
From LQR to Nonlinear Control
 

Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning 

Fall 2023

1

Today

• Feedback from last lecture

• Recap

• Locally linearization

• Iterative LQR

2

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2. Ask class questions

3

Today

4

• Feedback from last lecture

• Recap

• Locally linearization

• Iterative LQR

Recap: LQR

5

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [x⊤
HQxH +

H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh)]
such that xh+1 = Axh + Buh + wh , x0 ∼ μ0 , uh = πh(xh) , wh ∼ N(0,σ2I)

Problem Statement (finite horizon, time homogeneous):

Recap: LQR

5

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [x⊤
HQxH +

H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh)]
such that xh+1 = Axh + Buh + wh , x0 ∼ μ0 , uh = πh(xh) , wh ∼ N(0,σ2I)

Problem Statement (finite horizon, time homogeneous):

• States

• Actions/controls

• Additive noise

• Dynamics linear with state coefficient matrix and action

coefficient matrix

• Cost function quadratic with positive semidefinite state coefficient matrix

 and positive semidefinite action coefficient matrix

xh ∈ ℝd

uh ∈ ℝk

wh ∼ 𝒩(0,σ2I)
A ∈ ℝd×d

B ∈ ℝd×k

Q ∈ ℝd×d R ∈ ℝk×k

Recap: LQR Optimal Control

6

Recap: LQR Optimal Control

6

V⋆
H(x) = x⊤Qx, define PH = Q, pH = 0,

Recap: LQR Optimal Control

6

V⋆
H(x) = x⊤Qx, define PH = Q, pH = 0,

We showed that , where: V⋆
h (x) = x⊤Phx + ph

Ph = Q + A⊤Ph+1A − A⊤Ph+1B(R + B⊤Ph+1B)−1B⊤Ph+1A

ph = tr (σ2Ph+1) + ph+1

Recap: LQR Optimal Control

6

V⋆
H(x) = x⊤Qx, define PH = Q, pH = 0,

We showed that , where: V⋆
h (x) = x⊤Phx + ph

Ph = Q + A⊤Ph+1A − A⊤Ph+1B(R + B⊤Ph+1B)−1B⊤Ph+1A

ph = tr (σ2Ph+1) + ph+1

Along the way, we also showed that , where: π⋆
h (x) = − Khx

Kh = (R + B⊤Ph+1B)−1B⊤Ph+1A

Recap: LQR Optimal Control

6

V⋆
H(x) = x⊤Qx, define PH = Q, pH = 0,

We showed that , where: V⋆
h (x) = x⊤Phx + ph

Ph = Q + A⊤Ph+1A − A⊤Ph+1B(R + B⊤Ph+1B)−1B⊤Ph+1A

ph = tr (σ2Ph+1) + ph+1

Along the way, we also showed that , where: π⋆
h (x) = − Khx

Kh = (R + B⊤Ph+1B)−1B⊤Ph+1A

Optimal policy has nothing to do with initial distribution or the noise ! μ0 σ2

Time-Dependent Costs and Dynamics

7

Time-Dependent Costs and Dynamics

7

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [x⊤
HQHxH +

H−1

∑
h=0

(x⊤
h Qhxh + u⊤

h Rhuh)]
such that xh+1 = Ahxh + Bhuh + wh , x0 ∼ μ0 , uh = πh(xh) , wh ∼ N(0,σ2I)

Time-Dependent Costs and Dynamics

Exact same derivation, only thing that changes is the Ricatti equation:
Ph = Qh + A⊤

h Ph+1Ah − A⊤
h Ph+1Bh(Rh + B⊤

h Ph+1Bh)−1B⊤
h Ph+1Ah

7

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [x⊤
HQHxH +

H−1

∑
h=0

(x⊤
h Qhxh + u⊤

h Rhuh)]
such that xh+1 = Ahxh + Bhuh + wh , x0 ∼ μ0 , uh = πh(xh) , wh ∼ N(0,σ2I)

More General Quadratic Cost Function

8

More General Quadratic Cost Function

8

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [x⊤
HQHxH + x⊤

HqH + cH

+
H−1

∑
h=0

(x⊤
h Qhxh + u⊤

h Rhuh + u⊤
h Mhxh + x⊤

h qh + u⊤
h rh + ch)]

such that xh+1 = Ahxh + Bhuh+vh+wh , x0 ∼ μ0 , uh = πh(xh) , wh ∼ N(0,σ2I)

More General Quadratic Cost Function

Derivation is quite similar, just more algebra!

8

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [x⊤
HQHxH + x⊤

HqH + cH

+
H−1

∑
h=0

(x⊤
h Qhxh + u⊤

h Rhuh + u⊤
h Mhxh + x⊤

h qh + u⊤
h rh + ch)]

such that xh+1 = Ahxh + Bhuh+vh+wh , x0 ∼ μ0 , uh = πh(xh) , wh ∼ N(0,σ2I)

Tracking a Predefined Trajectory

9

Tracking a Predefined Trajectory

9

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [(xH−x⋆
H)⊤QH(xH−x⋆

H)

+
H−1

∑
h=0

((xh−x⋆
h)⊤Qh(xh−x⋆

h) + (uh−u⋆
h)⊤Rh(uh−u⋆

h))]
such that xh+1 = Ahxh + Bhuh + wh , x0 ∼ μ0 , uh = πh(xh) , wh ∼ N(0,σ2I)

Tracking a Predefined Trajectory

9

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [(xH−x⋆
H)⊤QH(xH−x⋆

H)

+
H−1

∑
h=0

((xh−x⋆
h)⊤Qh(xh−x⋆

h) + (uh−u⋆
h)⊤Rh(uh−u⋆

h))]
such that xh+1 = Ahxh + Bhuh + wh , x0 ∼ μ0 , uh = πh(xh) , wh ∼ N(0,σ2I)

Can you see why we already know how to solve this?

Tracking a Predefined Trajectory

Expanding all the quadratic terms produces a special case of the previous slide!

9

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [(xH−x⋆
H)⊤QH(xH−x⋆

H)

+
H−1

∑
h=0

((xh−x⋆
h)⊤Qh(xh−x⋆

h) + (uh−u⋆
h)⊤Rh(uh−u⋆

h))]
such that xh+1 = Ahxh + Bhuh + wh , x0 ∼ μ0 , uh = πh(xh) , wh ∼ N(0,σ2I)

Can you see why we already know how to solve this?

Beyond LQR

10

Beyond LQR

10

So far: many extensions to LQR essentially reduce to the same problem

Beyond LQR

10

But what about problems with nonlinear dynamics and/or nonquadratic costs?

So far: many extensions to LQR essentially reduce to the same problem

Today

11

• Feedback from last lecture

• Recap

• Locally linearization

• Iterative LQR

Setting for Local Linearization Approach:

Goal: stabilizing around the

goal (x = x⋆, u = u⋆)

12

z

Setting for Local Linearization Approach:

minimize 𝔼π[
H−1

∑
h=0

c(xh, uh)]
s.t. xh+1 = f(xh, uh), uh = π(xh), x0 ∼ μ0

Goal: stabilizing around the

goal (x = x⋆, u = u⋆)

12

z

Setting for Local Linearization Approach:

minimize 𝔼π[
H−1

∑
h=0

c(xh, uh)]
s.t. xh+1 = f(xh, uh), uh = π(xh), x0 ∼ μ0

Goal: stabilizing around the

goal (x = x⋆, u = u⋆)

No noise! 12

z

Setting for Local Linearization Approach:

minimize 𝔼π[
H−1

∑
h=0

c(xh, uh)]
s.t. xh+1 = f(xh, uh), uh = π(xh), x0 ∼ μ0

Goal: stabilizing around the

goal (x = x⋆, u = u⋆)

No noise! No terminal cost !ch(xH) 12

z

Setting for Local Linearization Approach:

minimize 𝔼π[
H−1

∑
h=0

c(xh, uh)]
s.t. xh+1 = f(xh, uh), uh = π(xh), x0 ∼ μ0

Goal: stabilizing around the

goal (x = x⋆, u = u⋆)

Assumptions:

1. We have black-box access to : f & c

No noise! No terminal cost !ch(xH) 12

z

Setting for Local Linearization Approach:

minimize 𝔼π[
H−1

∑
h=0

c(xh, uh)]
s.t. xh+1 = f(xh, uh), uh = π(xh), x0 ∼ μ0

Goal: stabilizing around the

goal (x = x⋆, u = u⋆)

Assumptions:

1. We have black-box access to : f & c

 and have unknown analytical form

but can be queried at any to give

where

f c
(x, u) x′￼, c,

x′￼ = f(x, u), c = c(x, u)

No noise! No terminal cost !ch(xH) 12

z

Setting for Local Linearization Approach:

minimize 𝔼π[
H−1

∑
h=0

c(xh, uh)]
s.t. xh+1 = f(xh, uh), uh = π(xh), x0 ∼ μ0

Goal: stabilizing around the

goal (x = x⋆, u = u⋆)

Assumptions:

1. We have black-box access to : f & c

 and have unknown analytical form

but can be queried at any to give

where

f c
(x, u) x′￼, c,

x′￼ = f(x, u), c = c(x, u)

2. is differentiable
and is twice differentiable

f
c

No noise! No terminal cost !ch(xH) 12

z

Setting for Local Linearization Approach:

minimize 𝔼π[
H−1

∑
h=0

c(xh, uh)]
s.t. xh+1 = f(xh, uh), uh = π(xh), x0 ∼ μ0

Goal: stabilizing around the

goal (x = x⋆, u = u⋆)

Assumptions:

1. We have black-box access to : f & c

 and have unknown analytical form

but can be queried at any to give

where

f c
(x, u) x′￼, c,

x′￼ = f(x, u), c = c(x, u)

2. is differentiable
and is twice differentiable

f
c

∇x f(x, u), ∇u f(x, u), ∇xc(x, u), ∇uc(x, u),
∇2

xc(x, u), ∇2
uc(x, u), ∇2

x,uc(x, u)
No noise! No terminal cost !ch(xH) 12

z

Local Linearization of Dynamics

13

Local Linearization of Dynamics

Assume that all possible initial states are close to and can be kept there with actions close to x0 x⋆ u⋆

13

Local Linearization of Dynamics

Assume that all possible initial states are close to and can be kept there with actions close to x0 x⋆ u⋆

We can approximate locally with a first-order Taylor expansion:f(x, u)

f(x, u) ≈ f(x⋆, u⋆) + ∇x f(x⋆, u⋆)(x − x⋆) + ∇u f(x⋆, u⋆)(u − u⋆)

13

Local Linearization of Dynamics

Assume that all possible initial states are close to and can be kept there with actions close to x0 x⋆ u⋆

We can approximate locally with a first-order Taylor expansion:f(x, u)

f(x, u) ≈ f(x⋆, u⋆) + ∇x f(x⋆, u⋆)(x − x⋆) + ∇u f(x⋆, u⋆)(u − u⋆)

where:

∇x f(x, u) ∈ ℝd×d, ∇x f(x, u)[i, j] =
∂f[i]
∂x[j]

(x, u)

∇u f(x, u) ∈ ℝd×k, ∇u f(x, u)[i, j] =
∂f[i]
∂u[j]

(x, u)

13

Local Quadratization of Cost Function

14

Local Quadratization of Cost Function

We can approximate locally at with second-order Taylor expansion:c(x, u) (x⋆, u⋆)

14

Local Quadratization of Cost Function

We can approximate locally at with second-order Taylor expansion:c(x, u) (x⋆, u⋆)

c(x, u) ≈ c(x⋆, u⋆) + ∇xc(x⋆, u⋆)⊤(x − x⋆) + ∇uc(x⋆, u⋆)⊤(u − u⋆)

+
1
2

(x − x⋆)⊤ ∇2
xc(x⋆, u⋆)(x − x⋆) +

1
2

(u − u⋆)⊤ ∇2
uc(x⋆, u⋆)(u − u⋆) + (x − x⋆)⊤ ∇2

x,uc(x, u)(u − u⋆)

14

Local Quadratization of Cost Function

We can approximate locally at with second-order Taylor expansion:c(x, u) (x⋆, u⋆)

c(x, u) ≈ c(x⋆, u⋆) + ∇xc(x⋆, u⋆)⊤(x − x⋆) + ∇uc(x⋆, u⋆)⊤(u − u⋆)

+
1
2

(x − x⋆)⊤ ∇2
xc(x⋆, u⋆)(x − x⋆) +

1
2

(u − u⋆)⊤ ∇2
uc(x⋆, u⋆)(u − u⋆) + (x − x⋆)⊤ ∇2

x,uc(x, u)(u − u⋆)

∇xc(x, u) ∈ ℝd, ∇xc(x, u)[i] =
∂c

∂x[i]
(x, u),

∇uc(x, u) ∈ ℝk, ∇uc(x, u)[i] =
∂c

∂u[i]
(x, u),

∇2
xc(x, u) ∈ ℝd×d, ∇2

xc(x, u)[i, j] =
∂2c

∂x[i]∂x[j]
(x, u),

∇2
x,uc(x, u) ∈ ℝd×k, ∇2

x,uc(x, u)[i, j] =
∂2c

∂x[i]∂u[j]
(x, u)

14

Local Linearization: Putting it all Together

c(x, u) ≈ c(x⋆, u⋆) + ∇xc(x⋆, u⋆)⊤(x − x⋆) + ∇uc(x⋆, u⋆)⊤(u − u⋆)

+
1
2

(x − x⋆)⊤ ∇2
xc(x⋆, u⋆)(x − x⋆) +

1
2

(u − u⋆)⊤ ∇2
uc(x⋆, u⋆)(u − u⋆) + (x − x⋆)⊤ ∇2

x,uc(x, u)(u − u⋆)

f(x, u) ≈ f(x⋆, u⋆) + ∇x f(x⋆, u⋆)(x − x⋆) + ∇u f(x⋆, u⋆)(u − u⋆)

15

Local Linearization: Putting it all Together

Rearranging terms, we get back to the following formulation:

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [
H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh + u⊤
h Mxh + x⊤

h q + u⊤
h r + c)]

such that xh+1 = Axh + Buh + v , x0 ∼ μ0 , uh = πh(xh)
Special case of one of the LQR extensions!

c(x, u) ≈ c(x⋆, u⋆) + ∇xc(x⋆, u⋆)⊤(x − x⋆) + ∇uc(x⋆, u⋆)⊤(u − u⋆)

+
1
2

(x − x⋆)⊤ ∇2
xc(x⋆, u⋆)(x − x⋆) +

1
2

(u − u⋆)⊤ ∇2
uc(x⋆, u⋆)(u − u⋆) + (x − x⋆)⊤ ∇2

x,uc(x, u)(u − u⋆)

f(x, u) ≈ f(x⋆, u⋆) + ∇x f(x⋆, u⋆)(x − x⋆) + ∇u f(x⋆, u⋆)(u − u⋆)

15

Summary of Local Linearization So Far:

For tasks such as balancing near goal state ,

we can perform first order Taylor expansion on ,

and second order Taylor expansion on around the balancing point

(x⋆, u⋆)
f(x, u)

c(x, u) (x⋆, u⋆)

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [
H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh + u⊤
h Mxh + x⊤

h q + u⊤
h r + c)]

such that xh+1 = Axh + Buh + v , x0 ∼ μ0 , uh = πh(xh)

16

Summary of Local Linearization So Far:

For tasks such as balancing near goal state ,

we can perform first order Taylor expansion on ,

and second order Taylor expansion on around the balancing point

(x⋆, u⋆)
f(x, u)

c(x, u) (x⋆, u⋆)

Last step: checking some practical issues

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [
H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh + u⊤
h Mxh + x⊤

h q + u⊤
h r + c)]

such that xh+1 = Axh + Buh + v , x0 ∼ μ0 , uh = πh(xh)

16

Locally Convexifying the Cost Function

17

Locally Convexifying the Cost Function

Note that might not even be convex;c(x, u)

So, may not be positive definite∇2
xc(x⋆, u⋆) & ∇2

uc(x⋆, u⋆)

17

Locally Convexifying the Cost Function

Note that might not even be convex;c(x, u)

So, may not be positive definite∇2
xc(x⋆, u⋆) & ∇2

uc(x⋆, u⋆)

17

What can we do?

Locally Convexifying the Cost Function

Note that might not even be convex;c(x, u)

So, may not be positive definite∇2
xc(x⋆, u⋆) & ∇2

uc(x⋆, u⋆)

In practice, we force them to be positive definite:

17

What can we do?

Locally Convexifying the Cost Function

Note that might not even be convex;c(x, u)

So, may not be positive definite∇2
xc(x⋆, u⋆) & ∇2

uc(x⋆, u⋆)

In practice, we force them to be positive definite:

Given a symmetric matrix ,

we compute the eigen-decomposition , and we approximate as

for some small

W ∈ ℝd×d

W =
d

∑
i=1

σiziz⊤
i W

W ≈
d

∑
i=1

1(σi > 0)σiziz⊤
i + λI,

λ > 0

17

What can we do?

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes output , where (x, u) x′￼, c

x′￼ = f(x, u), c = c(x, u)

18

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes output , where (x, u) x′￼, c

x′￼ = f(x, u), c = c(x, u)

Compute gradient using finite differencing:

18

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes output , where (x, u) x′￼, c

x′￼ = f(x, u), c = c(x, u)

Compute gradient using finite differencing:

∂f [i]
∂x[j]

(x, u) ≈
f(x + δj, u)[i] − f(x − δj, u)[i]

2δ
, where δj = [0,…,0, δ

⏟
j′￼th entry

,0,…0]⊤

18

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes output , where (x, u) x′￼, c

x′￼ = f(x, u), c = c(x, u)

Compute gradient using finite differencing:

∂f [i]
∂x[j]

(x, u) ≈
f(x + δj, u)[i] − f(x − δj, u)[i]

2δ
, where δj = [0,…,0, δ

⏟
j′￼th entry

,0,…0]⊤

To compute second derivative, e.g.,
∂2c

∂x[i]∂u[j]
(x, u)

18

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes output , where (x, u) x′￼, c

x′￼ = f(x, u), c = c(x, u)

Compute gradient using finite differencing:

∂f [i]
∂x[j]

(x, u) ≈
f(x + δj, u)[i] − f(x − δj, u)[i]

2δ
, where δj = [0,…,0, δ

⏟
j′￼th entry

,0,…0]⊤

To compute second derivative, e.g.,
∂2c

∂x[i]∂u[j]
(x, u)

First implement finite differencing procedure for , and then perform another finite differencing with
respect to on top of the first finite differencing procedure for

∂c/∂x[i]
u[j] ∂c/∂x[i]

18

Summary for local linearization approach

19

Summary for local linearization approach

1. Perform first order Taylor expansion on

and second order Taylor expansion on , both around the balancing point

f(x, u)
c(x, u) (x⋆, u⋆)

19

Summary for local linearization approach

1. Perform first order Taylor expansion on

and second order Taylor expansion on , both around the balancing point

f(x, u)
c(x, u) (x⋆, u⋆)

2. Force Hessians to be positive definite∇2
xc(x, u) & ∇2

uc(x, u)

19

Summary for local linearization approach

1. Perform first order Taylor expansion on

and second order Taylor expansion on , both around the balancing point

f(x, u)
c(x, u) (x⋆, u⋆)

2. Force Hessians to be positive definite∇2
xc(x, u) & ∇2

uc(x, u)

3. Leverage finite differences to approximate gradients and Hessians

19

Summary for local linearization approach

1. Perform first order Taylor expansion on

and second order Taylor expansion on , both around the balancing point

f(x, u)
c(x, u) (x⋆, u⋆)

2. Force Hessians to be positive definite∇2
xc(x, u) & ∇2

uc(x, u)

3. Leverage finite differences to approximate gradients and Hessians

4. The approximation is an (direct extension of) LQR, so we know how to compute the optimal policy

19

Today

20

• Feedback from last lecture

• Recap

• Locally linearization

• Iterative LQR

Limits of Local Linearization

21

Limits of Local Linearization

Local linearization can work if is very close to and

stays there with near-optimal (i.e., near-) actions

x0 x⋆

u⋆

21

Limits of Local Linearization

Local linearization can work if is very close to and

stays there with near-optimal (i.e., near-) actions

x0 x⋆

u⋆

But when is far away from or needs to be far from for any ,

first/second-order Taylor expansion is not accurate anymore

xh x⋆ uh u⋆ h

21

Idea of Iterative LQR

22

Idea of Iterative LQR

Instead of linearizing/quadratizing around , linearize/quadratize around some other (x⋆, u⋆) (x̄, ū)

22

Idea of Iterative LQR

Instead of linearizing/quadratizing around , linearize/quadratize around some other (x⋆, u⋆) (x̄, ū)
In fact, we can even linearize/quadratize around different points at each (x̄h, ūh) h

22

Idea of Iterative LQR

After linearization and quadratization at time around waypoint , , re-arranging terms gives:h (x̄h, ūh) ∀h

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [
H−1

∑
h=0

(x⊤
h Qhxh + u⊤

h Rhuh + u⊤
h Mhxh + x⊤

h qh + u⊤
h rh + ch)]

such that xh+1 = Ahxh + Bhuh + vh , x0 ∼ μ0 , uh = πh(xh)

Instead of linearizing/quadratizing around , linearize/quadratize around some other (x⋆, u⋆) (x̄, ū)
In fact, we can even linearize/quadratize around different points at each (x̄h, ūh) h

22

Idea of Iterative LQR

After linearization and quadratization at time around waypoint , , re-arranging terms gives:h (x̄h, ūh) ∀h

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [
H−1

∑
h=0

(x⊤
h Qhxh + u⊤

h Rhuh + u⊤
h Mhxh + x⊤

h qh + u⊤
h rh + ch)]

such that xh+1 = Ahxh + Bhuh + vh , x0 ∼ μ0 , uh = πh(xh)

Instead of linearizing/quadratizing around , linearize/quadratize around some other (x⋆, u⋆) (x̄, ū)
In fact, we can even linearize/quadratize around different points at each (x̄h, ūh) h

Time-dependent LQR problem: we know the solution

22

Idea of Iterative LQR

After linearization and quadratization at time around waypoint , , re-arranging terms gives:h (x̄h, ūh) ∀h

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [
H−1

∑
h=0

(x⊤
h Qhxh + u⊤

h Rhuh + u⊤
h Mhxh + x⊤

h qh + u⊤
h rh + ch)]

such that xh+1 = Ahxh + Bhuh + vh , x0 ∼ μ0 , uh = πh(xh)

Instead of linearizing/quadratizing around , linearize/quadratize around some other (x⋆, u⋆) (x̄, ū)
In fact, we can even linearize/quadratize around different points at each (x̄h, ūh) h

Question: how to choose the waypoints to get the best approximation/solution?(x̄h, ūh)

Time-dependent LQR problem: we know the solution

22

Iterative LQR (iLQR)
Recall ; denote x0 ∼ μ0 𝔼x0∼μ0

[x0] = x̄0

23

Iterative LQR (iLQR)

Initialize (how might we do this?)ū0
0, …, ū0

H−1,
Recall ; denote x0 ∼ μ0 𝔼x0∼μ0

[x0] = x̄0

23

Iterative LQR (iLQR)

Initialize (how might we do this?)ū0
0, …, ū0

H−1,
Generate nominal trajectory: x̄0

0 = x̄0, ū0
0, …, ū0

h, x̄0
h+1 = f(x̄0

h, ū0
h), …, x̄0

H−1, ū0
H−1

Recall ; denote x0 ∼ μ0 𝔼x0∼μ0
[x0] = x̄0

23

Iterative LQR (iLQR)

For i = 0,1,…

Initialize (how might we do this?)ū0
0, …, ū0

H−1,
Generate nominal trajectory: x̄0

0 = x̄0, ū0
0, …, ū0

h, x̄0
h+1 = f(x̄0

h, ū0
h), …, x̄0

H−1, ū0
H−1

Recall ; denote x0 ∼ μ0 𝔼x0∼μ0
[x0] = x̄0

23

Iterative LQR (iLQR)

For i = 0,1,…

Initialize (how might we do this?)ū0
0, …, ū0

H−1,
Generate nominal trajectory: x̄0

0 = x̄0, ū0
0, …, ū0

h, x̄0
h+1 = f(x̄0

h, ū0
h), …, x̄0

H−1, ū0
H−1

For each , linearize at :
h f(x, u) (x̄i
h, ūi

h)
fh(x, u) ≈ f(x̄i

h, ūi
h) + ∇x f(x̄i

h, ūi
h)(x − x̄i

h) + ∇u f(x̄i
h, ūi

h)(u − ūi
h)

Recall ; denote x0 ∼ μ0 𝔼x0∼μ0
[x0] = x̄0

23

Iterative LQR (iLQR)

For i = 0,1,…

Initialize (how might we do this?)ū0
0, …, ū0

H−1,
Generate nominal trajectory: x̄0

0 = x̄0, ū0
0, …, ū0

h, x̄0
h+1 = f(x̄0

h, ū0
h), …, x̄0

H−1, ū0
H−1

For each , linearize at :
h f(x, u) (x̄i
h, ūi

h)
fh(x, u) ≈ f(x̄i

h, ūi
h) + ∇x f(x̄i

h, ūi
h)(x − x̄i

h) + ∇u f(x̄i
h, ūi

h)(u − ūi
h)

Recall ; denote x0 ∼ μ0 𝔼x0∼μ0
[x0] = x̄0

23

Note that although true is stationary,
its approximation is not

f
fh

Iterative LQR (iLQR)

For i = 0,1,…

Initialize (how might we do this?)ū0
0, …, ū0

H−1,
Generate nominal trajectory: x̄0

0 = x̄0, ū0
0, …, ū0

h, x̄0
h+1 = f(x̄0

h, ū0
h), …, x̄0

H−1, ū0
H−1

For each , linearize at :
h f(x, u) (x̄i
h, ūi

h)
fh(x, u) ≈ f(x̄i

h, ūi
h) + ∇x f(x̄i

h, ūi
h)(x − x̄i

h) + ∇u f(x̄i
h, ūi

h)(u − ūi
h)

For each , quadratize at :
h ch(x, u) (x̄i
h, ūi

h)

ch(x, u) ≈
1
2 [x − x̄i

h

u − ūi
h]

⊤

[
∇2

xc(x̄i
h, ūi

h)∇2
x,uc(x̄i

h, ūi
h)

∇2
u,xc(x̄i

h, ūi
h)∇2

uc(x̄i
h, ūi

h)] [x − x̄i
h

u − ūi
h]

+[x − x̄i
h

u − ūi
h]

⊤

[∇xc(x̄i
h, ūi

h)
∇uc(x̄i

h, ūi
h)] + c(x̄i

h, ūi
h)

Recall ; denote x0 ∼ μ0 𝔼x0∼μ0
[x0] = x̄0

23

Note that although true is stationary,
its approximation is not

f
fh

Iterative LQR (iLQR)

For i = 0,1,…

Initialize (how might we do this?)ū0
0, …, ū0

H−1,
Generate nominal trajectory: x̄0

0 = x̄0, ū0
0, …, ū0

h, x̄0
h+1 = f(x̄0

h, ū0
h), …, x̄0

H−1, ū0
H−1

For each , linearize at :
h f(x, u) (x̄i
h, ūi

h)
fh(x, u) ≈ f(x̄i

h, ūi
h) + ∇x f(x̄i

h, ūi
h)(x − x̄i

h) + ∇u f(x̄i
h, ūi

h)(u − ūi
h)

For each , quadratize at :
h ch(x, u) (x̄i
h, ūi

h)

ch(x, u) ≈
1
2 [x − x̄i

h

u − ūi
h]

⊤

[
∇2

xc(x̄i
h, ūi

h)∇2
x,uc(x̄i

h, ūi
h)

∇2
u,xc(x̄i

h, ūi
h)∇2

uc(x̄i
h, ūi

h)] [x − x̄i
h

u − ūi
h]

+[x − x̄i
h

u − ūi
h]

⊤

[∇xc(x̄i
h, ūi

h)
∇uc(x̄i

h, ūi
h)] + c(x̄i

h, ūi
h)

Formulate time-dependent LQR and compute its optimal control πi
0, …, πi

H−1

Recall ; denote x0 ∼ μ0 𝔼x0∼μ0
[x0] = x̄0

23

Note that although true is stationary,
its approximation is not

f
fh

Iterative LQR (iLQR)

For i = 0,1,…

Initialize (how might we do this?)ū0
0, …, ū0

H−1,
Generate nominal trajectory: x̄0

0 = x̄0, ū0
0, …, ū0

h, x̄0
h+1 = f(x̄0

h, ū0
h), …, x̄0

H−1, ū0
H−1

For each , linearize at :
h f(x, u) (x̄i
h, ūi

h)
fh(x, u) ≈ f(x̄i

h, ūi
h) + ∇x f(x̄i

h, ūi
h)(x − x̄i

h) + ∇u f(x̄i
h, ūi

h)(u − ūi
h)

For each , quadratize at :
h ch(x, u) (x̄i
h, ūi

h)

ch(x, u) ≈
1
2 [x − x̄i

h

u − ūi
h]

⊤

[
∇2

xc(x̄i
h, ūi

h)∇2
x,uc(x̄i

h, ūi
h)

∇2
u,xc(x̄i

h, ūi
h)∇2

uc(x̄i
h, ūi

h)] [x − x̄i
h

u − ūi
h]

+[x − x̄i
h

u − ūi
h]

⊤

[∇xc(x̄i
h, ūi

h)
∇uc(x̄i

h, ūi
h)] + c(x̄i

h, ūi
h)

Formulate time-dependent LQR and compute its optimal control πi
0, …, πi

H−1
Set new nominal trajectory: x̄i+1

0 = x̄0, ūi+1
h = πi

h(x̄
i+1
h), and x̄i+1

h+1 = f(x̄i+1
h , ūi+1

h)

Recall ; denote x0 ∼ μ0 𝔼x0∼μ0
[x0] = x̄0

23

Note that although true is stationary,
its approximation is not

f
fh

Iterative LQR (iLQR)

For i = 0,1,…

Initialize (how might we do this?)ū0
0, …, ū0

H−1,
Generate nominal trajectory: x̄0

0 = x̄0, ū0
0, …, ū0

h, x̄0
h+1 = f(x̄0

h, ū0
h), …, x̄0

H−1, ū0
H−1

For each , linearize at :
h f(x, u) (x̄i
h, ūi

h)
fh(x, u) ≈ f(x̄i

h, ūi
h) + ∇x f(x̄i

h, ūi
h)(x − x̄i

h) + ∇u f(x̄i
h, ūi

h)(u − ūi
h)

For each , quadratize at :
h ch(x, u) (x̄i
h, ūi

h)

ch(x, u) ≈
1
2 [x − x̄i

h

u − ūi
h]

⊤

[
∇2

xc(x̄i
h, ūi

h)∇2
x,uc(x̄i

h, ūi
h)

∇2
u,xc(x̄i

h, ūi
h)∇2

uc(x̄i
h, ūi

h)] [x − x̄i
h

u − ūi
h]

+[x − x̄i
h

u − ūi
h]

⊤

[∇xc(x̄i
h, ūi

h)
∇uc(x̄i

h, ūi
h)] + c(x̄i

h, ūi
h)

Formulate time-dependent LQR and compute its optimal control πi
0, …, πi

H−1
Set new nominal trajectory: x̄i+1

0 = x̄0, ūi+1
h = πi

h(x̄
i+1
h), and x̄i+1

h+1 = f(x̄i+1
h , ūi+1

h)

Recall ; denote x0 ∼ μ0 𝔼x0∼μ0
[x0] = x̄0

Note this is true , not approximationf23

Note that although true is stationary,
its approximation is not

f
fh

Practical Considerations of Iterative LQR:

24

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

24

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

2. Still want to use finite differences to approximate derivatives

24

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

2. Still want to use finite differences to approximate derivatives

24

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls ūi
0, …, ūi

H−1, ū0, …, ūH−1

2. Still want to use finite differences to approximate derivatives

24

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls ūi
0, …, ūi

H−1, ū0, …, ūH−1

We want to find such that has the smallest cost, α ∈ [0,1] ūi+1
h := α ūi

h + (1 − α)ūh

2. Still want to use finite differences to approximate derivatives

24

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls ūi
0, …, ūi

H−1, ū0, …, ūH−1

We want to find such that has the smallest cost, α ∈ [0,1] ūi+1
h := α ūi

h + (1 − α)ūh

min
α∈[0,1]

H−1

∑
h=0

c(xh, ūi+1
h)

s.t. xh+1 = f(xh, ūi+1
h), ūi+1

h = αūi
h + (1 − α)ūh, x0 = x̄0

2. Still want to use finite differences to approximate derivatives

24

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls ūi
0, …, ūi

H−1, ū0, …, ūH−1

We want to find such that has the smallest cost, α ∈ [0,1] ūi+1
h := α ūi

h + (1 − α)ūh

min
α∈[0,1]

H−1

∑
h=0

c(xh, ūi+1
h)

s.t. xh+1 = f(xh, ūi+1
h), ūi+1

h = αūi
h + (1 − α)ūh, x0 = x̄0

2. Still want to use finite differences to approximate derivatives

Why is this tractable?
24

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls ūi
0, …, ūi

H−1, ū0, …, ūH−1

We want to find such that has the smallest cost, α ∈ [0,1] ūi+1
h := α ūi

h + (1 − α)ūh

min
α∈[0,1]

H−1

∑
h=0

c(xh, ūi+1
h)

s.t. xh+1 = f(xh, ūi+1
h), ūi+1

h = αūi
h + (1 − α)ūh, x0 = x̄0

2. Still want to use finite differences to approximate derivatives

Why is this tractable?
24

because it is 1-dimensional!

Example:

2-d car navigation

Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

25

Example:

2-d car navigation

Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

25

Summary of LQR extended to nonlinear control:

26

Summary of LQR extended to nonlinear control:

Local Linearization:
Approximate an LQR at the balance (goal) position and then solve the approximated LQR(x⋆, u⋆)

26

Summary of LQR extended to nonlinear control:

Local Linearization:
Approximate an LQR at the balance (goal) position and then solve the approximated LQR(x⋆, u⋆)

26

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Summary of LQR extended to nonlinear control:

Local Linearization:
Approximate an LQR at the balance (goal) position and then solve the approximated LQR(x⋆, u⋆)

Iterative LQR
Iterate between:

(1) forming an LQR around the current nominal trajectory,

(2) computing a new nominal trajectory using the optimal policy of the LQR

26

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Summary of LQR extended to nonlinear control:

Local Linearization:
Approximate an LQR at the balance (goal) position and then solve the approximated LQR(x⋆, u⋆)

Iterative LQR
Iterate between:

(1) forming an LQR around the current nominal trajectory,

(2) computing a new nominal trajectory using the optimal policy of the LQR

26

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Computes a locally optimal (in policy space) solution for a large class of nonlinear control problems

Today

27

• Feedback from last lecture

• Recap

• Locally linearization

• Iterative LQR

Summary:

Feedback:

bit.ly/3RHtlxy

28

Attendance: 
bit.ly/3RcTC9T

Local linearization

•Allows us to approximately optimally control any system near its optimum

Iterative LQR

•Uses LQR approximation to find locally optimal nonlinear control solution

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

