good policy for routing 
a single car. 

• Policy : features -> directions  
features: time of day, holiday indicators,  
current traffic, sports games,  
accidents, location, weather, 

• Historical Data:  
suppose we have logged historical data of features 

• Backtesting policies:

• Key idea: a single route minimally affects traffic

• Counterfactual: with the historical data, we can see what would have happened with

another policy.

π

17

Warm up 2: Fleet Routing

• We want to route a whole fleet  
of self-driving taxis. 

• Policy : features -> directions

• features: customer demand, time,  

holiday indicators, current traffic, sports games,  
accidents, location, weather… 

• Historical Data:  
suppose we have logged historical data of features 

• Backtesting policies:

• Key idea: a small fleet route may have small affects on traffic.

• Counterfactual: with the historical data, we can see what would have happened with

another policy.

π

18

Supply Chain Data

Time Inventory Demand Order Revenue

0 100 20 - 40

0 80 - 10 -10

1 90 20 - 40

1 70 - 50 -50

2 120 60 - 120

2 60 - 10 -10

Price= $2

Cost= $1

19

Backtesting a policy

Time Inventory Demand Order Revenue

0 100 20 - 40

0 80 - 10 40 -10 -40

1 90 120 20 - 40

1 70 100 - 50 20 -50 -20

2 120 60 - 120

2 60 - 10 -10

Price= $2

Cost= $1

• Current order doesn’t
impact future demand.

• This allows us to

backtest!

• Empirically, backlog due to

unmet demand does not look
significant.1

1. See Verhoef et al (2006)20

Formalization of the Supply Chain Problem
• Exogenous MDPs: Growing literature around a class of MDPs where a large part of the state is driven by

an exogenous noise process [Efroni et al 2021, Sinclair et al 2022]

• The supply chain problem as an ExoMDP:

• Action : how much you buy

• Exogenous random variables: evolving under and not dependent on our actions 

• Known controllable part (inventory) : (known) evolution is dependent on our action.

• (and suppose we start at).

• Immediate reward is the profits:

• Learning setting:

• Offline Data: We observe historical trajectories, where each sequence is sampled

• Goal: maximize our over H step cumulative reward: 

at
Pr

(Demandt, Pricet, Costt, Lead Timet, Covariatest) := st
It

It = max(It−1 + at−1 − Dt,0) I0
r(st, It, at) := Pricet × min(Demandt, It) − Costt × at

N s1, …, sT ∼ Pr

VH(π) = Eπ[
H

∑
t=1

γtr(st, It, at)]

21

Why is it an interesting RL problem?

• Lots of time dependence!

• If you buy too much, you’re left with the inventory for months!

• Your actions (orders) affect the state at a random time later

• Tons of correlation across time (Demand, Price, Cost, Seasonality, etc)

22

Theorem: RL in ExoMDPs is as easy as Supervised Learning
Suppose we have K policies , and we have sampled exogenous
paths. Then we can accurately backtest up to nearly policies.
Formally, for , with pr. greater than - we have that for all :

(assuming the reward is bounded by 1).

Π = {π1, …πK} N
K ≈ 2N

δ ∈ (0,1) 1 − δ π ∈ Π

|V0(π) − ̂V0(π) | ≤ H
log(K/δ)

N
rt

23

• Implications:

• We can optimize a neural policy on the past data.

• In the usual RL setting (not exogenous), we would have an amplification factor of (at least)

, using historical data due to the counterfactual issue.min{2H, K}

What do ExoMDPs buy us?
We can backtest (assuming the “controllable” dynamics are known)
and avoid the counterfactual/causality issue!

II: Real World Inventory Management Problems

24

Real-world Issue: Censored Demand
• When , what customers see: demand ≥ inventory

We only observe sales not the demand: 
 

Can we still backtest? 

Sales := min(Demand, Inventory)

25

Our historical data is then censored….

Time Inventory True Demand Sales Order Revenue

T 10 ?? 10 - 20

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

Price= $2

Cost= $1

Sales := min(Demand, Inventory)

If we could fill in the
missing demand,
then we could still
backtest!

26

We have many observed historical covariates

• Covariates:  
Sales, Web Site, Glance Views, Product Text,  
Reviews

• Example: the #times customers look at an item 
gives us info about the unobserved demand. 
 

• Let’s forecast the missing variables from the observed covariates! 
ℙ̂(Missing Data |Observed Data)

27

Uncensoring the data….

Time Inventory True Demand Sales Order Revenue

T 10 40 10 - 20

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

Price= $2

Cost= $1

Sales := min(Demand, Inventory)

Key idea: 
Use covariates
(e.g. glance
views) to forecast
missing demand,
vendor lead
times, etc

28

Theorem: If we can accurately forecast the missing (exo) variables (i.e. our SL error is
small), then we can backtest accurately.
(with only additive error increase based on our SL error).

Setting: we have sampled sequences ,
 where and are the missing and observed exogenous variables in sequence .

Forecast: is our forecast of .

Assume: With pr. 1, forecasting has low error: .

Guarantee: For any , with pr. greater than , for all :

N {si
1, si

2, …si
H}N

i=1
Mi Oi i

̂ℙ i = ̂Pr (Mi |Oi) ℙi = Pr(Mi |Oi)
1
N

N

∑
i=1

TotalVar(ℙi, ̂ℙ i) ≤ ϵsup

δ ∈ (0,1) 1 − δ π ∈ Π

29

|V0(π) − ̂V0(π) | ≤ H (ϵsup +
log(K/δ)

N)

What do ExoMDPs buy us?
We can backtest (even with censored data) and avoid the counterfactual/causality issue!

III: Training Policies & Empirical Results

30

The Simulator

• Collection of historical trajectories:

• 1 million products

• 104 weeks of data per product

 
• Uncensoring:

• Demand

• Vendor Lead Times

• Policy gradient methods in a “gym”:

• “gym” backtesting simulator 

(note the “simulator” isn’t a good world model).

• The policy can depend on many features. 

(seasonality, holiday indicators, demand history,
product details, text features) 

↔ ↔

Data

Corrections

Simulator

31

Sim to Real Transfer
• Sim: the backtest of DirectBackprop improves on Newsvendor.

• Real: DirectBackprop significantly reduces inventory without significantly reducing

total revenue.

Simulation Real World

Re
w

ar
d

2.6%

32

RLHF

33

34

RL from Human Feedback (RLHF)

Summary:

Feedback:

bit.ly/3RHtlxy

35

Attendance: 
bit.ly/3RcTC9T

Today: adding context to bandits requires SL but makes it much more useful

• The Course: sequential decision making (causality + decisions)

• RL gives a helpful set of tools.

• RL also gives an interesting viewpoint.

• We hope you enjoyed the course!

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

Extensions

36

1. Can always replace contexts with any fixed (vector-valued) function xt ϕ(xt)
E.g., if believe rewards quadratic in scalar , could make xt ϕ(xt) = (xt, x2

t)
2. Instead of fitting different for each arm, we could assume the mean reward

is linear in some function of both the context and the action, i.e.,

θ(k)

𝔼r∼νat(xt)[r] = ϕ(xt, at)⊤θ
This is what problem 3 of HW 1 (which we cut) was about; it’s helpful
especially when is large, since in that case there are a lot of to fitK θ(k)

Both cases allow a version of linUCB by extension of the same ideas: fit coefficients
via least squares and use Chebyshev-like uncertainty quantification to get UCB

More detail on the combined linear model

37

For t = 0 → T − 1

2. Observe & choose xt at = arg max
k {ϕ(xt, k)⊤ ̂θt + ct ϕ(xt, k)⊤A−1

t ϕ(xt, k)}
3. Observe reward rt ∼ ν(at)(xt)

1. , define and ∀ k At =
t−1

∑
τ=0

ϕ(xτ, aτ)ϕ(xτ, aτ)⊤ + λI ̂θt = A−1
t

t−1

∑
τ=0

ϕ(xτ, aτ)rτ

Comments:

i. There is only one and (not one per arm), so more info shared across

ii. Good for large , but step 2’s argmax may be hard

iii. The other formulation, with separate and , is called disjointed

At
̂θt k

K
A(k)

t
̂θ(k)
t

Continuous bandit action spaces

38

In bandits / contextual bandits, we have always treated the action space as discrete

But now with the new combined formulation, there is sufficient sharing across actions
that we can learn and its UCB without sampling all armŝθt

This is because we to some extent treated each arm separately, necessitating trying
each arm at least a fixed number of times before real learning could begin

This means that in principle, we can now consider continuous action spaces!

This is the power of having a strong model for , and a neural network
would serve a similar purpose in place of the combined linear model (UQ less clear)

𝔼r∼ν(at)(xt)[r]

But in principle, there is no “free lunch”, i.e., the hardness of the problem now
transfers over to choosing a good model (a bad model will lead to bad performance)

