From LQR to Nonlinear Control

Lucas Janson and Sham Kakade **CS/Stat 184: Introduction to Reinforcement Learning Fall 2023**

- Feedback from last lecture
- Recap
- Locally linearization
- Iterative LQR

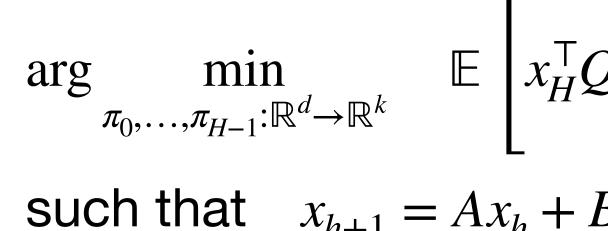
Feedback from feedback forms

- 1. Thank you to everyone who filled out the forms!
- 2. Ask class questions

- Recap
- Locally linearization
- Iterative LQR

Recap: LQR

Problem Statement (finite horizon, time homogeneous):

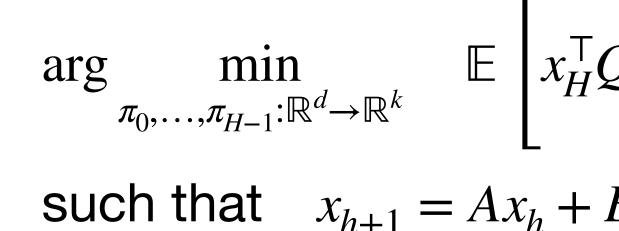


$$Qx_{H} + \sum_{h=0}^{H-1} \left(x_{h}^{\mathsf{T}}Qx_{h} + u_{h}^{\mathsf{T}}Ru_{h} \right)$$

such that $x_{h+1} = Ax_h + Bu_h + w_h$, $x_0 \sim \mu_0$, $u_h = \pi_h(x_h)$, $w_h \sim N(0, \sigma^2 I)$

Recap: LQR

Problem Statement (finite horizon, time homogeneous):



- States $x_h \in \mathbb{R}^d$
- Actions/controls $u_h \in \mathbb{R}^k$
- Additive noise $w_h \sim \mathcal{N}(0, \sigma^2 I)$
- coefficient matrix $B \in \mathbb{R}^{d \times k}$

$$Qx_H + \sum_{h=0}^{H-1} \left(x_h^{\mathsf{T}} Q x_h + u_h^{\mathsf{T}} R u_h \right)$$

such that $x_{h+1} = Ax_h + Bu_h + w_h$, $x_0 \sim \mu_0$, $u_h = \pi_h(x_h)$, $w_h \sim N(0, \sigma^2 I)$

• Dynamics linear with state coefficient matrix $A \in \mathbb{R}^{d \times d}$ and action

 Cost function quadratic with positive semidefinite state coefficient matrix $Q \in \mathbb{R}^{d \times d}$ and positive semidefinite action coefficient matrix $R \in \mathbb{R}^{k \times k}$

Recap: LQR Optimal Control

Recap: LQR Optimal Control

 $V_H^{\star}(x) = x^{\top}Qx$, define $P_H = Q, p_H = 0$,

$$V_H^{\star}(x) = x^{\top} Q x,$$

We showed that $V_h^{\star}(x) = x^{\top} P_h x + p_h$, where: $P_{h} = Q + A^{\mathsf{T}} P_{h+1} A - A^{\mathsf{T}} P_{h+1} B (R + B^{\mathsf{T}} P_{h+1} B)^{-1} B^{\mathsf{T}} P_{h+1} A$ $p_h = \text{tr}(\sigma^2 P_{h+1}) + p_{h+1}$

Recap: LQR Optimal Control

define $P_H = Q, p_H = 0$,

$$V_H^{\star}(x) = x^{\mathsf{T}} Q x,$$

We showed that V_h^{\star} $P_h = Q + A^{\mathsf{T}} P_{h+1} A - A^{\mathsf{T}}$ $p_h = \text{tr}(\sigma^2 P_{h+1}) + p_{h+1}$

$$K_{h} = (R + B^{\top}P_{h+1}B)^{-1}B^{\top}P_{h+1}A$$

Recap: LQR Optimal Control

define $P_H = Q, p_H = 0$,

$$f(x) = x^{\top}P_{h}x + p_{h}$$
, where:
 ${}^{\top}P_{h+1}B(R + B^{\top}P_{h+1}B)^{-1}B^{\top}P_{h+1}A$

Along the way, we also showed that $\pi_h^{\star}(x) = -K_h x$, where:

$$V_H^{\star}(x) = x^{\mathsf{T}} Q x,$$

We showed that
$$V_h^{\star}(x) = x^{\top}P_h x + p_h$$
, where:
 $P_h = Q + A^{\top}P_{h+1}A - A^{\top}P_{h+1}B(R + B^{\top}P_{h+1}B)^{-1}B^{\top}P_{h+1}A$
 $p_h = \operatorname{tr}(\sigma^2 P_{h+1}) + p_{h+1}$

$$K_{h} = (R + B^{\top} P_{h+1} B)^{-1} B^{\top} P_{h+1} A$$

Optimal policy has nothing to do with initial distribution μ_0 or the noise σ^2 !

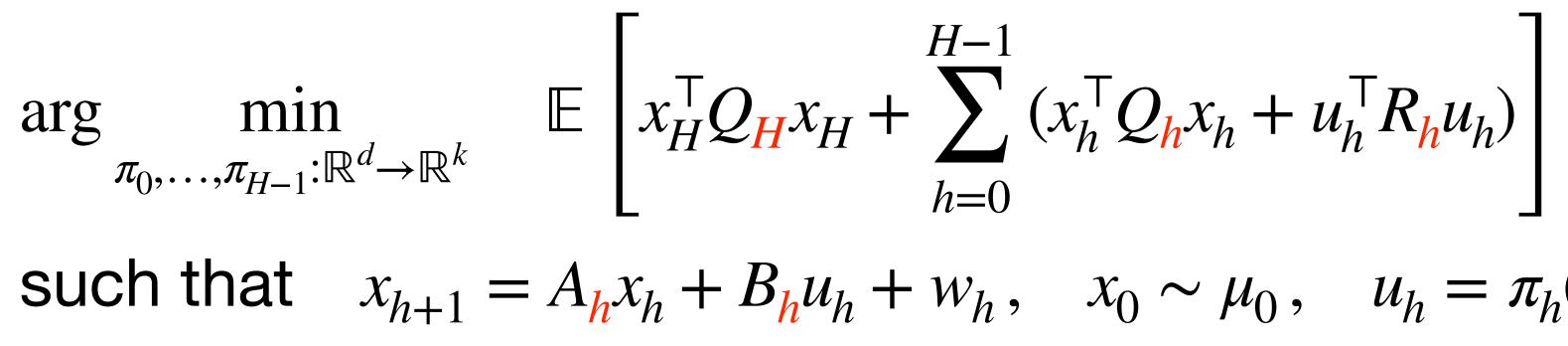
Recap: LQR Optimal Control

define $P_H = Q, p_H = 0$,

Along the way, we also showed that $\pi_h^{\star}(x) = -K_h x$, where:

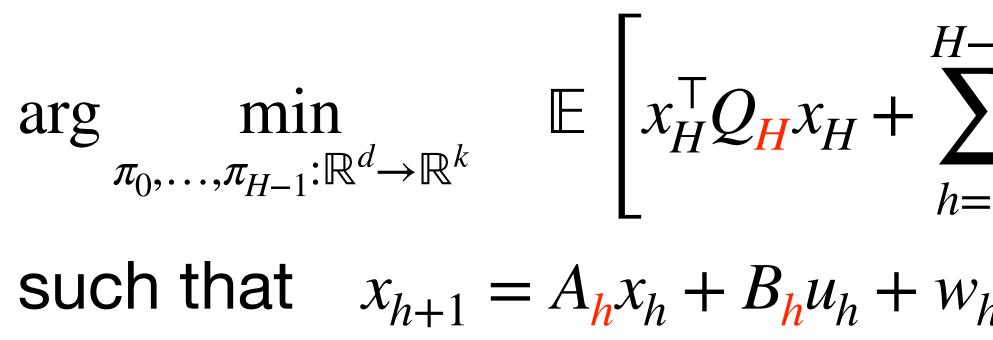
Time-Dependent Costs and Dynamics

Time-Dependent Costs and Dynamics



such that $x_{h+1} = A_h x_h + B_h u_h + w_h$, $x_0 \sim \mu_0$, $u_h = \pi_h(x_h)$, $w_h \sim N(0, \sigma^2 I)$

Time-Dependent Costs and Dynamics



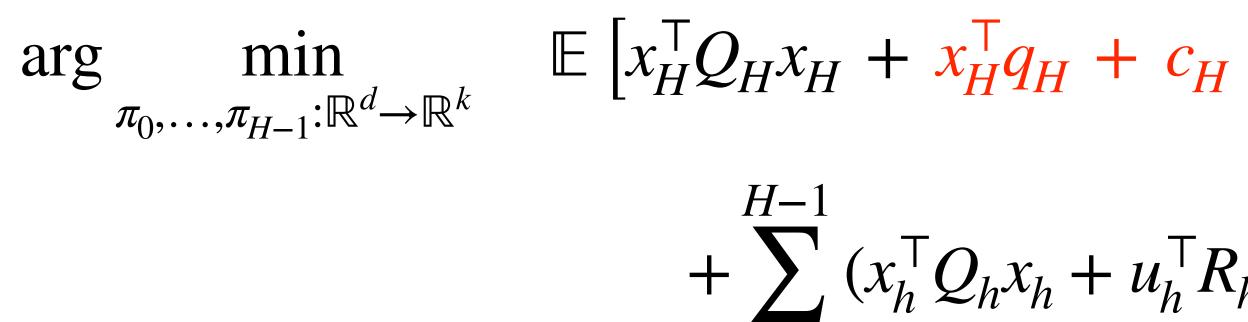
$$\sum_{h=0}^{H-1} \left(x_h^{\mathsf{T}} Q_h x_h + u_h^{\mathsf{T}} R_h u_h \right)$$

$$w_h, \quad x_0 \sim \mu_0, \quad u_h = \pi_h(x_h), \quad w_h \sim N(0, \sigma^2 I)$$

Exact same derivation, only thing that changes is the Ricatti equation: $P_{h} = Q_{h} + A_{h}^{\top} P_{h+1} A_{h} - A_{h}^{\top} P_{h+1} B_{h} (R_{h} + B_{h}^{\top} P_{h+1} B_{h})^{-1} B_{h}^{\top} P_{h+1} A_{h}$

More General Quadratic Cost Function

More General Quadratic Cost Function

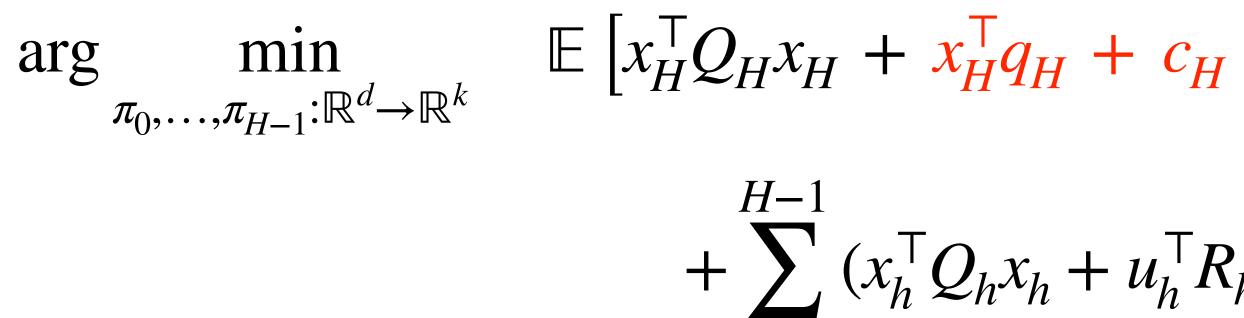


such that $x_{h+1} = A_h x_h + B_h u_h + v_h + w_h$

h=0

٦

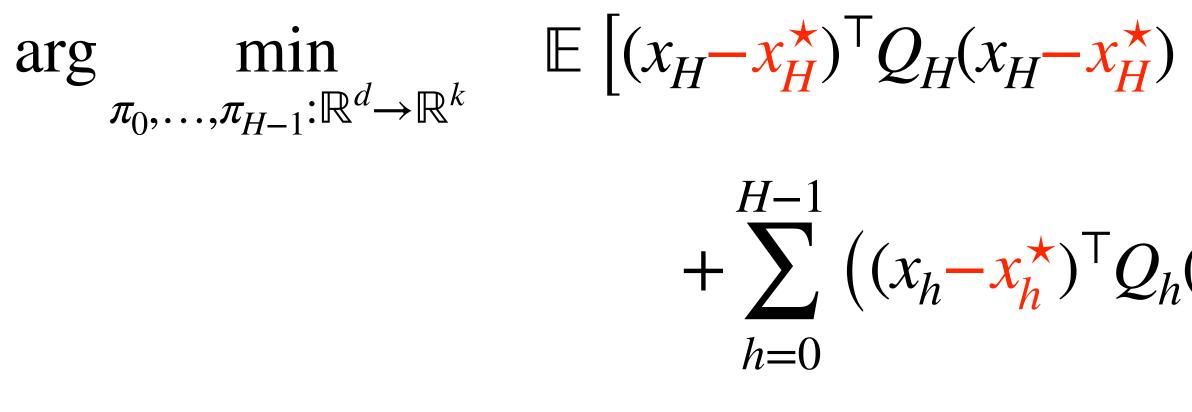
More General Quadratic Cost Function



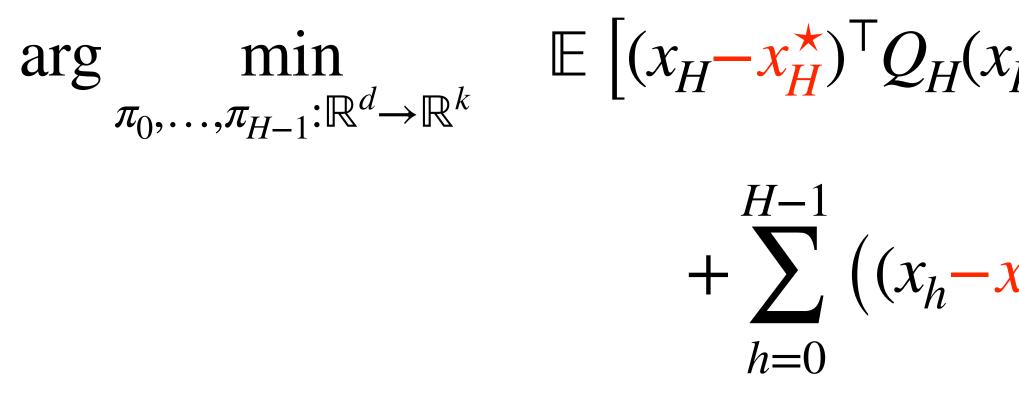
such that $x_{h+1} = A_h x_h + B_h u_h + v_h + w$

h=0

Derivation is quite similar, just more algebra!



 $+\sum_{h=0}^{H-1} \left((x_h - x_h^{\star})^{\mathsf{T}} Q_h (x_h - x_h^{\star}) + (u_h - u_h^{\star})^{\mathsf{T}} R_h (u_h - u_h^{\star}) \right) \right]$ such that $x_{h+1} = A_h x_h + B_h u_h + w_h$, $x_0 \sim \mu_0$, $u_h = \pi_h(x_h)$, $w_h \sim N(0, \sigma^2 I)$



such that $x_{h+1} = A_h x_h + B_h u_h + w_h$

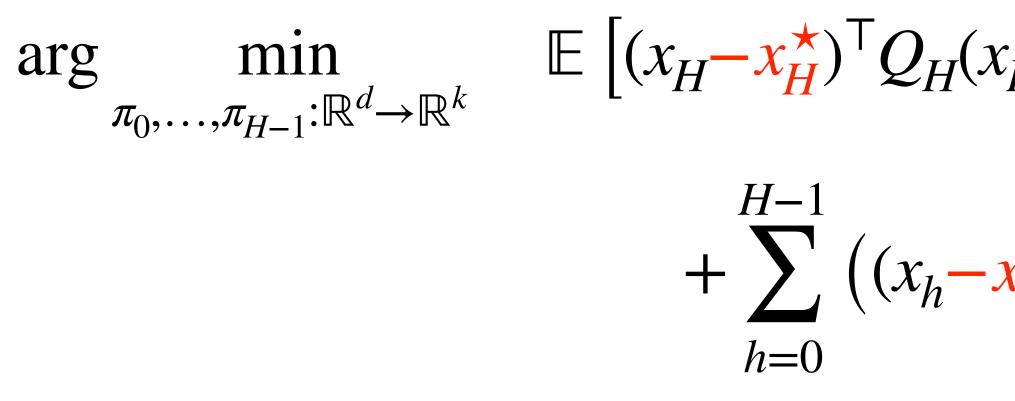
Can you see why we already know how to solve this?

$$(x_H - x_H^{\star})$$

$$(x_h^{\star})^{\top} Q_h (x_h - x_h^{\star}) + (u_h - u_h^{\star})^{\top} R_h (u_h - u_h^{\star}))$$

, $x_0 \sim \mu_0$, $u_h = \pi_h (x_h)$, $w_h \sim N(0, \sigma^2 I)$

٦



such that $x_{h+1} = A_h x_h + B_h u_h + w_h$

Can you see why we already know how to solve this? Expanding all the quadratic terms produces a special case of the previous slide!

$$(x_H - x_H^{\star})$$

$$(x_h^{\star})^{\mathsf{T}} Q_h (x_h - x_h^{\star}) + (u_h - u_h^{\star})^{\mathsf{T}} R_h (u_h - u_h^{\star}))$$

, $x_0 \sim \mu_0$, $u_h = \pi_h (x_h)$, $w_h \sim N(0, \sigma^2 I)$

Beyond LQR

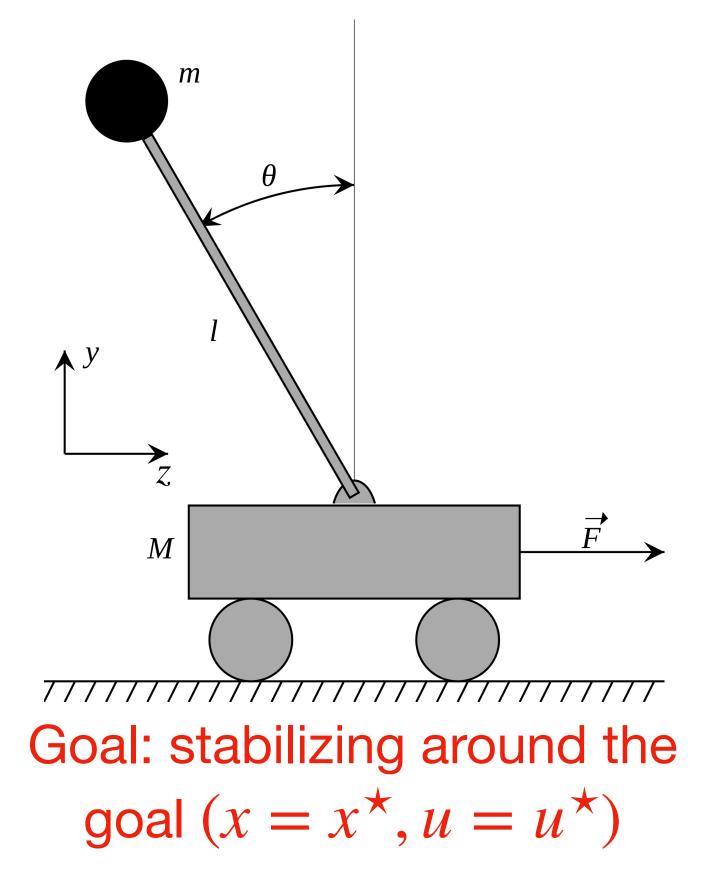
Beyond LQR

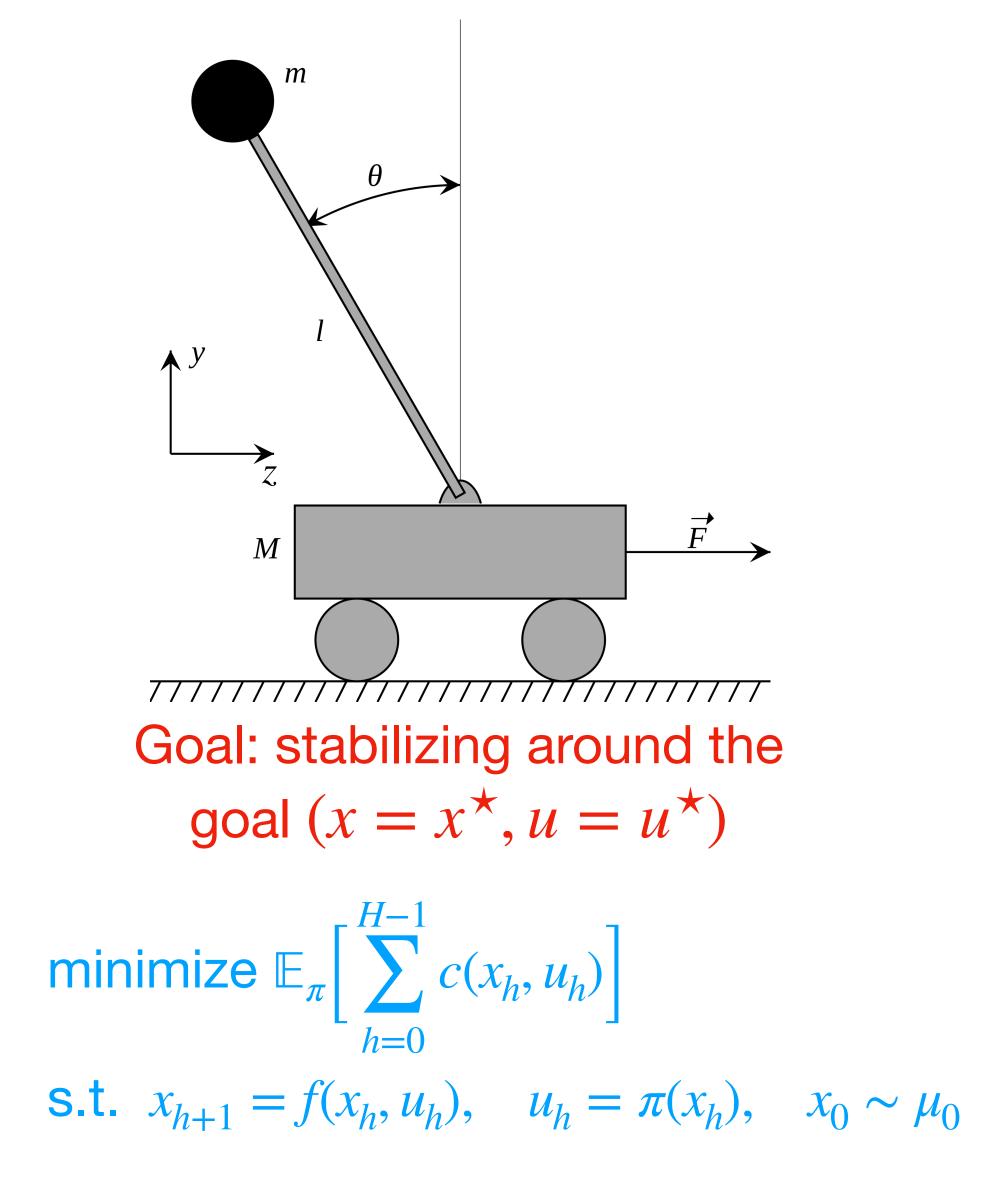
So far: many extensions to LQR essentially reduce to the same problem

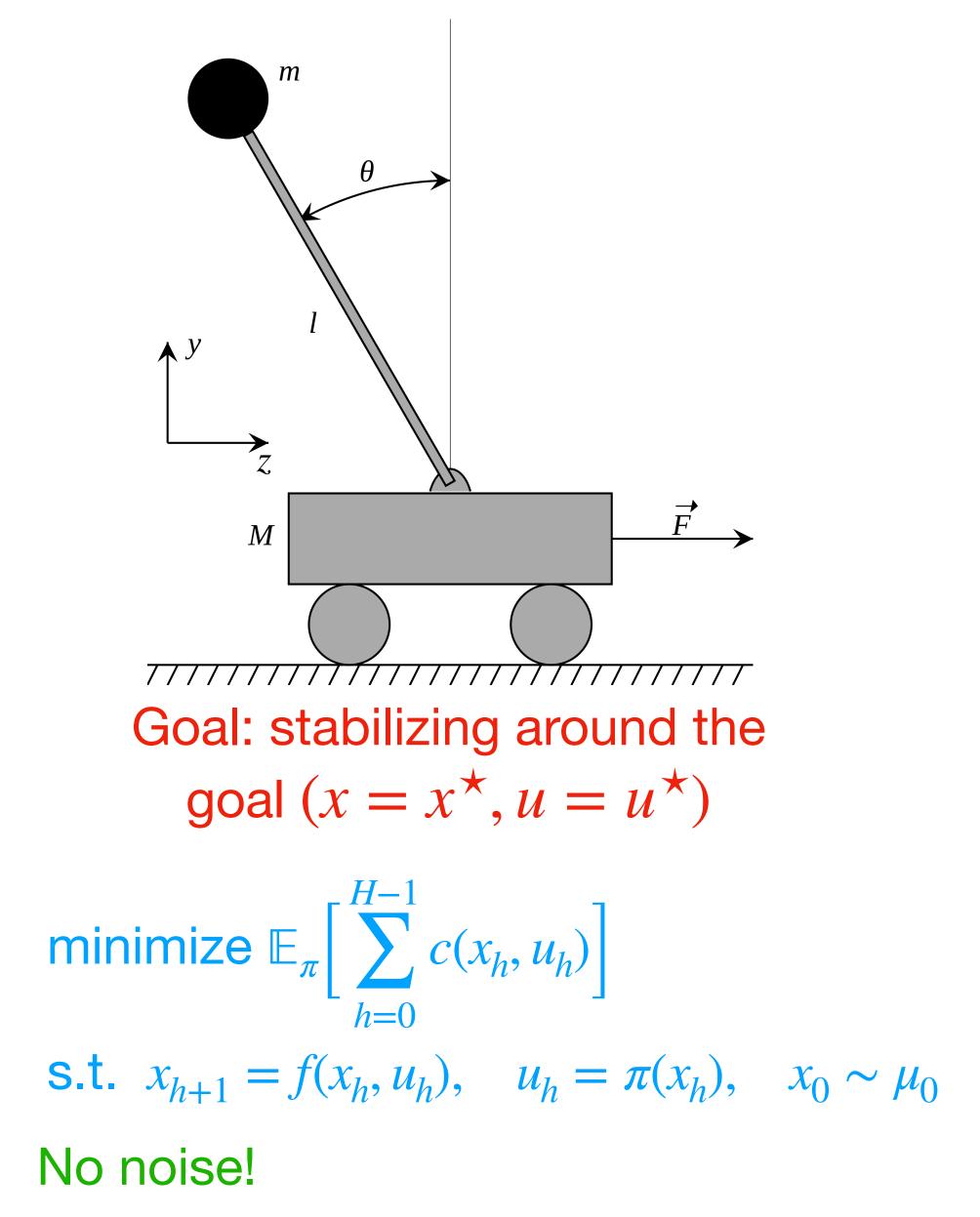
Beyond LQR

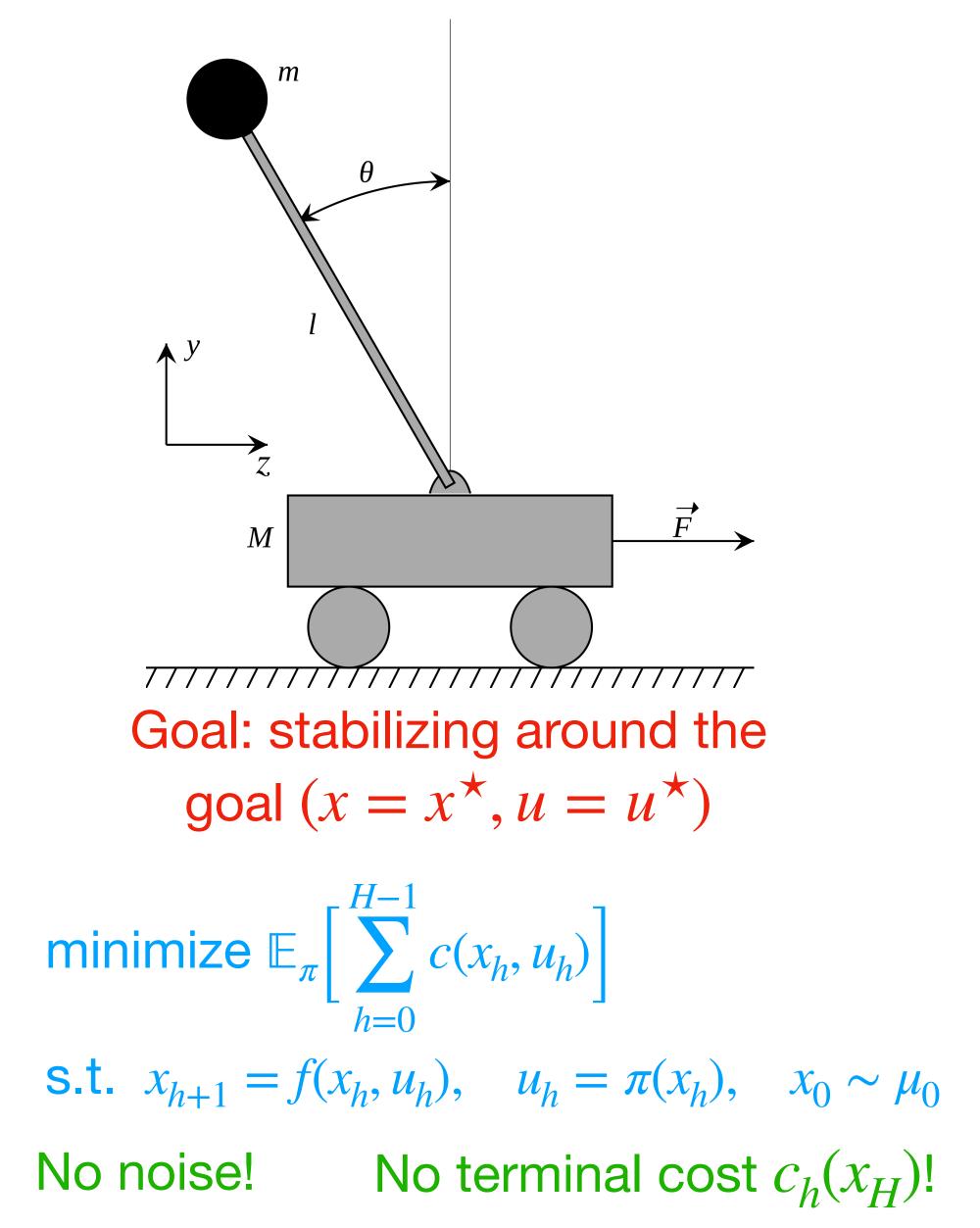
So far: many extensions to LQR essentially reduce to the same problem But what about problems with nonlinear dynamics and/or nonquadratic costs?

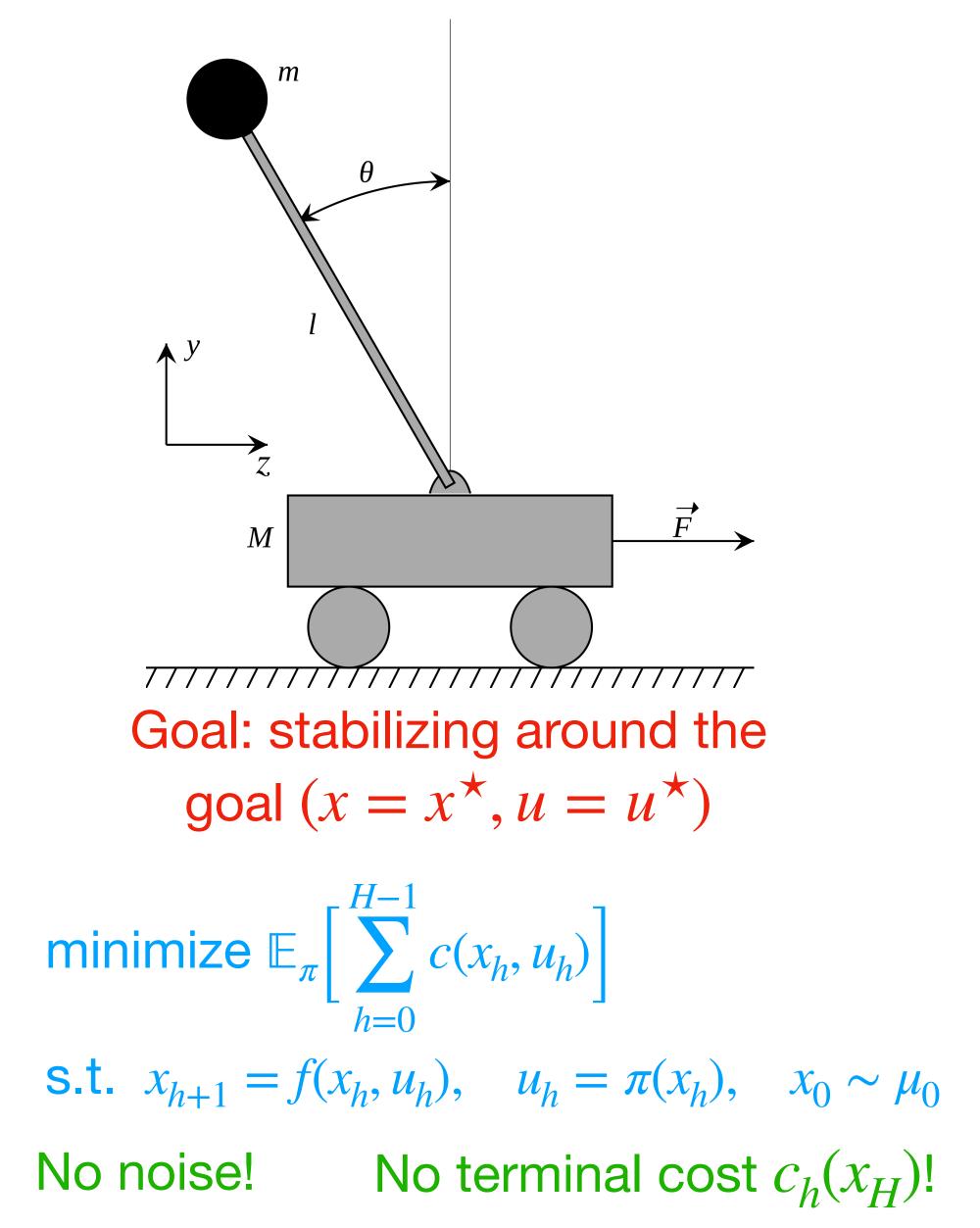
- Recap
 - Locally linearization
 - Iterative LQR





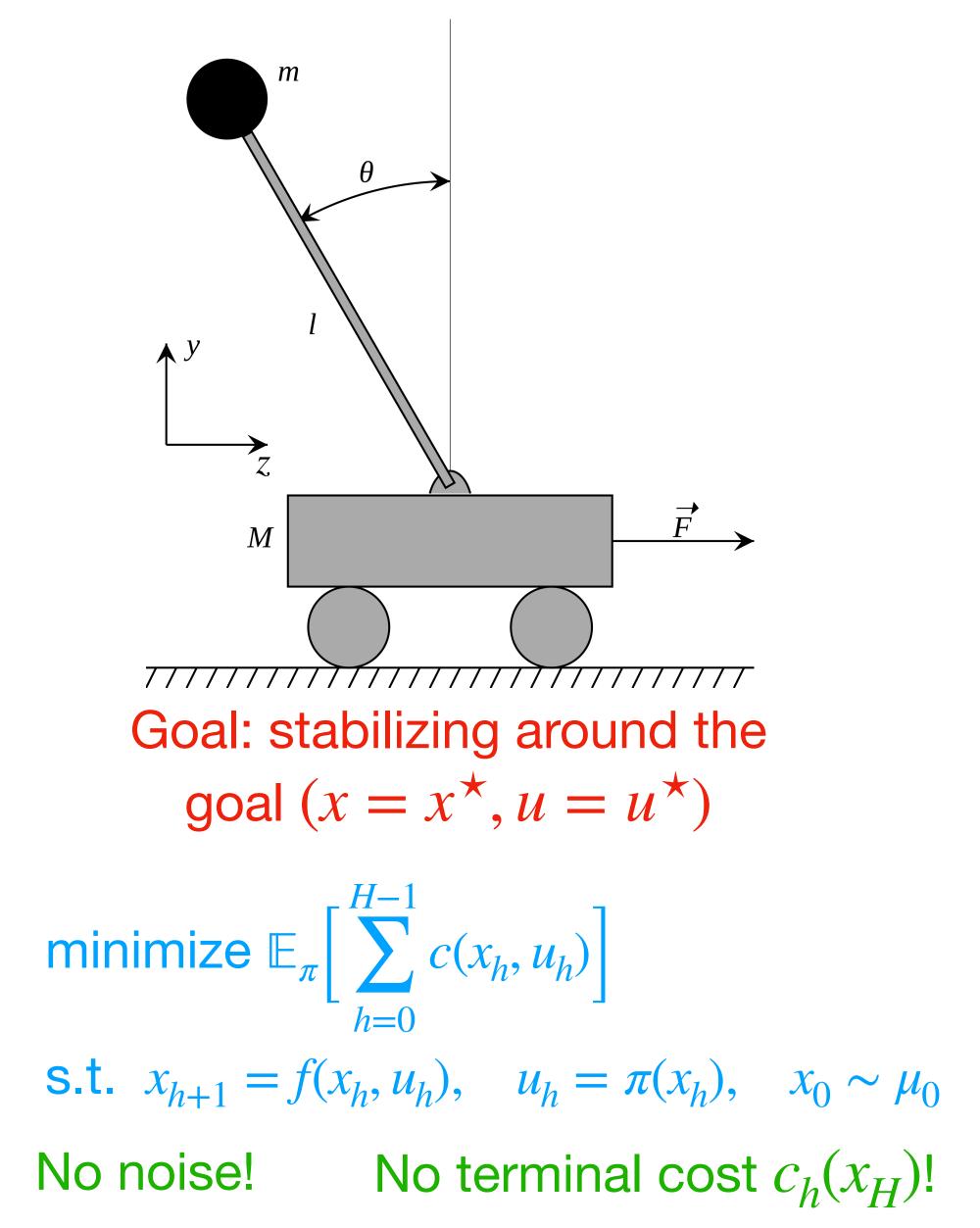






Assumptions:

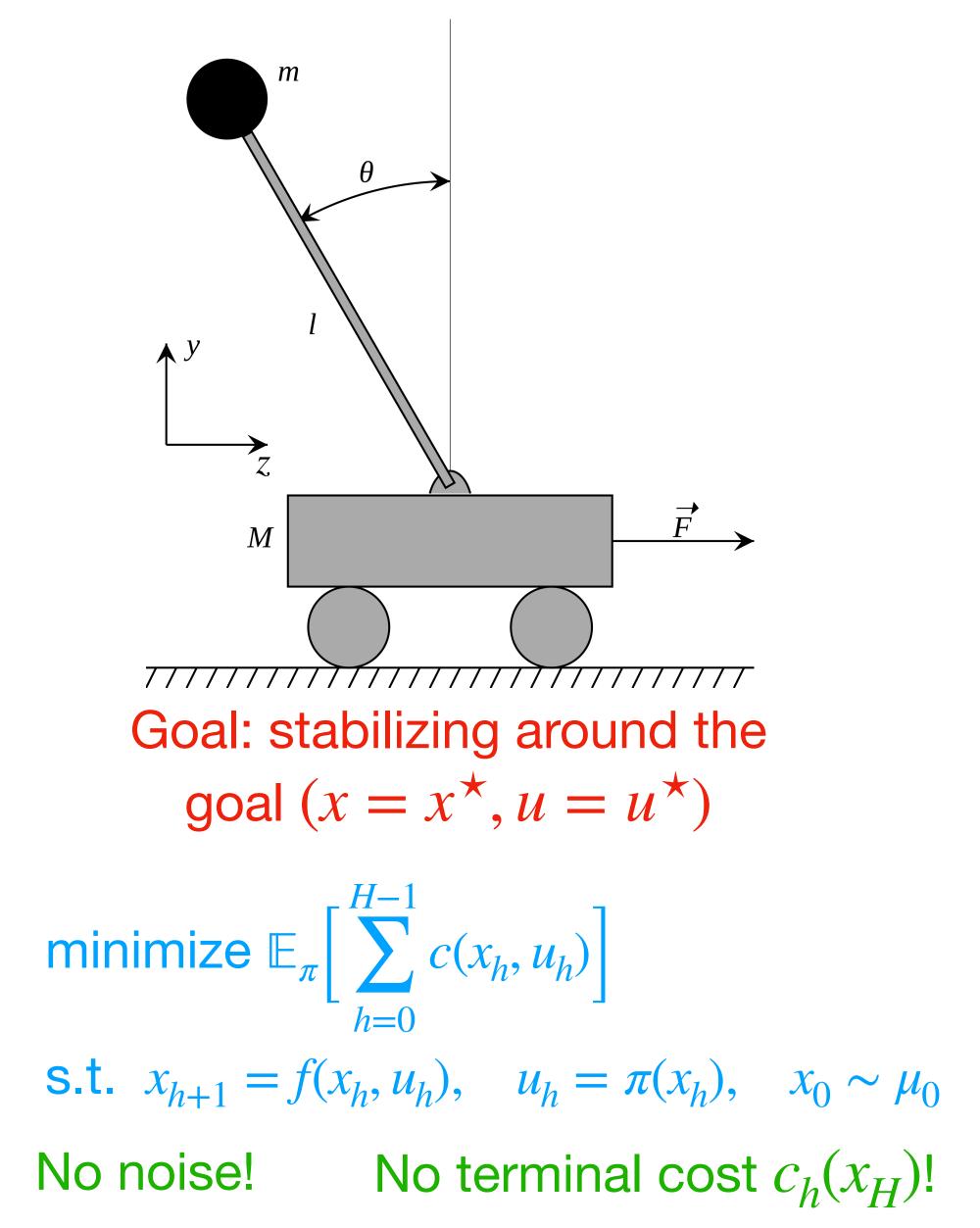
1. We have black-box access to f&c:



Assumptions:

1. We have black-box access to f&c:

f and c have unknown analytical form but can be queried at any (x, u) to give x', c, where x' = f(x, u), c = c(x, u)

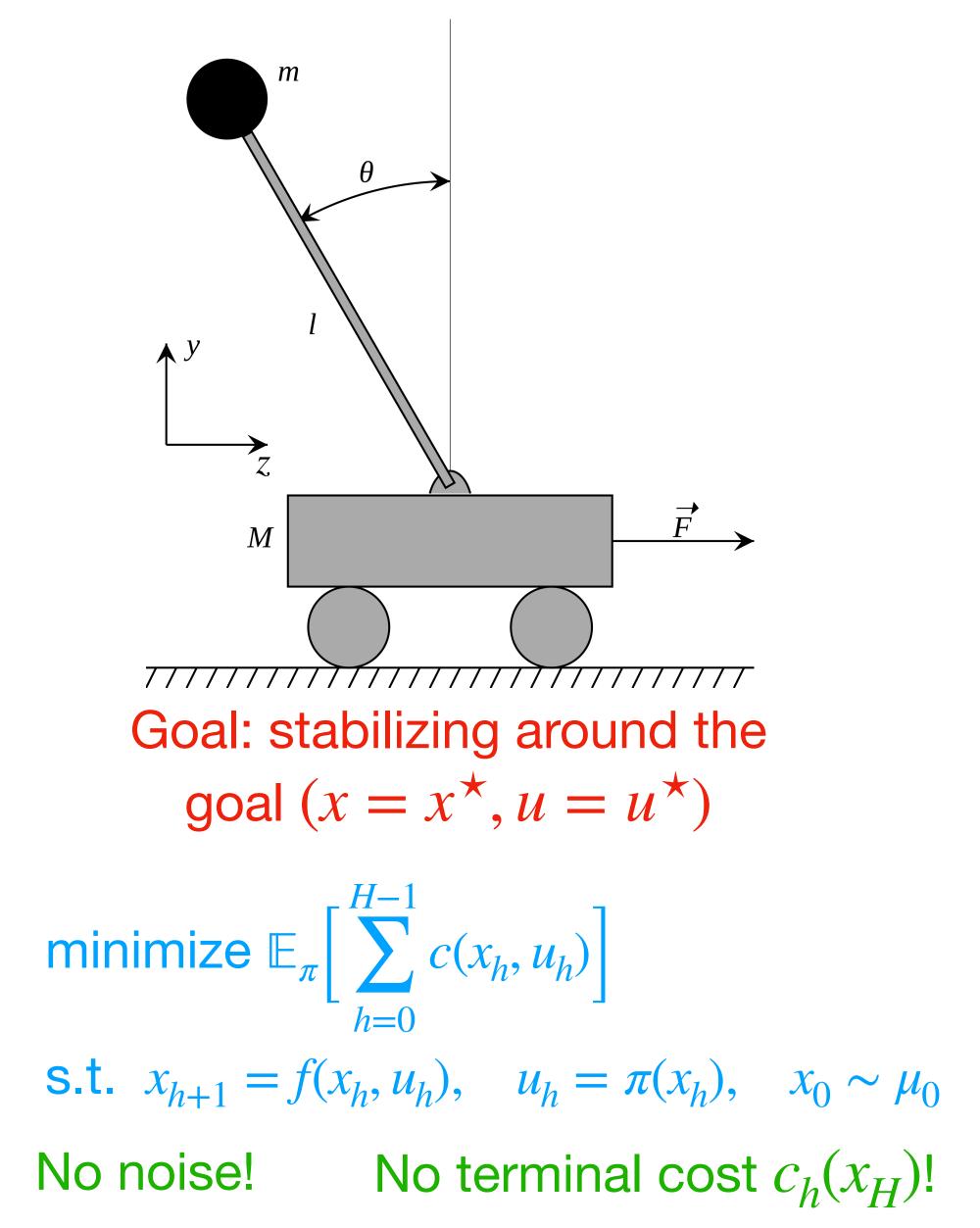


Assumptions:

1. We have black-box access to f & c:

f and *c* have unknown analytical form but can be queried at any (x, u) to give x', c, where x' = f(x, u), c = c(x, u)

2. *f* is differentiable and *c* is twice differentiable



Assumptions:

1. We have black-box access to f & c:

f and *c* have unknown analytical form but can be queried at any (x, u) to give x', c, where x' = f(x, u), c = c(x, u)

2. *f* is differentiable and *c* is twice differentiable

 $\nabla_x f(x, u), \nabla_u f(x, u), \nabla_x c(x, u), \nabla_u c(x, u),$ $\nabla_x^2 c(x, u), \nabla_u^2 c(x, u), \nabla_x^2 c(x, u), \nabla_{x, u}^2 c(x, u),$

Local Linearization of Dynamics

Local Linearization of Dynamics

Assume that all possible initial states x_0 are close to x^* and can be kept there with actions close to u^*

Local Linearization of Dynamics

Assume that all possible initial states x_0 are close to x^{\star} and can be kept there with actions close to u^{\star}

We can approximate f(x, u) locally with a first-order Taylor expansion:

 $f(x, u) \approx f(x^{\star}, u^{\star}) + \nabla_x f(x^{\star}, u^{\star})$

$$(u^{\star})(x - x^{\star}) + \nabla_u f(x^{\star}, u^{\star})(u - u^{\star})$$

Local Linearization of Dynamics

Assume that all possible initial states x_0 are close to x^{\star} and can be kept there with actions close to u^{\star}

We can approximate f(x, u) locally with a first-order Taylor expansion:

$$f(x,u) \approx f(x^{\star}, u^{\star}) + \nabla_x f(x^{\star}, u^{\star}) \left(x - x^{\star}\right) + \nabla_u f(x^{\star}, u^{\star})(u - u^{\star})$$

$$\nabla_x f(x, u) \in \mathbb{R}^{d \times d},$$

$$\nabla_u f(x, u) \in \mathbb{R}^{d \times k},$$

where:

$$\nabla_{x} f(x, u)[i, j] = \frac{\partial f[i]}{\partial x[j]}(x, u)$$

$$\nabla_{u} f(x, u)[i, j] = \frac{\partial f[i]}{\partial u[j]}(x, u)$$

We can approximate c(x, u) locally at (x^*, u^*) with second-order Taylor expansion:

We can approximate c(x, u) locally at (x^*, u^*) with second-order Taylor expansion:

$$c(x, u) \approx c(x^{\star}, u^{\star}) + \nabla_{x} c(x^{\star}, u^{\star})^{\top} (x - x^{\star}) + \nabla_{u} c(x^{\star}, u^{\star})^{\top} (u - u^{\star}) + \frac{1}{2} (x - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})^{\top} \nabla_{u}^{2} c(x^{\star}, u^{\star}) (u - u^{\star}) + \frac{1}{2} (u - u^{\star})$$

 $(u^{\star}) + (x - x^{\star})^{\top} \nabla^{2}_{x,u} c(x, u) (u - u^{\star})$

$$c(x, u) \approx c(x^{\star}, u^{\star}) + \nabla_{x} c(x^{\star}, u^{\star})^{\top} (x - x^{\star}) + \nabla_{u} c(x^{\star}, u^{\star})^{\top} (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}, u^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}) (x - x^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}) (x - x^{\star}) (x - x^{\star}) + \frac{1}{2} (u - x^{\star})^{\top} \nabla_{x}^{2} c(x^{\star}) (x - x^{\star}) (x$$

$$\nabla_x c(x, u) \in \mathbb{R}^d, \quad \nabla_x c(x, u) \in \mathbb{R}^d$$

$$\nabla_u c(x, u) \in \mathbb{R}^k, \quad \nabla_u c(x)$$

$$\nabla_x^2 c(x, u) \in \mathbb{R}^{d \times d}, \quad \nabla_x^2 d$$

$$\nabla_{x,u}^2 c(x,u) \in \mathbb{R}^{d \times k}, \quad \nabla_x^2$$

We can approximate c(x, u) locally at (x^*, u^*) with second-order Taylor expansion: $(x^{\star}, u^{\star})^{\top}(u - u^{\star})$ $(u^{\star})^{\mathsf{T}} \nabla^2_{\boldsymbol{\mu}} c(x^{\star}, u^{\star})(u - u^{\star}) + (x - x^{\star})^{\mathsf{T}} \nabla^2_{\boldsymbol{x}\,\boldsymbol{\mu}} c(x, u)(u - u^{\star})$ $(x, u)[i] = \frac{\partial c}{\partial x[i]}(x, u),$ $(x, u)[i] = \frac{\partial c}{\partial u[i]}(x, u),$ $\int_{\alpha}^{2} c(x, u)[i, j] = \frac{\partial^{2} c}{\partial x[i] \partial x[i]} (x, u),$ $\nabla^{2}_{x,u}c(x,u)[i,j] = \frac{\partial^{2}c}{\partial x[i]\partial u[j]}(x,u)$

Local Linearization: Putting it all Together

$$c(x,u) \approx c(x^{\star},u^{\star}) + \nabla_{x}c(x^{\star},u^{\star})^{\top}(x-x^{\star}) + \nabla_{u}c(x^{\star},u^{\star})^{\top}(u-u^{\star}) + \frac{1}{2}(x-x^{\star})^{\top}\nabla_{x}^{2}c(x^{\star},u^{\star})(x-x^{\star}) + \frac{1}{2}(u-u^{\star})^{\top}\nabla_{u}^{2}c(x^{\star},u^{\star})(u-u^{\star}) + (x-x^{\star})^{\top}\nabla_{x,u}^{2}c(x,u)(u-u^{\star}) + \frac{1}{2}(u-u^{\star})^{\top}\nabla_{u}^{2}c(x^{\star},u^{\star})(u-u^{\star}) + \frac{1}{2}(u-u^{\star})^{\top}\nabla_{u}^{2}c(x^{\star},u^{\star})(u-u^{\star})(u-u^{\star}) + \frac{1}{2}(u-u^{\star})^{\top}\nabla_{u}^{2}c(x^{\star},u^{\star})(u-u^{\star})(u-u^{\star}) + \frac{1}{2}(u-u^{\star})^{\top}\nabla_{u}^{2}c(x^{\star},u^{\star})(u-u^{\star}$$

 $f(x,u) \approx f(x^{\star}, u^{\star}) + \nabla_x f(x^{\star}, u^{\star}) \left(x - x^{\star}\right) + \nabla_u f(x^{\star}, u^{\star})(u - u^{\star})$

*)

Local Linearization: Putting it all Together

$$c(x, u) \approx c(x^{*}, u^{*}) + \nabla_{x}c(x^{*}, u^{*})^{\top}(x - x^{*}) + \nabla_{u}c(x^{*}, u^{*})^{\top}(u - u^{*}) + \frac{1}{2}(x - x^{*})^{\top}\nabla_{x}^{2}c(x^{*}, u^{*})(x - x^{*}) + \frac{1}{2}(u - u^{*})^{\top}\nabla_{u}^{2}c(x^{*}, u^{*})(u - u^{*}) + (x - x^{*})^{\top}\nabla_{x, u}^{2}c(x, u)(u - u^{*}) + f(x, u^{*})(x - x^{*}) + \nabla_{u}f(x^{*}, u^{*})(u - u^{*})$$

$$\begin{split} c(x,u) &\approx c(x^{\star},u^{\star}) + \nabla_{x}c(x^{\star},u^{\star})^{\top}(x-x^{\star}) + \nabla_{u}c(x^{\star},u^{\star})^{\top}(u-u^{\star}) \\ &+ \frac{1}{2}(x-x^{\star})^{\top}\nabla_{x}^{2}c(x^{\star},u^{\star})(x-x^{\star}) + \frac{1}{2}(u-u^{\star})^{\top}\nabla_{u}^{2}c(x^{\star},u^{\star})(u-u^{\star}) + (x-x^{\star})^{\top}\nabla_{x,u}^{2}c(x,u)(u-u^{\star}) \\ f(x,u) &\approx f(x^{\star},u^{\star}) + \nabla_{x}f(x^{\star},u^{\star})(x-x^{\star}) + \nabla_{u}f(x^{\star},u^{\star})(u-u^{\star}) \end{split}$$

Rearranging terms, we get back to the following formulation:

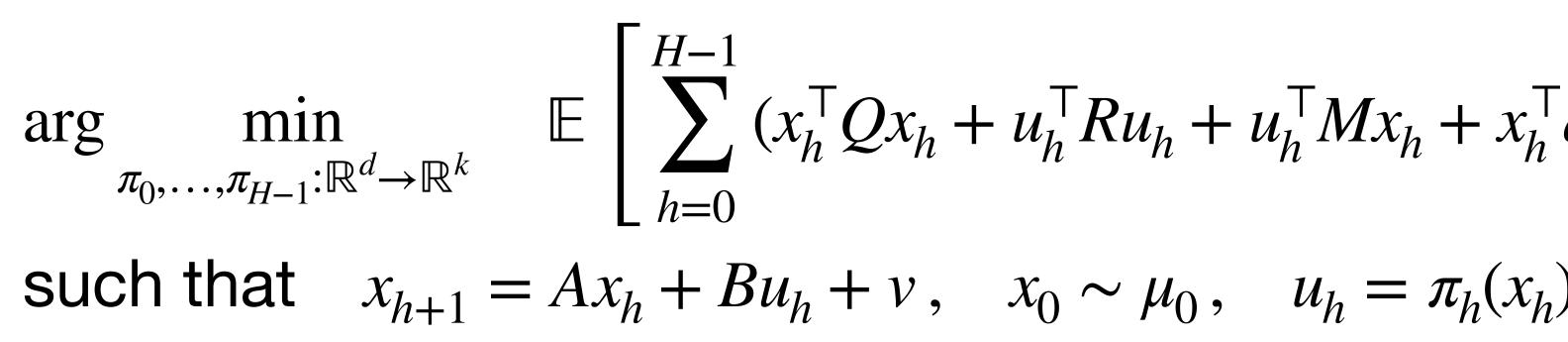
$$\arg\min_{\pi_0,\ldots,\pi_{H-1}:\mathbb{R}^d\to\mathbb{R}^k} \mathbb{E}\left[\sum_{h=0}^{H-1} (x_h^\top Q x_h + u_h^\top R u_h + u_h^\top M x_h + x_h^\top q + u_h^\top r + c)\right]$$

such that $x_{h+1} = A x_h + B u_h + v$, $x_0 \sim \mu_0$, $u_h = \pi_h(x_h)$

Special case of one of the LQR extensions!

* \

Summary of Local Linearization So Far:

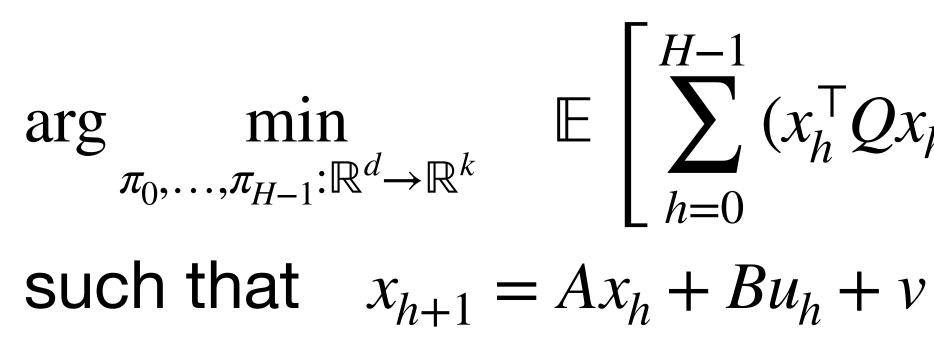


For tasks such as balancing near goal state (x^{\star}, u^{\star}) , we can perform first order Taylor expansion on f(x, u),

and second order Taylor expansion on c(x, u) around the balancing point (x^*, u^*)

$$\begin{aligned} x_h + u_h^{\mathsf{T}} R u_h + u_h^{\mathsf{T}} M x_h + x_h^{\mathsf{T}} q + u_h^{\mathsf{T}} r + c) \\ y_h = x_0 \sim \mu_0, \quad u_h = \pi_h(x_h) \end{aligned}$$

Summary of Local Linearization So Far:



Last step: checking some practical issues

For tasks such as balancing near goal state (x^{\star}, u^{\star}) , we can perform first order Taylor expansion on f(x, u),

and second order Taylor expansion on c(x, u) around the balancing point (x^*, u^*)

$$\begin{aligned} x_h + u_h^{\mathsf{T}} R u_h + u_h^{\mathsf{T}} M x_h + x_h^{\mathsf{T}} q + u_h^{\mathsf{T}} r + c) \\ y_h = x_0 \sim \mu_0, \quad u_h = \pi_h(x_h) \end{aligned}$$

Note that c(x, u) might not even be convex;

So, $\nabla_x^2 c(x^\star, u^\star) \& \nabla_u^2 c(x^\star, u^\star)$ may not be positive definite

Note that c(x, u) might not even be convex;

So,
$$\nabla_x^2 c(x^\star, u^\star)$$
 & $\nabla_u^2 c(x^\star)$

 (x^{\star}, u^{\star}) may not be positive definite

What can we do?

Note that c(x, u) might not even be convex;

So,
$$\nabla_x^2 c(x^\star, u^\star)$$
 & $\nabla_u^2 c(x^\star)$

In practice, we force them to be positive definite:

- (\star, u^{\star}) may not be positive definite
- What can we do?

Note that c(x, u) might not even be convex;

So,
$$\nabla_x^2 c(x^\star, u^\star)$$
 & $\nabla_u^2 c(x^\star)$
What

In practice, we force them to be positive definite:

Given a symmetric matrix $W \in \mathbb{R}^{d \times d}$, we compute the eigen-decomposition $W = \sum_{i=1}^{d} \sigma_{i} z_{i} z_{i}^{\top}$, and we approximate W as l=1 $W \approx \sum_{i=1}^{d} \mathbf{1}(\sigma_{i} > 0) \sigma_{i} z_{i} z_{i}^{\mathsf{T}} + \lambda I,$ i=1

for some small $\lambda > 0$

 \star, u^{\star}) may not be positive definite

can we do?

Recall our assumption: we only have black-box access to f & c:

i.e., unknown analytical form, but given any (x, u), the black boxes output x', c, where x' = f(x, u), c = c(x, u)

Recall our assumption: we only have black-box access to f & c:

- i.e., unknown analytical form, but given any (x, u), the black boxes output x', c, where x' = f(x, u), c = c(x, u)
 - Compute gradient using finite differencing:

Recall our assumption: we only have black-box access to f & c:

$$\frac{\partial f[i]}{\partial x[j]}(x,u) \approx \frac{f(x+\delta_j,u)[i] - f(x-\delta_j,u)[i]}{2\delta}, \text{ where } \delta_j = [0,...,0, \underbrace{\delta}_{j'th} \text{ entry}]^{\mathsf{T}}$$

- i.e., unknown analytical form, but given any (x, u), the black boxes output x', c, where x' = f(x, u), c = c(x, u)
 - Compute gradient using finite differencing:

Recall our assumption: we only have black-box access to f & c:

$$\frac{\partial f[i]}{\partial x[j]}(x,u) \approx \frac{f(x+\delta_j,u)[i] - f(x-\delta_j,u)[i]}{2\delta}, \text{ where } \delta_j = [0,...,0, \underbrace{\delta}_{j'th} \text{ entry} ,0,...0]^{\top}$$
To compute second derivative, e.g.,
$$\frac{\partial^2 c}{\partial x[i]\partial u[j]}(x,u)$$

- i.e., unknown analytical form, but given any (x, u), the black boxes output x', c, where x' = f(x, u), c = c(x, u)
 - Compute gradient using finite differencing:

Recall our assumption: we only have black-box access to f & c:

$$\frac{\partial f[i]}{\partial x[j]}(x,u) \approx \frac{f(x+\delta_j,u)[i] - f(x-\delta_j,u)[i]}{2\delta}, \text{ where } \delta_j = [0,...,0, \underbrace{\delta}_{j'th} \text{ entry}, 0,...0]^{\top}$$
To compute second derivative, e.g.,
$$\frac{\partial^2 c}{\partial x[i]\partial u[j]}(x,u)$$

- i.e., unknown analytical form, but given any (x, u), the black boxes output x', c, where x' = f(x, u), c = c(x, u)
 - Compute gradient using finite differencing:

First implement finite differencing procedure for $\partial c/\partial x[i]$, and then perform another finite differencing with respect to u[j] on top of the first finite differencing procedure for $\partial c/\partial x[i]$

and second order Taylor expansion on c(x, u), both around the balancing point (x^*, u^*)

1. Perform first order Taylor expansion on f(x, u)

2. Force Hessians $\nabla_x^2 c(x, u) \& \nabla_u^2 c(x, u)$ to be positive definite

1. Perform first order Taylor expansion on f(x, u)

and second order Taylor expansion on c(x, u), both around the balancing point (x^*, u^*)

2. Force Hessians $\nabla^2_x c(x, u)$

1. Perform first order Taylor expansion on f(x, u)

and second order Taylor expansion on c(x, u), both around the balancing point (x^*, u^*)

&
$$\nabla_u^2 c(x, u)$$
 to be positive definite

3. Leverage finite differences to approximate gradients and Hessians

2. Force Hessians $\nabla_x^2 c(x, u)$

3. Leverage finite differences to approximate gradients and Hessians

1. Perform first order Taylor expansion on f(x, u)

and second order Taylor expansion on c(x, u), both around the balancing point (x^{\star}, u^{\star})

&
$$\nabla_u^2 c(x, u)$$
 to be positive definite

4. The approximation is an (direct extension of) LQR, so we know how to compute the optimal policy

- Recap
- Locally linearization
 - Iterative LQR

Limits of Local Linearization

Limits of Local Linearization

Local linearization can work if x_0 is very close to x^* and stays there with near-optimal (i.e., near- u^{\star}) actions

Limits of Local Linearization

Local linearization can work if x_0 is very close to x^* and stays there with near-optimal (i.e., near- u^{\star}) actions

But when x_h is far away from x^* or u_h needs to be far from u^* for any h, first/second-order Taylor expansion is not accurate anymore

Instead of linearizing/quadratizing around (x^{\star}, u^{\star}) , linearize/quadratize around some other (\bar{x}, \bar{u})

Instead of linearizing/quadratizing around (x^{\star}, u^{\star}) , linearize/quadratize around some other (\bar{x}, \bar{u}) In fact, we can even linearize/quadratize around different points (\bar{x}_h, \bar{u}_h) at each h

Instead of linearizing/quadratizing around (x^{\star}, u^{\star}) , linearize/quadratize around some other (\bar{x}, \bar{u}) In fact, we can even linearize/quadratize around different points (\bar{x}_h, \bar{u}_h) at each h

$$\arg \min_{\pi_{0},...,\pi_{H-1}:\mathbb{R}^{d}\to\mathbb{R}^{k}} \mathbb{E}\left[\sum_{h=0}^{H-1} (x_{h}^{\top}Q_{h}x_{h} + u_{h}^{\top}R_{h}u_{h} + u_{h}^{\top}M_{h}x_{h} + x_{h}^{\top}q_{h} + u_{h}^{\top}r_{h} + c_{h})\right]$$

such that $x_{h+1} = A_{h}x_{h} + B_{h}u_{h} + v_{h}, \quad x_{0} \sim \mu_{0}, \quad u_{h} = \pi_{h}(x_{h})$

After linearization and quadratization at time h around waypoint (\bar{x}_h, \bar{u}_h) , $\forall h$, re-arranging terms gives:

Instead of linearizing/quadratizing around (x^{\star}, u^{\star}) , linearize/quadratize around some other (\bar{x}, \bar{u}) In fact, we can even linearize/quadratize around different points (\bar{x}_h, \bar{u}_h) at each h

$$\arg\min_{\pi_0,\ldots,\pi_{H-1}:\mathbb{R}^d\to\mathbb{R}^k} \quad \mathbb{E}\left[\sum_{h=0}^{H-1} (x_h^\top Q_h x_h + u_h^\top R_h u_h + u_h^\top M_h x_h + x_h^\top q_h + u_h^\top r_h + c_h)\right]$$

such that $x_{h+1} = A_h x_h + B_h u_h + v_h$, $x_0 \sim \mu_0$, $u_h = \pi_h(x_h)$

Time-dependent LQR problem: we know the solution

After linearization and quadratization at time h around waypoint (\bar{x}_h, \bar{u}_h) , $\forall h$, re-arranging terms gives:

Instead of linearizing/quadratizing around (x^{\star}, u^{\star}) , linearize/quadratize around some other (\bar{x}, \bar{u}) In fact, we can even linearize/quadratize around different points (\bar{x}_h, \bar{u}_h) at each h

$$\arg\min_{\pi_0,\ldots,\pi_{H-1}:\mathbb{R}^d\to\mathbb{R}^k} \mathbb{E}\left[\sum_{h=0}^{H-1} (x_h^\top Q_h x_h + u_h^\top R_h u_h + u_h^\top M_h x_h + x_h^\top q_h + u_h^\top r_h + c_h)\right]$$

such that $x_{h+1} = A_h x_h + B_h u_h + v_h$, $x_0 \sim \mu_0$, $u_h = \pi_h(x_h)$

Time-dependent LQR problem: we know the solution

After linearization and quadratization at time h around waypoint (\bar{x}_h, \bar{u}_h) , $\forall h$, re-arranging terms gives:

<u>Question</u>: how to choose the waypoints (\bar{x}_h, \bar{u}_h) to get the best approximation/solution?

Iterative LQR (iLQR)

Recall $x_0 \sim \mu_0$; denote $\mathbb{E}_{x_0 \sim \mu_0}[x_0] = \bar{x}_0$

Iterative LQR (iLQR)

Initialize $\bar{u}_0^0, \ldots, \bar{u}_{H-1}^0$, (how might we do this?)

Recall $x_0 \sim \mu_0$; denote $\mathbb{E}_{x_0 \sim \mu_0}[x_0] = \bar{x}_0$

Initialize $\bar{u}_0^0, \ldots, \bar{u}_{H-1}^0$, (how might we do this?)

Generate nominal trajectory: $\bar{x}_0^0 = \bar{x}_0, \bar{u}_0^0, \dots, \bar{u}_h^0, \bar{x}_{h+1}^0 = f(\bar{x}_h^0, \bar{u}_h^0), \dots, \bar{x}_{H-1}^0, \bar{u}_{H-1}^0$

Recall $x_0 \sim \mu_0$; denote $\mathbb{E}_{x_0 \sim \mu_0}[x_0] = \bar{x}_0$

Initialize $\bar{u}_0^0, \ldots, \bar{u}_{H-1}^0$, (how might we do this?) Generate nominal trajectory: $\bar{x}_0^0 = \bar{x}_0, \bar{u}_0^0, \dots, \bar{u}_h^0, \bar{x}_{h+1}^0 = f(\bar{x}_h^0, \bar{u}_h^0), \dots, \bar{x}_{H-1}^0, \bar{u}_{H-1}^0$ For i = 0, 1, ...

Recall $x_0 \sim \mu_0$; denote $\mathbb{E}_{x_0 \sim \mu_0}[x_0] = \bar{x}_0$

Initialize $\bar{u}_0^0, \ldots, \bar{u}_{H-1}^0$, (how might we do this?) Generate nominal trajectory: $\bar{x}_0^0 = \bar{x}_0, \bar{u}_0^0, \dots, \bar{u}_h^0, \bar{x}_h$ For i = 0, 1, ...

For each *h*, linearize f(x, u) at $(\bar{x}_h^l, \bar{u}_h^l)$: $f_h(x, u) \approx f(\bar{x}_h^i, \bar{u}_h^i) + \nabla_x f(\bar{x}_h^i)$

Recall $x_0 \sim \mu_0$; denote $\mathbb{E}_{x_0 \sim \mu_0}[x_0] = \bar{x}_0$

$$\bar{x}_{h+1}^0 = f(\bar{x}_h^0, \bar{u}_h^0), \dots, \bar{x}_{H-1}^0, \bar{u}_{H-1}^0$$

$$(\bar{u}_{h}, \bar{u}_{h}^{i})(x - \bar{x}_{h}^{i}) + \nabla_{u} f(\bar{x}_{h}^{i}, \bar{u}_{h}^{i})(u - \bar{u}_{h}^{i})$$

Recall $x_0 \sim \mu_0$; denote $\mathbb{E}_{x_0 \sim \mu_0}[x_0] = \bar{x}_0$ Initialize $\bar{u}_0^0, \ldots, \bar{u}_{H-1}^0$, (how might we do this?) Generate nominal trajectory: $\bar{x}_0^0 = \bar{x}_0, \bar{u}_0^0, \dots, \bar{u}_h^0, \bar{x}_h$ For i = 0, 1, ...For each h, linearize f(x, u) at $(\bar{x}_h^l, \bar{u}_h^l)$: its approximation f_h is not $f_{h}(x,u) \approx f(\bar{x}_{h}^{i},\bar{u}_{h}^{i}) + \nabla_{x} f(\bar{x}_{h}^{i},\bar{u}_{h}^{i}) (x-\bar{x}_{h}^{i}) + \nabla_{u} f(\bar{x}_{h}^{i},\bar{u}_{h}^{i}) (u-\bar{u}_{h}^{i})$

$$\bar{x}_{h+1}^0 = f(\bar{x}_h^0, \bar{u}_h^0), \dots, \bar{x}_{H-1}^0, \bar{u}_{H-1}^0$$

Recall $x_0 \sim \mu_0$; denote $\mathbb{E}_{x_0 \sim \mu_0}[x_0] = \bar{x}_0$ Initialize $\bar{u}_0^0, \ldots, \bar{u}_{H-1}^0$, (how might we do this?) Generate nominal trajectory: $\bar{x}_0^0 = \bar{x}_0, \bar{u}_0^0, \dots, \bar{u}_h^0, \bar{x}_h$ For i = 0, 1, ...For each h, linearize f(x, u) at $(\bar{x}_h^i, \bar{u}_h^i)$: its approximation f_h is not $f_h(x, u) \approx f(\bar{x}_h^i, \bar{u}_h^i) + \nabla_x f(\bar{x}_h^i, \bar{u}_h^i) (x - \bar{x}_h^i) + \nabla_u f(\bar{x}_h^i, \bar{u}_h^i) (u - \bar{u}_h^i)$ For each *h*, quadratize $c_h(x, u)$ at $(\bar{x}_h^l, \bar{u}_h^l)$: $c_h(x,u) \approx \frac{1}{2} \begin{bmatrix} x - \bar{x}_h^i \\ u - \bar{u}_h^i \end{bmatrix}^{\top} \begin{bmatrix} \nabla_x^2 c(\bar{x}) \\ \nabla_x^2 c(\bar{x}) \end{bmatrix}$ $+ \begin{bmatrix} x - \bar{x}_{h}^{i} \\ u - \bar{u}_{h}^{i} \end{bmatrix}^{\dagger} \begin{bmatrix} \nabla_{x} \\ \nabla_{y} \end{bmatrix}$

$$\bar{x}_{h+1}^0 = f(\bar{x}_h^0, \bar{u}_h^0), \dots, \bar{x}_{H-1}^0, \bar{u}_{H-1}^0$$

$$\begin{aligned} \left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right) \nabla_{x,u}^{2} c(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}) \\ \left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right) \nabla_{u}^{2} c(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}) \\ \left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right) \nabla_{u}^{2} c(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}) \\ \left(\bar{x}_{u}^{i}, \bar{u}_{h}^{i}\right) \\ \left(\bar{x}$$

Recall $x_0 \sim \mu_0$; denote $\mathbb{E}_{x_0 \sim \mu_0}[x_0] = \bar{x}_0$ Initialize $\bar{u}_0^0, \ldots, \bar{u}_{H-1}^0$, (how might we do this?) Generate nominal trajectory: $\bar{x}_0^0 = \bar{x}_0, \bar{u}_0^0, \dots, \bar{u}_h^0, \bar{x}_h$ For i = 0, 1, ...For each h, linearize f(x, u) at $(\bar{x}_h^i, \bar{u}_h^i)$: its approximation f_h is not $f_h(x, u) \approx f(\bar{x}_h^i, \bar{u}_h^i) + \nabla_x f(\bar{x}_h^i, \bar{u}_h^i) (x - \bar{x}_h^i) + \nabla_u f(\bar{x}_h^i, \bar{u}_h^i) (u - \bar{u}_h^i)$ For each *h*, quadratize $c_h(x, u)$ at $(\bar{x}_h^l, \bar{u}_h^l)$: $c_h(x,u) \approx \frac{1}{2} \begin{bmatrix} x - \bar{x}_h^i \\ u - \bar{u}_h^i \end{bmatrix}^{\top} \begin{bmatrix} \nabla_x^2 c(\bar{x}) \\ \nabla_x^2 c(\bar{x}) \end{bmatrix}$ $+ \begin{bmatrix} x - \bar{x}_h^i \\ u - \bar{u}_h^i \end{bmatrix}^{\perp} \begin{bmatrix} \nabla_x c(\bar{x}_h^i, \bar{u}_h^i) \\ \nabla_u c(\bar{x}_h^i, \bar{u}_h^i) \end{bmatrix} + c(\bar{x}_h^i, \bar{u}_h^i)$ Formulate **time-dependent** LQR and compute its optimal control $\pi_0^i, \ldots, \pi_{H-1}^i$

$$\bar{x}_{h+1}^0 = f(\bar{x}_h^0, \bar{u}_h^0), \dots, \bar{x}_{H-1}^0, \bar{u}_{H-1}^0$$

$$\bar{x}_h^i, \bar{u}_h^i) \nabla_{x,u}^2 c(\bar{x}_h^i, \bar{u}_h^i) \\ \bar{x}_h^i, \bar{u}_h^i) \nabla_u^2 c(\bar{x}_h^i, \bar{u}_h^i) \end{bmatrix} \begin{bmatrix} x - \bar{x}_h^i \\ u - \bar{u}_h^i \end{bmatrix}$$

Recall $x_0 \sim \mu_0$; denote $\mathbb{E}_{x_0 \sim \mu_0}[x_0] = \bar{x}_0$ Initialize $\bar{u}_0^0, \ldots, \bar{u}_{H-1}^0$, (how might we do this?) Generate nominal trajectory: $\bar{x}_0^0 = \bar{x}_0, \bar{u}_0^0, \dots, \bar{u}_h^0, \bar{x}_h$ For i = 0, 1, ...For each h, linearize f(x, u) at $(\bar{x}_h^i, \bar{u}_h^i)$: its approximation f_h is not $f_h(x, u) \approx f(\bar{x}_h^i, \bar{u}_h^i) + \nabla_x f(\bar{x}_h^i, \bar{u}_h^i) (x - \bar{x}_h^i) + \nabla_u f(\bar{x}_h^i, \bar{u}_h^i) (u - \bar{u}_h^i)$ For each *h*, quadratize $c_h(x, u)$ at $(\bar{x}_h^l, \bar{u}_h^l)$: $c_h(x,u) \approx \frac{1}{2} \begin{bmatrix} x - \bar{x}_h^i \\ u - \bar{u}_h^i \end{bmatrix}^{\top} \begin{bmatrix} \nabla_x^2 c(\bar{x}) \\ \nabla_x^2 c(\bar{x}) \end{bmatrix}$ $+ \begin{bmatrix} x - \bar{x}_h^i \\ u - \bar{u}_h^i \end{bmatrix}^{\perp} \begin{bmatrix} \nabla_x c(\bar{x}_h^i, \bar{u}_h^i) \\ \nabla_u c(\bar{x}_h^i, \bar{u}_h^i) \end{bmatrix} + c(\bar{x}_h^i, \bar{u}_h^i)$ Formulate **time-dependent** LQR and compute its optimal control $\pi_0^l, \ldots, \pi_{H-1}^l$ Set new nominal trajectory: $\bar{x}_0^{i+1} = \bar{x}_0$, $\bar{u}_h^{i+1} = \pi_h^i(\bar{x}_h^{i+1})$, and $\bar{x}_{h+1}^{i+1} = f(\bar{x}_h^{i+1}, \bar{u}_h^{i+1})$

$$\bar{x}_{h+1}^0 = f(\bar{x}_h^0, \bar{u}_h^0), \dots, \bar{x}_{H-1}^0, \bar{u}_{H-1}^0$$

$$\bar{x}_h^i, \bar{u}_h^i) \nabla_{x,u}^2 c(\bar{x}_h^i, \bar{u}_h^i) \\ \bar{x}_h^i, \bar{u}_h^i) \nabla_u^2 c(\bar{x}_h^i, \bar{u}_h^i) \end{bmatrix} \begin{bmatrix} x - \bar{x}_h^i \\ u - \bar{u}_h^i \end{bmatrix}$$

Recall $x_0 \sim \mu_0$; denote $\mathbb{E}_{x_0 \sim \mu_0}[x_0] = \bar{x}_0$ Initialize $\bar{u}_0^0, \ldots, \bar{u}_{H-1}^0$, (how might we do this?) Generate nominal trajectory: $\bar{x}_0^0 = \bar{x}_0, \bar{u}_0^0, \dots, \bar{u}_h^0, \bar{x}_h$ For i = 0, 1, ...For each h, linearize f(x, u) at $(\bar{x}_h^i, \bar{u}_h^i)$: its approximation f_h is not $f_h(x, u) \approx f(\bar{x}_h^i, \bar{u}_h^i) + \nabla_x f(\bar{x}_h^i, \bar{u}_h^i) (x - \bar{x}_h^i) + \nabla_u f(\bar{x}_h^i, \bar{u}_h^i) (u - \bar{u}_h^i)$ For each *h*, quadratize $c_h(x, u)$ at $(\bar{x}_h^i, \bar{u}_h^i)$: $c_h(x,u) \approx \frac{1}{2} \begin{bmatrix} x - \bar{x}_h^i \\ u - \bar{u}_h^i \end{bmatrix}^{\top} \begin{bmatrix} \nabla_x^2 c(\bar{x} - \bar{x}_h) \\ \nabla_x^2 c(\bar{x} - \bar{x}_h) \end{bmatrix}$ $+ \begin{bmatrix} x - \bar{x}_{h}^{i} \\ u - \bar{u}_{h}^{i} \end{bmatrix}^{\dagger} \begin{bmatrix} \nabla_{y} \\ \nabla_{y} \end{bmatrix}$ Formulate time-dependent LQR and compu Set new nominal trajectory: $\bar{x}_0^{i+1} = \bar{x}_0, \ \bar{u}_h^{i+1}$

$$\bar{x}_{h+1}^0 = f(\bar{x}_h^0, \bar{u}_h^0), \dots, \bar{x}_{H-1}^0, \bar{u}_{H-1}^0$$

Note that although true f is stationary,

$$\bar{x}_h^i, \bar{u}_h^i) \nabla_{x,u}^2 c(\bar{x}_h^i, \bar{u}_h^i) \\ \bar{x}_h^i, \bar{u}_h^i) \nabla_u^2 c(\bar{x}_h^i, \bar{u}_h^i) \end{bmatrix} \begin{bmatrix} x - \bar{x}_h^i \\ u - \bar{u}_h^i \end{bmatrix}$$

$$\begin{pmatrix} x_{k}c(\bar{x}_{h}^{i},\bar{u}_{h}^{i}) \\ x_{u}c(\bar{x}_{h}^{i},\bar{u}_{h}^{i}) \end{bmatrix} + c(\bar{x}_{h}^{i},\bar{u}_{h}^{i})$$

$$\text{te its optimal control } \pi_{0}^{i},\ldots,\pi_{H-1}^{i}$$

$$= \pi_{h}^{i}(\bar{x}_{h}^{i+1}), \text{ and } \bar{x}_{h+1}^{i+1} = f(\bar{x}_{h}^{i+1},\bar{u}_{h}^{i+1})$$

$$\text{Note this is true } f, \text{ not approxim}$$

nation

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

2. Still want to use finite differences to approximate derivatives

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:
- Given the previous nominal control $\bar{u}_0^i, \ldots, \bar{u}_{H-1}^i$, and the latest computed controls $\bar{u}_0, \ldots, \bar{u}_{H-1}$

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:
- Given the previous nominal control $\bar{u}_0^i, \ldots, \bar{u}_{H-1}^i$, and the latest computed controls $\bar{u}_0, \ldots, \bar{u}_{H-1}$ We want to find $\alpha \in [0,1]$ such that $\bar{u}_h^{i+1} := \alpha \bar{u}_h^i + (1-\alpha)\bar{u}_h$ has the smallest cost,

$$\min_{\alpha \in [0,1]} \sum_{h=0}^{H-1} c(x_h, \bar{u}_h^{i+1})$$

s.t. $x_{h+1} = f(x_h, \bar{u}_h^{i+1}), \quad \bar{u}$

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:
- Given the previous nominal control $\bar{u}_0^i, \ldots, \bar{u}_{H-1}^i$, and the latest computed controls $\bar{u}_0, \ldots, \bar{u}_{H-1}$ We want to find $\alpha \in [0,1]$ such that $\bar{u}_h^{i+1} := \alpha \bar{u}_h^i + (1-\alpha)\bar{u}_h$ has the smallest cost,

$$\bar{u}_h^{i+1} = \alpha \bar{u}_h^i + (1 - \alpha) \bar{u}_h, \quad x_0 = \bar{x}_0$$

$$\min_{\alpha \in [0,1]} \sum_{h=0}^{H-1} c(x_h, \bar{u}_h^{i+1})$$

s.t.
$$x_{h+1} = f(x_h, \bar{u}_h^{i+1}), \quad \bar{u}_h^{i+1} = \alpha \bar{u}_h^i + (1 - \alpha) \bar{u}_h, \quad x_0 = \bar{x}_0$$

Why is this tractable?

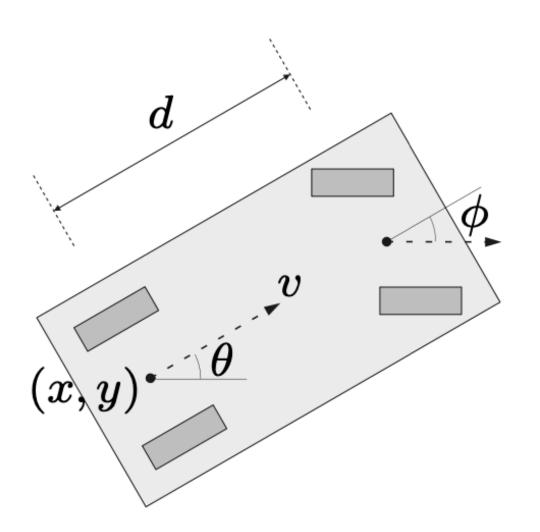
- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:
- Given the previous nominal control $\bar{u}_0^i, \ldots, \bar{u}_{H-1}^i$, and the latest computed controls $\bar{u}_0, \ldots, \bar{u}_{H-1}$ We want to find $\alpha \in [0,1]$ such that $\bar{u}_h^{i+1} := \alpha \bar{u}_h^i + (1-\alpha)\bar{u}_h$ has the smallest cost,

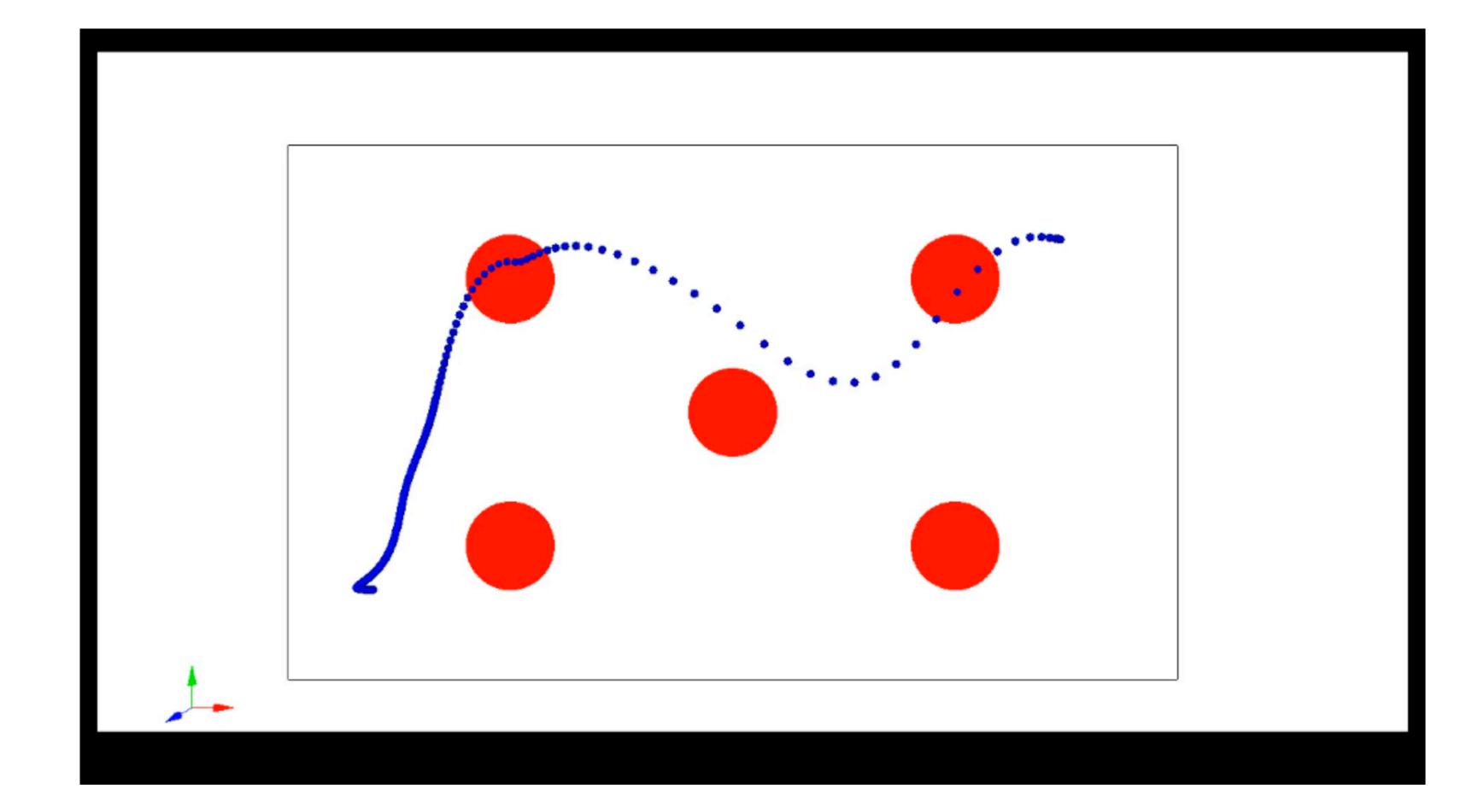
$$\min_{\alpha \in [0,1]} \sum_{h=0}^{H-1} c(x_h, \bar{u}_h^{i+1})$$

s.t.
$$x_{h+1} = f(x_h, \bar{u}_h^{i+1}), \quad \bar{u}_h^{i+1} = \alpha \bar{u}_h^i + (1 - \alpha) \bar{u}_h, \quad x_0 = \bar{x}_0$$

Why is this tractable? because it is 1-dimensional!

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:
- Given the previous nominal control $\bar{u}_0^i, \ldots, \bar{u}_{H-1}^i$, and the latest computed controls $\bar{u}_0, \ldots, \bar{u}_{H-1}$ We want to find $\alpha \in [0,1]$ such that $\bar{u}_h^{i+1} := \alpha \bar{u}_h^i + (1-\alpha)\bar{u}_h$ has the smallest cost,

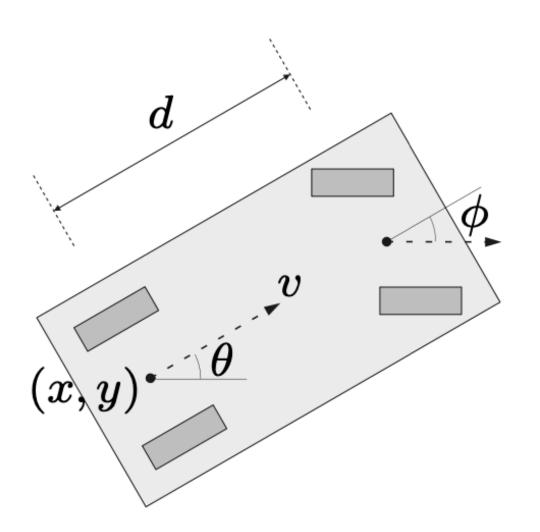


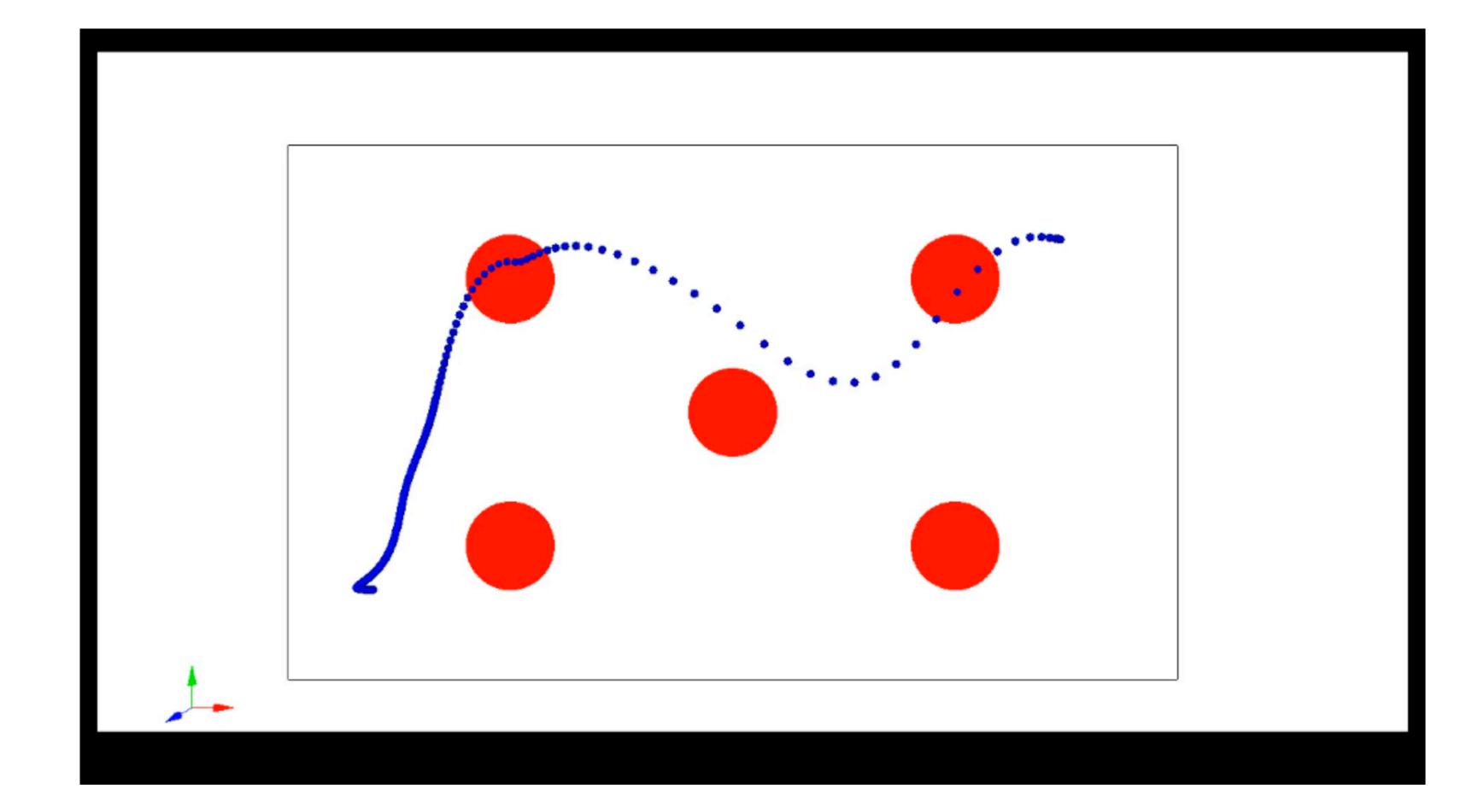


Example:

2-d car navigation

Cost function is designed such that it gets to the goal without colliding with obstacles (in red)





Example:

2-d car navigation

Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

Local Linearization:

Approximate an LQR at the balance (goal) position (x^{\star}, u^{\star}) and then solve the approximated LQR

Local Linearization:

Approximate an LQR at the balance (goal) position (x^{\star}, u^{\star}) and then solve the approximated LQR

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Local Linearization:

Approximate an LQR at the balance (goal) position (x^{\star}, u^{\star}) and then solve the approximated LQR

Computes an <u>approximately globally optimal</u> solution for a <u>small class</u> of nonlinear control problems

Iterate between:

(1) forming an LQR around the current nominal trajectory,

(2) computing a new nominal trajectory using the optimal policy of the LQR

Iterative LQR

Local Linearization:

Computes an <u>approximately globally optimal</u> solution for a <u>small class</u> of nonlinear control problems

Iterative LQR

Computes a locally optimal (in policy space) solution for a large class of nonlinear control problems

Approximate an LQR at the balance (goal) position (x^{\star}, u^{\star}) and then solve the approximated LQR

- Iterate between:
- (1) forming an LQR around the current nominal trajectory,
- (2) computing a new nominal trajectory using the optimal policy of the LQR

- Recap
- Locally linearization
- Iterative LQR

Summary:

Local linearization

 Allows us to approximately optimally control any system near its optimum Iterative LQR

 Uses LQR approximation to find locally optimal nonlinear control solution Feedback: Attendance: bit.ly/3RcTC9T

bit.ly/3RHtlxy

