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Today

• Feedback from last lecture


• Recap


• Locally linearization


• Iterative LQR
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Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2. Ask class questions
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arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [x⊤
HQxH +

H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh)]
such that xh+1 = Axh + Buh + wh , x0 ∼ μ0 , uh = πh(xh) , wh ∼ N(0,σ2I)

Problem Statement (finite horizon, time homogeneous):
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arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [x⊤
HQxH +

H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh)]
such that xh+1 = Axh + Buh + wh , x0 ∼ μ0 , uh = πh(xh) , wh ∼ N(0,σ2I)

Problem Statement (finite horizon, time homogeneous):

• States 

• Actions/controls 

• Additive noise 

• Dynamics linear with state coefficient matrix  and action 

coefficient matrix 

• Cost function quadratic with positive semidefinite state coefficient matrix 

 and positive semidefinite action coefficient matrix 

xh ∈ ℝd

uh ∈ ℝk

wh ∼ 𝒩(0,σ2I)
A ∈ ℝd×d

B ∈ ℝd×k

Q ∈ ℝd×d R ∈ ℝk×k
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Recap: LQR Optimal Control

6

V⋆
H(x) = x⊤Qx, define PH = Q, pH = 0,

We showed that , where: V⋆
h (x) = x⊤Phx + ph

Ph = Q + A⊤Ph+1A − A⊤Ph+1B(R + B⊤Ph+1B)−1B⊤Ph+1A

ph = tr (σ2Ph+1) + ph+1

Along the way, we also showed that , where: π⋆
h (x) = − Khx

Kh = (R + B⊤Ph+1B)−1B⊤Ph+1A

Optimal policy has nothing to do with initial distribution  or the noise ! μ0 σ2
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arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [x⊤
HQHxH +

H−1

∑
h=0

(x⊤
h Qhxh + u⊤

h Rhuh)]
such that xh+1 = Ahxh + Bhuh + wh , x0 ∼ μ0 , uh = πh(xh) , wh ∼ N(0,σ2I)



Time-Dependent Costs and Dynamics

Exact same derivation, only thing that changes is the Ricatti equation:
Ph = Qh + A⊤

h Ph+1Ah − A⊤
h Ph+1Bh(Rh + B⊤

h Ph+1Bh)−1B⊤
h Ph+1Ah

7

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [x⊤
HQHxH +

H−1

∑
h=0

(x⊤
h Qhxh + u⊤

h Rhuh)]
such that xh+1 = Ahxh + Bhuh + wh , x0 ∼ μ0 , uh = πh(xh) , wh ∼ N(0,σ2I)



More General Quadratic Cost Function

8



More General Quadratic Cost Function

8

arg min
π0,…,πH−1:ℝd→ℝk
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More General Quadratic Cost Function

Derivation is quite similar, just more algebra!
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Tracking a Predefined Trajectory

Expanding all the quadratic terms produces a special case of the previous slide!
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So far: many extensions to LQR essentially reduce to the same problem



Beyond LQR
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But what about problems with nonlinear dynamics and/or nonquadratic costs?

So far: many extensions to LQR essentially reduce to the same problem
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• Locally linearization


• Iterative LQR



Setting for Local Linearization Approach:

Goal: stabilizing around the 

goal (x = x⋆, u = u⋆)
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Setting for Local Linearization Approach:

minimize 𝔼π[
H−1

∑
h=0

c(xh, uh)]
s.t.  xh+1 = f(xh, uh), uh = π(xh), x0 ∼ μ0

Goal: stabilizing around the 

goal (x = x⋆, u = u⋆)

Assumptions: 

1. We have black-box access to : f & c

 and  have unknown analytical form 

but can be queried at any  to give  


where 

f c
(x, u) x′￼, c,

x′￼ = f(x, u), c = c(x, u)

2.  is differentiable  
and  is twice differentiable

f
c

∇x f(x, u), ∇u f(x, u), ∇xc(x, u), ∇uc(x, u),
∇2

xc(x, u), ∇2
uc(x, u), ∇2

x,uc(x, u)
No noise! No terminal cost !ch(xH) 12

z
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Assume that all possible initial states  are close to  and can be kept there with actions close to x0 x⋆ u⋆

We can approximate  locally with a first-order Taylor expansion:f(x, u)

f(x, u) ≈ f(x⋆, u⋆) + ∇x f(x⋆, u⋆)(x − x⋆) + ∇u f(x⋆, u⋆)(u − u⋆)

where: 



∇x f(x, u) ∈ ℝd×d, ∇x f(x, u)[i, j] =
∂f[i]
∂x[ j]

(x, u)

∇u f(x, u) ∈ ℝd×k, ∇u f(x, u)[i, j] =
∂f[i]
∂u[ j]

(x, u)

13
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(u − u⋆)⊤ ∇2
uc(x⋆, u⋆)(u − u⋆) + (x − x⋆)⊤ ∇2

x,uc(x, u)(u − u⋆)

∇xc(x, u) ∈ ℝd, ∇xc(x, u)[i] =
∂c

∂x[i]
(x, u),

∇uc(x, u) ∈ ℝk, ∇uc(x, u)[i] =
∂c

∂u[i]
(x, u),

∇2
xc(x, u) ∈ ℝd×d, ∇2

xc(x, u)[i, j] =
∂2c

∂x[i]∂x[ j]
(x, u),

∇2
x,uc(x, u) ∈ ℝd×k, ∇2

x,uc(x, u)[i, j] =
∂2c

∂x[i]∂u[ j]
(x, u)
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Local Linearization: Putting it all Together
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Local Linearization: Putting it all Together

Rearranging terms, we get back to the following formulation:

arg min
π0,…,πH−1:ℝd→ℝk

𝔼 [
H−1

∑
h=0

(x⊤
h Qxh + u⊤

h Ruh + u⊤
h Mxh + x⊤

h q + u⊤
h r + c)]

such that xh+1 = Axh + Buh + v , x0 ∼ μ0 , uh = πh(xh)
Special case of one of the LQR extensions!
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Summary of Local Linearization So Far:

For tasks such as balancing near goal state ,

we can perform first order Taylor expansion on , 


and second order Taylor expansion on  around the balancing point 
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we can perform first order Taylor expansion on , 


and second order Taylor expansion on  around the balancing point 

(x⋆, u⋆)
f(x, u)

c(x, u) (x⋆, u⋆)

Last step: checking some practical issues
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Locally Convexifying the Cost Function

Note that  might not even be convex;c(x, u)

So,  may not be positive definite∇2
xc(x⋆, u⋆) & ∇2

uc(x⋆, u⋆)

In practice, we force them to be positive definite:

Given a symmetric matrix , 

we compute the eigen-decomposition , and we approximate  as 


 


for some small 

W ∈ ℝd×d

W =
d

∑
i=1

σiziz⊤
i W

W ≈
d

∑
i=1

1(σi > 0)σiziz⊤
i + λI,

λ > 0

17

What can we do?



Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes output , where (x, u) x′￼, c

x′￼ = f(x, u), c = c(x, u)
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Computing Approximate Derivatives

Recall our assumption: we only have black-box access to : f & c
i.e., unknown analytical form, but given any , the black boxes output , where (x, u) x′￼, c

x′￼ = f(x, u), c = c(x, u)

Compute gradient using finite differencing:

∂f [i]
∂x[ j]

(x, u) ≈
f(x + δj, u)[i] − f(x − δj, u)[i]

2δ
, where δj = [0,…,0, δ

⏟
j′￼th entry

,0,…0]⊤

To compute second derivative, e.g., 
∂2c

∂x[i]∂u[ j]
(x, u)

First implement finite differencing procedure for , and then perform another finite differencing with 
respect to  on top of the first finite differencing procedure for 

∂c/∂x[i]
u[ j] ∂c/∂x[i]

18



Summary for local linearization approach

19



Summary for local linearization approach

1. Perform first order Taylor expansion on 

and second order Taylor expansion on , both around the balancing point 

f(x, u)
c(x, u) (x⋆, u⋆)

19



Summary for local linearization approach

1. Perform first order Taylor expansion on 

and second order Taylor expansion on , both around the balancing point 

f(x, u)
c(x, u) (x⋆, u⋆)

2. Force Hessians  to be positive definite∇2
xc(x, u) & ∇2

uc(x, u)

19



Summary for local linearization approach

1. Perform first order Taylor expansion on 

and second order Taylor expansion on , both around the balancing point 

f(x, u)
c(x, u) (x⋆, u⋆)

2. Force Hessians  to be positive definite∇2
xc(x, u) & ∇2

uc(x, u)

3. Leverage finite differences to approximate gradients and Hessians

19



Summary for local linearization approach

1. Perform first order Taylor expansion on 

and second order Taylor expansion on , both around the balancing point 

f(x, u)
c(x, u) (x⋆, u⋆)

2. Force Hessians  to be positive definite∇2
xc(x, u) & ∇2

uc(x, u)

3. Leverage finite differences to approximate gradients and Hessians

4. The approximation is an (direct extension of) LQR, so we know how to compute the optimal policy

19
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Limits of Local Linearization
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Limits of Local Linearization

Local linearization can work if  is very close to  and 

stays there with near-optimal (i.e., near- ) actions

x0 x⋆

u⋆
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Limits of Local Linearization

Local linearization can work if  is very close to  and 

stays there with near-optimal (i.e., near- ) actions

x0 x⋆

u⋆

But when  is far away from  or  needs to be far from  for any , 

first/second-order Taylor expansion is not accurate anymore

xh x⋆ uh u⋆ h

21
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Idea of Iterative LQR

Instead of linearizing/quadratizing around , linearize/quadratize around some other (x⋆, u⋆) (x̄, ū)
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Idea of Iterative LQR

Instead of linearizing/quadratizing around , linearize/quadratize around some other (x⋆, u⋆) (x̄, ū)
In fact, we can even linearize/quadratize around different points  at each (x̄h, ūh) h
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Idea of Iterative LQR

After linearization and quadratization at time  around waypoint , , re-arranging terms gives:h (x̄h, ūh) ∀h

arg min
π0,…,πH−1:ℝd→ℝk
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Iterative LQR (iLQR)
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h, x̄0
h+1 = f(x̄0

h, ū0
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h]

⊤

[
∇2

xc(x̄i
h, ūi
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h]

⊤

[ ∇xc(x̄i
h, ūi
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0, …, ū0
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h)

For each , quadratize  at : 
h ch(x, u) (x̄i
h, ūi
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because it is 1-dimensional!



Example: 
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Cost function is designed such that it gets to the goal without colliding with obstacles (in red)
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Computes an approximately globally optimal solution for a small class of nonlinear control problems

Computes a locally optimal (in policy space) solution for a large class of nonlinear control problems



Today

27

• Feedback from last lecture


• Recap


• Locally linearization


• Iterative LQR



Summary:

Feedback: 

bit.ly/3RHtlxy

28

Attendance: 
bit.ly/3RcTC9T

Local linearization

•Allows us to approximately optimally control any system near its optimum


Iterative LQR

•Uses LQR approximation to find locally optimal nonlinear control solution

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

