From LQR to Nonlinear Control

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

Today

- Feedback from last lecture
- Recap
- Locally linearization
- Iterative LQR

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!
2. Ask class questions

Today

- Feedback from last lecture
- Recap
- Locally linearization
- Iterative LQR

Recap: LQR

Problem Statement (finite horizon, time homogeneous):

$$
\begin{aligned}
& \arg \min _{\pi_{0}, \ldots, \pi_{H-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}} \mathbb{E}\left[x_{H}^{\top} Q x_{H}+\sum_{h=0}^{H-1}\left(x_{h}^{\top} Q x_{h}+u_{h}^{\top} R u_{h}\right)\right] \\
& \text { such that } \quad x_{h+1}=A x_{h}+B u_{h}+w_{h}, \quad x_{0} \sim \mu_{0}, \quad u_{h}=\pi_{h}\left(x_{h}\right), \quad w_{h} \sim N\left(0, \sigma^{2} I\right)
\end{aligned}
$$

- States $x_{h} \in \mathbb{R}^{d}$
- Actions/controls $u_{h} \in \mathbb{R}^{k}$
- Additive noise $w_{h} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$
- Dynamics linear with state coefficient matrix $A \in \mathbb{R}^{d \times d}$ and action coefficient matrix $B \in \mathbb{R}^{d \times k}$
- Cost function quadratic with positive semidefinite state coefficient matrix $Q \in \mathbb{R}^{d \times d}$ and positive semidefinite action coefficient matrix $R \in \mathbb{R}^{k \times k}$

Recap: LQR Optimal Control

$$
V_{H}^{\star}(x)=x^{\top} Q x, \text { define } P_{H}=Q, p_{H}=0,
$$

$$
\begin{aligned}
& \text { We showed that } V_{h}^{\star}(x)=x^{\top} P_{h} x+p_{h} \text {, where: } \\
& P_{h}=Q+A^{\top} P_{h+1} A-A^{\top} P_{h+1} B\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A \\
& p_{h}=\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

Along the way, we also showed that $\pi_{h}^{\star}(x)=-K_{h} \chi$, where:

$$
K_{h}=\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A
$$

Time-Dependent Costs and Dynamics

$\arg \min _{\pi_{\sigma_{0}, \ldots, r_{H-1}-\mathbb{R}^{\mathbb{R}} \rightarrow \mathbb{R}^{k}}} \mathbb{E}\left[x_{H}^{\top} Q_{H} x_{H}+\sum_{h=0}^{H-1}\left(x_{h}^{\top} Q_{h} x_{h}+u_{h}^{\top} R_{h} u_{h}\right)\right]$
such that $\quad x_{h+1}=A_{h} x_{h}+B_{h} u_{h}+w_{h}, \quad x_{0} \sim \mu_{0}, \quad u_{h}=\pi_{h}\left(x_{h}\right), \quad w_{h} \sim N\left(0, \sigma^{2} I\right)$

Exact same derivation, only thing that changes is the Ricatti equation:

$$
P_{h}=Q_{h}+A_{h}^{\top} P_{h+1} A_{h}-A_{h}^{\top} P_{h+1} B_{h}\left(R_{h}+B_{h}^{\top} P_{h+1} B_{h}\right)^{-1} B_{h}^{\top} P_{h+1} A_{h}
$$

More General Quadratic Cost Function

$$
\begin{aligned}
& \begin{aligned}
& \arg \min _{\pi_{0}, \ldots, \pi_{H-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}} \mathbb{E}\left[x_{H}^{\top} Q_{H} x_{H}+x_{H}^{\top} q_{H}+c_{H}\right. \\
&\left.\quad+\sum_{h=0}^{H-1}\left(x_{h}^{\top} Q_{h} x_{h}+u_{h}^{\top} R_{h} u_{h}+u_{h}^{\top} M_{h} x_{h}+x_{h}^{\top} q_{h}+u_{h}^{\top} r_{h}+c_{h}\right)\right]
\end{aligned} \\
& \text { such that } \quad x_{h+1}=A_{h} x_{h}+B_{h} u_{h}+v_{h}+w_{h}, \quad x_{0} \sim \mu_{0}, \quad u_{h}=\pi_{h}\left(x_{h}\right), \quad w_{h} \sim N\left(0, \sigma^{2} I\right)
\end{aligned}
$$

Derivation is quite similar, just more algebra!

Tracking a Predefined Trajectory

$$
\begin{aligned}
& \arg \min _{\pi_{0}, \ldots, \pi_{H-1}: \mathbb{R}} \mathbb{R}^{d} \rightarrow \mathbb{R}^{k} \\
& \mathbb{E}\left[\left(x_{H}-x_{H}^{\star}\right)^{\top} Q_{H}\left(x_{H}-x_{H}^{\star}\right)\right. \\
&\left.\quad+\sum_{h=0}^{H-1}\left(\left(x_{h}-x_{h}^{\star}\right)^{\top} Q_{h}\left(x_{h}-x_{h}^{\star}\right)+\left(u_{h}-u_{h}^{\star}\right)^{\top} R_{h}\left(u_{h}-u_{h}^{\star}\right)\right)\right]
\end{aligned}
$$

such that $\quad x_{h+1}=A_{h} x_{h}+B_{h} u_{h}+w_{h}, \quad x_{0} \sim \mu_{0}, \quad u_{h}=\pi_{h}\left(x_{h}\right), \quad w_{h} \sim N\left(0, \sigma^{2} I\right)$
Can you see why we already know how to solve this?
Expanding all the quadratic terms produces a special case of the previous slide!

Beyond LQR

So far: many extensions to LQR essentially reduce to the same problem But what about problems with nonlinear dynamics and/or nonquadratic costs?

Today

- Feedback from last lecture
- Recap
- Locally linearization
- Iterative LQR

Setting for Local Linearization Approach:

Goal: stabilizing around the

$$
\operatorname{goal}\left(x=x^{\star}, u=u^{\star}\right)
$$

minimize $\mathbb{E}_{\pi}\left[\sum_{h=0}^{H-1} c\left(x_{h}, u_{h}\right)\right]$
s.t. $x_{h+1}=f\left(x_{h}, u_{h}\right), \quad u_{h}=\pi\left(x_{h}\right), \quad x_{0} \sim \mu_{0}$

Assumptions:

1. We have black-box access to $f \& c$:
f and c have unknown analytical form but can be queried at any (x, u) to give x^{\prime}, c, where $x^{\prime}=f(x, u), c=c(x, u)$
2. f is differentiable and c is twice differentiable

$$
\begin{aligned}
& \nabla_{x} f(x, u), \nabla_{u} f(x, u), \nabla_{x} c(x, u), \nabla_{u} c(x, u), \\
& \nabla_{x}^{2} c(x, u), \nabla_{u}^{2} c(x, u), \nabla_{x, u}^{2} c(x, u)
\end{aligned}
$$

No noise! \quad No terminal cost $c_{h}\left(x_{H}\right)!$

Local Linearization of Dynamics

Assume that all possible initial states x_{0} are close to x^{\star} and can be kept there with actions close to u^{\star}

We can approximate $f(x, u)$ locally with a first-order Taylor expansion:

$$
f(x, u) \approx f\left(x^{\star}, u^{\star}\right)+\nabla_{x} f\left(x^{\star}, u^{\star}\right)\left(x-x^{\star}\right)+\nabla_{u} f\left(x^{\star}, u^{\star}\right)\left(u-u^{\star}\right)
$$

$$
\begin{array}{ll}
& \text { where: } \\
\nabla_{x} f(x, u) \in \mathbb{R}^{d \times d}, & \nabla_{x} f(x, u)[i, j]=\frac{\partial f[i]}{\partial x[j]}(x, u)
\end{array}
$$

$$
\nabla_{u} f(x, u) \in \mathbb{R}^{d \times k}, \quad \nabla_{u} f(x, u)[i, j]=\frac{\partial f[i]}{\partial u[j]}(x, u)
$$

Local Quadratization of Cost Function

We can approximate $c(x, u)$ locally at $\left(x^{\star}, u^{\star}\right)$ with second-order Taylor expansion:

$$
\begin{gathered}
c(x, u) \approx c\left(x^{\star}, u^{\star}\right)+\nabla_{x} c\left(x^{\star}, u^{\star}\right)^{\top}\left(x-x^{\star}\right)+\nabla_{u} c\left(x^{\star}, u^{\star}\right)^{\top}\left(u-u^{\star}\right) \\
+\frac{1}{2}\left(x-x^{\star}\right)^{\top} \nabla_{x}^{2} c\left(x^{\star}, u^{\star}\right)\left(x-x^{\star}\right)+\frac{1}{2}\left(u-u^{\star}\right)^{\top} \nabla_{u}^{2} c\left(x^{\star}, u^{\star}\right)\left(u-u^{\star}\right)+\left(x-x^{\star}\right)^{\top} \nabla_{x, u}^{2} c(x, u)\left(u-u^{\star}\right) \\
\nabla_{x} c(x, u) \in \mathbb{R}^{d}, \quad \nabla_{x} c(x, u)[i]=\frac{\partial c}{\partial x[i]}(x, u), \\
\nabla_{u} c(x, u) \in \mathbb{R}^{k}, \quad \nabla_{u} c(x, u)[i]=\frac{\partial c}{\partial u[i]}(x, u), \\
\nabla_{x}^{2} c(x, u) \in \mathbb{R}^{d \times d}, \quad \nabla_{x}^{2} c(x, u)[i, j]=\frac{\partial^{2} c}{\partial x[i] \partial x[j]}(x, u), \\
\nabla_{x, u}^{2} c(x, u) \in \mathbb{R}^{d \times k}, \quad \nabla_{x, u}^{2} c(x, u)[i, j]=\frac{\partial^{2} c}{\partial x[i] \partial u[j]}(x, u)
\end{gathered}
$$

Local Linearization: Putting it all Together

$$
\begin{aligned}
c(x, u) \approx & c\left(x^{\star}, u^{\star}\right)+\nabla_{x} c\left(x^{\star}, u^{\star}\right)^{\top}\left(x-x^{\star}\right)+\nabla_{u} c\left(x^{\star}, u^{\star}\right)^{\top}\left(u-u^{\star}\right) \\
& +\frac{1}{2}\left(x-x^{\star}\right)^{\top} \nabla_{x}^{2} c\left(x^{\star}, u^{\star}\right)\left(x-x^{\star}\right)+\frac{1}{2}\left(u-u^{\star}\right)^{\top} \nabla_{u}^{2} c\left(x^{\star}, u^{\star}\right)\left(u-u^{\star}\right)+\left(x-x^{\star}\right)^{\top} \nabla_{x, u}^{2} c(x, u)\left(u-u^{\star}\right) \\
f(x, u) \approx & f\left(x^{\star}, u^{\star}\right)+\nabla_{x} f\left(x^{\star}, u^{\star}\right)\left(x-x^{\star}\right)+\nabla_{u} f\left(x^{\star}, u^{\star}\right)\left(u-u^{\star}\right)
\end{aligned}
$$

Rearranging terms, we get back to the following formulation:
$\arg \min _{\pi_{0}, \ldots, \pi_{H-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}} \mathbb{E}\left[\sum_{h=0}^{H-1}\left(x_{h}^{\top} Q x_{h}+u_{h}^{\top} R u_{h}+u_{h}^{\top} M x_{h}+x_{h}^{\top} q+u_{h}^{\top} r+c\right)\right]$
such that $\quad x_{h+1}=A x_{h}+B u_{h}+v, \quad x_{0} \sim \mu_{0}, \quad u_{h}=\pi_{h}\left(x_{h}\right)$
Special case of one of the LQR extensions!

Summary of Local Linearization So Far:

For tasks such as balancing near goal state (x^{\star}, u^{\star}), we can perform first order Taylor expansion on $f(x, u)$, and second order Taylor expansion on $c(x, u)$ around the balancing point (x^{\star}, u^{\star})

$$
\begin{aligned}
& \arg \min _{\pi_{0}, \ldots, \pi_{H-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}} \mathbb{E}\left[\sum_{h=0}^{H-1}\left(x_{h}^{\top} Q x_{h}+u_{h}^{\top} R u_{h}+u_{h}^{\top} M x_{h}+x_{h}^{\top} q+u_{h}^{\top} r+c\right)\right] \\
& \text { such that } \quad x_{h+1}=A x_{h}+B u_{h}+v, \quad x_{0} \sim \mu_{0}, \quad u_{h}=\pi_{h}\left(x_{h}\right)
\end{aligned}
$$

Last step: checking some practical issues

Locally Convexifying the Cost Function

Note that $c(x, u)$ might not even be convex;
So, $\nabla_{x}^{2} c\left(x^{\star}, u^{\star}\right) \& \nabla_{u}^{2} c\left(x^{\star}, u^{\star}\right)$ may not be positive definite What can we do?

In practice, we force them to be positive definite:
Given a symmetric matrix $W \in \mathbb{R}^{d \times d}$,
we compute the eigen-decomposition $W=\sum_{i=1}^{d} \sigma_{i} z_{i} z_{i}^{\top}$, and we approximate W as

$$
W \approx \sum_{i=1}^{d} \mathbf{1}\left(\sigma_{i}>0\right) \sigma_{i} z_{i} z_{i}^{\top}+\lambda I,
$$

for some small $\lambda>0$

Computing Approximate Derivatives

Recall our assumption: we only have black-box access to $f \& c$:
i.e., unknown analytical form, but given any (x, u), the black boxes output x^{\prime}, c, where

$$
x^{\prime}=f(x, u), c=c(x, u)
$$

Compute gradient using finite differencing:

$$
\begin{gathered}
\frac{\partial f[i]}{\partial x[j]}(x, u) \approx \frac{f\left(x+\delta_{j}, u\right)[i]-f\left(x-\delta_{j}, u\right)[i]}{2 \delta}, \text { where } \delta_{j}=[0, \ldots, 0, \underbrace{\delta}_{j^{\prime} \text { th entry }}, 0, \ldots 0]^{\top} \\
\text { To compute second derivative, e.g., } \frac{\partial^{2} c}{\partial x[i] \partial u[j]}(x, u)
\end{gathered}
$$

First implement finite differencing procedure for $\partial c / \partial x[i]$, and then perform another finite differencing with respect to $u[j]$ on top of the first finite differencing procedure for $\partial c / \partial x[i]$

Summary for local linearization approach

1. Perform first order Taylor expansion on $f(x, u)$
and second order Taylor expansion on $c(x, u)$, both around the balancing point $\left(x^{\star}, u^{\star}\right)$
2. Force Hessians $\nabla_{x}^{2} c(x, u) \& \nabla_{u}^{2} c(x, u)$ to be positive definite
3. Leverage finite differences to approximate gradients and Hessians
4. The approximation is an (direct extension of) LQR, so we know how to compute the optimal policy

Today

- Feedback from last lecture
- Recap
- Locally linearization
- Iterative LQR

Limits of Local Linearization

Local linearization can work if x_{0} is very close to x^{\star} and stays there with near-optimal (i.e., near- u^{\star}) actions

But when x_{h} is far away from x^{\star} or u_{h} needs to be far from u^{\star} for any h, first/second-order Taylor expansion is not accurate anymore

Idea of Iterative LQR

Instead of linearizing/quadratizing around $\left(x^{\star}, u^{\star}\right)$, linearize/quadratize around some other (\bar{x}, \bar{u}) In fact, we can even linearize/quadratize around different points (\bar{x}_{h}, \bar{u}_{h}) at each h

After linearization and quadratization at time h around waypoint $\left(\bar{x}_{h}, \bar{u}_{h}\right), \forall h$, re-arranging terms gives:
$\arg \min _{\pi_{0}, \ldots, \pi_{H-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}} \mathbb{E}\left[\sum_{h=0}^{H-1}\left(x_{h}^{\top} Q_{h} x_{h}+u_{h}^{\top} R_{h} u_{h}+u_{h}^{\top} M_{h} x_{h}+x_{h}^{\top} q_{h}+u_{h}^{\top} r_{h}+c_{h}\right)\right]$
such that $\quad x_{h+1}=A_{h} x_{h}+B_{h} u_{h}+v_{h}, \quad x_{0} \sim \mu_{0}, \quad u_{h}=\pi_{h}\left(x_{h}\right)$

Time-dependent LQR problem: we know the solution
Question: how to choose the waypoints $\left(\bar{x}_{h}, \bar{u}_{h}\right)$ to get the best approximation/solution?

Iterative LQR (iLQR)

$$
\text { Recall } x_{0} \sim \mu_{0} \text {; denote } \mathbb{E}_{x_{0} \sim \mu_{0}}\left[x_{0}\right]=\bar{x}_{0}
$$

Initialize $\bar{u}_{0}^{0}, \ldots, \bar{u}_{H-1}^{0}$, (how might we do this?)
Generate nominal trajectory: $\bar{x}_{0}^{0}=\bar{x}_{0}, \bar{u}_{0}^{0}, \ldots, \bar{u}_{h}^{0}, \bar{x}_{h+1}^{0}=f\left(\bar{x}_{h}^{0}, \bar{u}_{h}^{0}\right), \ldots, \bar{x}_{H-1}^{0}, \bar{u}_{H-1}^{0}$ For $i=0,1, \ldots$

Note that although true f is stationary,

For each h, linearize $f(x, u)$ at $\left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right)$: its approximation f_{h} is not

$$
f_{h}(x, u) \approx f\left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right)+\nabla_{x} f\left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right)\left(x-\bar{x}_{h}^{i}\right)+\nabla_{u} f\left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right)\left(u-\bar{u}_{h}^{i}\right)
$$

For each h, quadratize $c_{h}(x, u)$ at $\left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right)$:

$$
\begin{gathered}
c_{h}(x, u) \approx \frac{1}{2}\left[\begin{array}{l}
x-\bar{x}_{h}^{i} \\
u-\bar{u}_{h}^{i}
\end{array}\right]^{\top}\left[\begin{array}{c}
\nabla_{x}^{2} c\left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right) \nabla_{x, u}^{2} c\left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right) \\
\nabla_{u, x}^{2} c\left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right) \nabla_{u}^{2} c\left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right)
\end{array}\right]\left[\begin{array}{l}
x-\bar{x}_{h}^{i} \\
u-\bar{u}_{h}^{i}
\end{array}\right] \\
+\left[\begin{array}{c}
x-\bar{x}_{h}^{i} \\
u-\bar{u}_{h}^{i}
\end{array}\right]^{\top}\left[\begin{array}{c}
\nabla_{x} c\left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right) \\
\nabla_{u} c\left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right)
\end{array}\right]+c\left(\bar{x}_{h}^{i}, \bar{u}_{h}^{i}\right)
\end{gathered}
$$

Formulate time-dependent LQR and compute its optimal control $\pi_{0}^{i}, \ldots, \pi_{H-1}^{i}$
Set new nominal trajectory: $\bar{x}_{0}^{i+1}=\bar{x}_{0}, \bar{u}_{h}^{i+1}=\pi_{h}^{i}\left(\bar{x}_{h}^{i+1}\right)$, and $\bar{x}_{h+1}^{i+1}=f\left(\bar{x}_{h}^{i+1}, \bar{u}_{h}^{i+1}\right)$

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
2. Still want to use finite differences to approximate derivatives
3. We want to use line-search to get monotonic improvement:

Given the previous nominal control $\bar{u}_{0}^{i}, \ldots, \bar{u}_{H-1}^{i}$, and the latest computed controls $\bar{u}_{0}, \ldots, \bar{u}_{H-1}$ We want to find $\alpha \in[0,1]$ such that $\bar{u}_{h}^{i+1}:=\alpha \bar{u}_{h}^{i}+(1-\alpha) \bar{u}_{h}$ has the smallest cost,

$$
\min _{\alpha \in[0,1]} \sum_{h=0}^{H-1} c\left(x_{h}, \bar{u}_{h}^{i+1}\right)
$$

s.t. $\quad x_{h+1}=f\left(x_{h}, \bar{u}_{h}^{i+1}\right), \quad \bar{u}_{h}^{i+1}=\alpha \bar{u}_{h}^{i}+(1-\alpha) \bar{u}_{h}, \quad x_{0}=\bar{x}_{0}$

Why is this tractable? because it is 1-dimensional!

Example:

2-d car navigation
Cost function is designed such that it gets to the goal without colliding with obstacles (in red)

Summary of LQR extended to nonlinear control:

Local Linearization:
Approximate an LQR at the balance (goal) position $\left(x^{\star}, u^{\star}\right)$ and then solve the approximated LQR
Computes an approximately globally optimal solution for a small class of nonlinear control problems

Iterative LQR

Iterate between:
(1) forming an LQR around the current nominal trajectory,
(2) computing a new nominal trajectory using the optimal policy of the LQR

Computes a locally optimal (in policy space) solution for a large class of nonlinear control problems

Today

- Feedback from last lecture
- Recap
- Locally linearization
- Iterative LQR

Summary:

Local linearization

- Allows us to approximately optimally control any system near its optimum Iterative LQR
- Uses LQR approximation to find locally optimal nonlinear control solution

Attendance:

bit.ly/3RcTC9T

Feedback:
bit.Iy/3RHtlxy

