
 
Fitted Dynamic Programming 

 
Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning 

Fall 2023

1



Today

• Feedback from last lecture


• Recap


• Neural networks


• Fitted value iteration


• Fitted policy iteration

2



Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.

3



Today

4

• Feedback from last lecture


• Recap


• Neural networks


• Fitted value iteration


• Fitted policy iteration



Recap

Choose  based on approximation, complexity, and optimization criterionℱ

5

To approximate  from data, can use Empirical Risk Minimization (ERM): 𝔼[y |x]
̂f(x) = arg min

f∈ℱ

1
n

n

∑
i=1

(yi − f(xi))2

Optimize via gradient descent (GD) or stochastic gradient descent (SGD)

Linear regression parameterizes  as  and can work well when  
very smooth, high-dimensional (penalties like ridge/lasso help here), and/or 

there is a good featurization 

f(x) x⊤θ 𝔼[y |x]

ϕ(x)



Today

6

• Feedback from last lecture


• Recap


• Neural networks


• Fitted value iteration


• Fitted policy iteration



Neural network model

7

Building blocks: 

1. Linear transformation (multiplication by matrix , then addition by vector ) 

2. Nonlinear transformation , e.g., ReLU , applied element-wise

W b
σ σ(a) = max(a,0)

Simplest nontrivial NN is . Can think of as:

1. Start with input ,

2. Linearly transform with  and  to get 

3. Apply (element-wise) the nonlinearity  to get 

4. Linearly transform with  and  to get 

f(x) = W2σ(W1x+b1)+b2

x ∈ ℝd

W1 ∈ ℝm×d b1 ∈ ℝm W1x+b1 ∈ ℝm

σ σ(W1x+b1) ∈ ℝm

W2 ∈ ℝm×1 b2 ∈ ℝ W2σ(W1x+b1)+b2 ∈ ℝ
With  layers: p f(x) = Wpσ(Wp−1σ( ⋯ σ(W1x+b1) ⋯ )+bp−1)+bp
Parameter vector  concatenates all ’s and ’s;  scales as width  depthθ W b dim(θ) ×



Optimizing the neural network

8

Computing gradients, even stochastic gradients , is daunting∇θLi(θ)

A trick called backpropagation allows such gradients to be computed efficiently

Too notationally cumbersome to cover here, but basically the hierarchical structure 
of neural networks plays very nicely with the chain rule for derivatives (see 

Wikipedia or many other sources on internet for more)

Unfortunately,  is non-convex, i.e., it will in general have many local optimaL(θ)

We hope that SGD finds a good one… in practice there are optimization tricks that 
are like SGD but perform better, e.g., one very popular one is called Adam



Notes/Paradoxes on Neural Networks

9

1. Work well for all problems, breaking criterion 1 (approximation)

a) Actually, NNs need a lot of data, and are often worse than classical methods 

on smaller data sets

b) Many of the most famous / impressive NNs, such as CNNs for vision or 

AlphaFold for protein structure, heavily incorporate problem-specific 
structure into their models


2. Work better when larger / more complex, breaking criterion 2 (complexity)

a) This is true, though larger / more complex NNs also need more data to train

b) The number of NN parameters is not a good measure of its “complexity”


3. Are highly non-convex, breaking criterion 3 (optimization)

a) The optimizers used for NNs don’t find arbitrary solutions, they actually find 

“low-complexity” solutions!
Practical Neural Networks are very far from “just” ERM



Today

10

• Feedback from last lecture


• Recap


• Neural networks


• Fitted value iteration


• Fitted policy iteration



Recall: Value Iteration Algorithm (infinite horizon, discounted)

11

V⋆(s) = max
a {r(s, a) + γ𝔼s′￼∼P(⋅|s,a)[V⋆(s′￼)]}, ∀s

Recall that Bellman equations state that the optimal value function  satisfies:V⋆(s)

1. Initialization: ,  

2. For   

, 


3. Return: 

      

V0(s) = 0 ∀s
t = 0,…T − 1

Vt+1(s) = max
a {r(s, a) + γ∑

s′￼∈S

P(s′￼|s, a)Vt(s′￼)} ∀s

VT(s)
π(s) = arg max

a {r(s, a) + γ𝔼s′￼∼P(⋅|s,a)VT(s′￼)}

And the VI algorithm is a fixed-point algorithm to find :V⋆



Recall: Dynamic Programming for  (finite horizon)V⋆

12

V⋆
h (s) = max

a {r(s, a) + 𝔼s′￼∼P(⋅|s,a)[V⋆
h+1(s′￼)]}, ∀s, h

Recall that Bellman equations state that the optimal value function  satisfies:V⋆(s)

• Initialize:   
For t= , set:


• , 


• , 

Vπ
H(s) = 0 ∀s ∈ S

H − 1,…0
V⋆

h (s) = max
a [r(s, a) + 𝔼s′￼∼P(⋅|s,a) [V⋆

h+1(s′￼)]] ∀s ∈ S

π⋆
h (s) = arg max

a [r(s, a) + 𝔼s′￼∼P(⋅|s,a) [V⋆
h+1(s′￼)]] ∀s ∈ S

Notation: Now relabel  (just move subscript to an explicit argument)Vh(s) =: V(s, h)
The above DP algorithm can just be seen as solving  (Bellman) equations for the 

 different values of , but doing so in an exact, efficient way via DP
SH

SH V(s, h)



Q-Value Dynamic Programming Algorithm:

13

Recall from HW1, Problem 2, the Bellman equations for :Q⋆

Q⋆
h (s, a) = r(s, a) + 𝔼s′￼∼P(⋅|s,a) [max

a′￼

Q⋆
h+1(s′￼, a′￼)]

1. Initialization:  

2. Solve (via dynamic programming): 




3. Return: 


Q(s, a, H) = 0 ∀s, a

Q(s, a, h) = r(s, a) + 𝔼s′￼∼P(s,a) [max
a′￼∈A

Q(s′￼, a′￼, h + 1)] ∀s, a, h

πh(s) = arg max
a {Q(s, a, h)}

Analogous Q-value DP, with same notational change as previous slide:  as argumenth



What if we can’t just evaluate the expectations?

14

If  and/or  are very large, computing expectations could be very expensiveS A

Since we’re trying to approximate conditional expectations, seems like it kind of fits 
into supervised learning—can we use an approach like that? Yes!

Suppose:

• We have  trajectories 


Each trajectory is of the form 

•  is often referred to as our data collection policy.

N τ1, …τN ∼ ρπdata

τi = {si
0, ai

0, …si
H−1, ai

H−1, si
H}

πdata

Want: Q(s, a, h) ≈ r(s, a) + 𝔼s′￼∼P(s,a) [max
a′￼∈A

Q(s′￼, a′￼, h + 1)] ∀s, a, h

We may not have a way to directly compute those expectations, but instead only 
have access to a simulator (or the real world), where we can collect data

This is now full RL!!



Connection to Supervised Learning

15

What are the  and ?y x

Q(s, a, h) ≈ r(s, a) + 𝔼s′￼∼P(s,a) [max
a′￼∈A

Q(s′￼, a′￼, h + 1)] ∀s, a, h

Note that the RHS can also be written as 

𝔼 [r(sh, ah) + max
a′￼

Q(sh+1, a′￼, h + 1) sh, ah, h]
This suggests that  and  y = r(sh, ah) + max

a′￼

Q(sh+1, a′￼, h + 1) x = (sh, ah, h)
Then we’d be happy if we found a 

Q(sh, ah, h) = f(x) = 𝔼[y |x] = 𝔼 [r(sh, ah) + max
a′￼

Q(sh+1, a′￼, h + 1) sh, ah, h]



Connection to Supervised Learning (cont’d)

16

Setting that aside for the moment, to fit supervised learning, we’d minimize a least-

squares objective function: ̂f(x) = arg min
f∈ℱ

NH

∑
i=1

(yi − f(xi))2

Then if we have enough data, choose a good , and optimize well,ℱ

Q(sh, ah, h) := ̂f(x) ≈ 𝔼[y |x] = 𝔼 [r(sh, ah) + max
a′￼

Q(sh+1, a′￼, h + 1) sh, ah, h]

We can convert our data , into  pairs; how many?τ1, …τN ∼ ρπdata
(y, x) NH

BUT, to compute each , we need to already know !y Q



Fitted (Q-)Value Iteration

Input: offline dataset 

1. Initialize fitted  function at  

2. For  :





3. With  as an estimate of , return 

τ1, …τN ∼ ρπdata

Q f0
k = 0,1,…, K

fk = arg min
f∈ℱ

N

∑
i=1

H−1

∑
h=1

(f(si
h, ai

h, h) − (r(si
h, ai

h) + max
a

fk−1(si
h+1, a, h + 1)))2

fK Q⋆ πh(s) = arg max
a {fK(s, a, h)}

17

Q-Learning is an online version, i.e., draw new trajectories at each  based on  as -functionk fk Q

To address the circularity problem of not knowing  for computing the , we have 
an algorithmic tool… what is it?

Q y

Hint: we used it for another VI algorithm before…

Fixed point iteration! Initialize, then at each step, pretend  is known by plugging in 
the previous time step’s  to compute the ’s, and then use that to get next 

Q
Q y Q



Today

18

• Feedback from last lecture


• Recap


• Neural networks


• Fitted value iteration


• Fitted policy iteration



Recall: Policy Iteration (PI)
• Initialization: choose a policy 

• For 


1. Policy Evaluation: Solve (via dynamic programming): 



2. Policy Improvement: set 

π0 : S ↦ A
k = 0,1,…

Qπk(s, a, h) = r(s, a) + 𝔼s′￼∼P(⋅|s,a) [Qπk(s′￼, πk(a), h + 1)] ∀s, a, h

πk+1
h (s) := arg max

a
Qπk(s, a, h)

19

Again: what if we’re in full RL setting where we can’t just evaluate expectations?

This breaks the Policy Evaluation step, so can we do a fitted version?

Yes! RHS can be written as  𝔼 [r(sh, ah) + Qπk(sh+1, πk(ah), h + 1) sh, ah, h]
Spot the difference!



Fitted Policy Evaluation

Input: policy , dataset 

1. Initialize fitted  function at  

2. For  :





3. Return the function  as an estimate of 

π τ1, …τN ∼ ρπ
Qπ f0

k = 0,1,…, K

fk = arg min
f∈ℱ

N

∑
i=1

H−1

∑
h=1

(f(si
h, ai

h, h) − (r(si
h, ai

h) + fk−1(si
h+1, π(ai

h), h + 1)))2

fK Qπ

20

Use exact same strategy as before: fixed point iteration



Fitted Policy Iteration: 

21

• Initialization: choose a policy  and a sample size 

• For 


1. Fitted Policy Evaluation: Using  sampled trajectories 
, obtain approximation 


2. Policy Improvement: set 

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk Q̂πk ≈ Qπk

πk+1
h (s) := arg max

a
Q̂πk(s, a, h)



(Another) Fitted Policy Evaluation option

Input: policy , dataset 

Return:


π τ1, …τN ∼ ρπ

Q̂π = arg min
f∈ℱ

N

∑
i=1

H−1

∑
h=1

(f(si
h, ai

h, h) −
H−1

∑
t=h

r(si
t , ai

t))2

22

Using the definition of the  function, can do a non-iterative fitted policy evaluation Q

Qπ(s, a, h) = 𝔼 [
H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]



Today

23

• Feedback from last lecture


• Recap


• Neural networks


• Fitted value iteration


• Fitted policy iteration



Summary:

Feedback: 

bit.ly/3RHtlxy

24

Attendance: 
bit.ly/3RcTC9T

•Neural Networks work well for complex function approximation with big data

• Incorporating supervised learning into PI and VI makes them RL algorithms!

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

