Imitation Learning &
Behavioral Cloning

CS/Stat 184: Introduction to Reinforcement Learning
Fall 2023

Today

 Recap++
* Imitation Learning:
* Behavioral Cloning

 DAgger

Recap

| 2] A

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

0 1
(ol 1], mpl2]) := (exp(6))

1 +exp(@) 1+ exp(6)
JO@) =100 - [1] + 1 - my|2]

%

Every possible policy is a
point on the line segment,

parameterized by 0.

1 ﬂ[lj

Fisher information scalar: Fy =

99 exp(0)
(1 + exp(0))-
99 exp(6%)
! (1 + exp(6¥))?

Gradient: J'(0) =

Exact PG: 9ct! = 9% +

i.e., vanilla GA moves to 8 = oo with smaller
and smaller steps, since J'(@) > 0as 8 - o©

exp(0)
(1 + exp(0))?

J(6%)

— 0, +1-99
Fr

NPG: 0"t = 0 + g

Meta-Approach: CPI/TRPO/NPG/PPO are all pretty similar.

1. Init 71'0
2. Fork=0,...K:

k+1 0 — = ¢
nt ~ arg m@ax A (z7), where Ay(7) =g s, ~p, Z amn(s)AT (S ap)

such that p, is “close” to p«

 CPIl: conservative policy iteration

uses unconstrained optimization: 7 ~ arg max Ak(ﬂﬁ),
0
enforces closeness with “mixing”: R (1 —a)- ™+ a - 7t

 [RPO: use KL to enforce closeness.
« NPG: is TRPO up to “leading order” (via Taylor’s theorem).
 PPO: uses a Lagrangian relaxation (i.e. regularization)

3. Return 7y

“Lack of Exploration” leads to Optimization and Statistical Challenges

N\~ 9
TEAVER"
So T R=1
- S states - Thrun 92

Suppose [~ poly(|S|) & p(sy) = 1 (i.e. we start at).
A randomly initialized policy 7° has prob. O(1/3!°) of hitting the goal state in a trajectory.
Implications:

 The following sample based approach, with yi(s,) = 1, require 03P trajectories.

 Holds for (sample based) Fitted DP
 Holds for (sample based) PG/CPI/TRPO/NPG/PPO

Basically, for these approaches, we are stuck without exploration, if y:(s,) = 1.

TAVa

Let’'s examine the role of i

S %

R=1

—~—

» Suppose that somehow the distribution y¢ had better coverage. > states

e e.g, 4 was uniform over the all states in our toy problem, then all approaches we
covered would work (with mild assumptions)

* Theory: CPI/TRPO/NPG/PPO have better guarantees than fitted DP methods
(assuming some “coverage”)

o Strategies:

* |f we have a simulator, sometimes we can design i to have better coverage.

* this is helpful for robustness as well.
* Imitation learning

* An expert gives us samples from a “good” /.
* EXxplicit exploration:

« UCB-VI: we’ll merge two good ideas!

* Encourage exploration in PG methods.
* Try with reward shaping

Thrun 92

loday:

What about guarantees for PG methods? (vs fitted-DP methods)

exp(0' ¢(s, a))

my(a | 5) =

> exp(@Te(s,a’)

What about guarantees for PG methods? (vs fitted-DP methods)

* The hope is that if (average case) “supervised learning” worked, then RL would also work.

exp(0' ¢(s, a))

my(a | 5) =

> exp(8Te(s, a’))

What about guarantees for PG methods? (vs fitted-DP methods)

* The hope is that if (average case) “supervised learning” worked, then RL would also work.

exp(0' ¢(s, a))

my(a | 5) =

> exp(8Te(s, a’))

What about guarantees for PG methods? (vs fitted-DP methods)

* The hope is that if (average case) “supervised learning” worked, then RL would also work.

exp(0' ¢(s, a))

my(a | 5) =

> exp(8Te(s, a’))

- Approximation error: For log linear policies, how good does ¢ need to be?
(comment: hopefully some average case condition for approximating A*(s, a))

What about guarantees for PG methods? (vs fitted-DP methods)

* The hope is that if (average case) “supervised learning” worked, then RL would also work.

exp(0' ¢(s, a))

myals) =
> exp(8Te(s,a))
- Approximation error: For log linear policies, how good does ¢ need to be?

(comment: hopefully some average case condition for approximating A*(s, a))

. Sample size: hope to use a # samples that is poly in dim(¢) & 1/¢

accuracy-

What about guarantees for PG methods? (vs fitted-DP methods)

* The hope is that if (average case) “supervised learning” worked, then RL would also work.

exp(0' ¢(s, a))

my(a | 5) =

> exp(8Te(s, a’))

- Approximation error: For log linear policies, how good does ¢ need to be?
(comment: hopefully some average case condition for approximating A*(s, a))
- Sample size: hope to use a # samples that is poly in dim(¢) & 1/€,..,4cy-
» Coverage: need some coverage condition over the state space.
(comment: hopefully the coverage conditions are only in “¢-space”)

What about guarantees for PG methods? (vs fitted-DP methods)

* The hope is that if (average case) “supervised learning” worked, then RL would also work.

exp(0' ¢(s, a))

TT\A|S) =
Al > exp(0T¢(s, a))

- Approximation error: For log linear policies, how good does ¢ need to be?

(comment: hopefully some average case condition for approximating A*(s, a))

- Sample size: hope to use a # samples that is poly in dim(¢) & 1/€,..,4cy-

» Coverage: need some coverage condition over the state space.

(comment: hopefully the coverage conditions are only in “¢-space”)

. Computation: we want NPG to find something good with poly in d,1/¢

accuracy> 11 iterations.

What about guarantees for PG methods? (vs fitted-DP methods)

* The hope is that if (average case) “supervised learning” worked, then RL would also work.

exp(0' ¢(s, a))

TT\A|S) =
Al > exp(0T¢(s, a))

- Approximation error: For log linear policies, how good does ¢ need to be?

(comment: hopefully some average case condition for approximating A*(s, a))

- Sample size: hope to use a # samples that is poly in dim(¢) & 1/€,..,4cy-

» Coverage: need some coverage condition over the state space.

(comment: hopefully the coverage conditions are only in “¢-space”)

. Computation: we want NPG to find something good with poly in d,1/¢

accuracy> 11 iterations.

* Theory: (see AJKS Ch 4+13, for formal log linear policies)
There are (somewhat subtle) approx/coverage conditions where NPG converges to an €
poly sample, poly computation time.

()

-opt policy with

accuracy

Today

 Recap++
* Imitation Learning:
* Behavioral Cloning

 DAgger

10

Imitation Learning

Imitation Learning

Imitation Learning

——

Imitation Learning

Expert
Demonstrations

Imitation Learning

Machine
Learning
Algorithm

Expert

Demonstrations

SVM
 (Gaussian Process
 Kernel Estimator
 Deep Networks

« Random Forests
« |LWR

12

Machine
Learning
Algorithm

Expert

Demonstrations

Imitation Learning
SVM

Policy 7T b
 (Gaussian Process

. Kernel Estimator Maps S_tates
« Deep Networks to actions

« Random Forests
« |LWR

12

Learning to Drive by Imitation

[Pomerleau89, Saxena05, Ross11a]

Input: Output:

Steering Angle
in[-1, 1]

Camera Image

13

Today

 Recap++
* Imitation Learning:
* Behavioral Cloning

 DAgger

14

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories

r
-'--
........
a® »
" *
- s
0’ ’ -
. .
ot *
»
e .
. o
. »
- .
- .
> "
- .
- -
- »
. .
. -
- ‘\
o .
» .
-
v
o
.
.
-
.
*
-
. \ .
o “
.
., -
.
., <
-
e — .
., *
L -
.....
.......

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

15

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

15

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories

Dataset

M

Supervised Learning 15

[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories Dataset

Learned
Policy m

Mapping from state (image) to |

control (steering direction) Supervised Learning 15

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Expert Trajectories

Finite horizon MDP

16

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Expert Trajectories

Finite horizon MDP

16

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Expert Trajectories

Finite horizon MDP

Ground truth reward (s, a) € [0,1] is unknown;
Assume the expert has a good policy 7™ (not necessarily opt)

We have a dataset of M trajectories: & = {1}, ...7y},

_ (i iH-1
where 7, = (5,4,), _y ~ P

16

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Expert Trajectories

Finite horizon MDP

Ground truth reward (s, a) € [0,1] is unknown;
Assume the expert has a good policy 7™ (not necessarily opt)

We have a dataset of M trajectories: & = {1}, ...7y},
where 7; = (s/, a.)i ~ p.

Goal: learn a policy from @ that is as good as the expert 7*

16

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S — A(A)}

17

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S — A(A)}

17

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S — A(A)}

17

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S — A(A)}

Many choices of loss functions:

17

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S — A(A)}

Many choices of loss functions:

1. Negative log-likelihood (NLL): Z(x, s,a) = — Inw(a| s)

17

Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S — A(A)}

Many choices of loss functions:
1. Negative log-likelihood (NLL): Z(x, s,a) = — Inw(a| s)
2. square loss (i.e., regression for continuous action): Z(rx, s, a) = ||z(s) — aH%

17

Theorem: IL is (almost) as easy as SL

Note a training and testing “mismatch”

18

Theorem: IL is (almost) as easy as SL M H-1

= arg min 2 Z z/” T, sh, ah

3
<21 =0

Note a training and testing “mismatch”

Theorem [BC Performance]:
suppose we assume supervised learning succeeds, with € classification error:

| H=l
e | T Z 1 [;T\(Sh) # ﬂ*(Sh)] < €,
Gl R

18

Theorem: IL is (almost) as easy as SL M H-1

= arg min Z Z z/” T, Sh, ah

3
<21 =0

Note a training and testing “mismatch”

Theorem [BC Performance]:
suppose we assume supervised learning succeeds, with € classification error:

| H=l
e | T 2 1 [ﬁ(Sh) # ﬂ*(Sh)] < €,
Gl R

(where 7™ is the experts policy, which need not be optimal)

18

Theorem: IL is (almost) as easy as SL M H-1

= arg min Z Z z/” T, Sh, ah

3
<21 =0

Note a training and testing “mismatch”

Theorem [BC Performance]:
suppose we assume supervised learning succeeds, with € classification error:

1 H-1
s | = D 1 [R(s) # 2*(s)] | <e
Gl Rl

(where 7™ is the experts policy, which need not be optimal)
then, under i, we have:

|[VZ — V*| < H?%

18

Theorem: IL is (almost) as easy as SL M H-1

= arg min 2 Z z/” T, sh, ah

3
<21 =0

Note a training and testing “mismatch”

Theorem [BC Performance]:
suppose we assume supervised learning succeeds, with € classification error:

1
“ene | Z 1 [;T\(Sh) 7 ﬂ*(Sh)] <€

(where 7™ is the experts policy,
then, under M we have:

VT — V7| S

The quadratic amplification is annoying

18

Proof:

19

Proof:

By the PDL
H-1
| Vyz*(s) — V7 ()| = S [Z A]ff (Sh, Clh)]
h=0

19

By the PDL
| VZ(5) = VE(s)| =

Proof:

-1
—T~p % [Z A;zz (Sh’ ah)]
h=0

H-1
_Sl,...Sthﬂ* [Z A;ZZ' (Sha ﬂ*(sh))]
h=0

19

By the PDL

R H-1
VT (5) = VE(s)| = p[

19

By the PDL

R H-1
V7 (s) = VE(s)| = p[

|
I
e
=
{
h
3
*
[
Nl
>

19

Distribution Shift Example (H~ factor is tight)

Initial
state

Distribution Shift Example (H~ factor is tight)

Initial
state

Opt policy:

20

Distribution Shift Example (H~ factor is tight)

Initial
state

do

Opt policy:
Under p_., trajectory is s, 1, 57, ...

20

Distribution Shift Example (H~ factor is tight)

Initial
state

Opt policy:
Under p_., trajectory is s, 1, 57, ...

IO]Z'*(Sh — SZ) =0

20

Distribution Shift Example (H~ factor is tight)

Initial
state

Opt policy:
Under p_., trajectory is s, 1, 57, ...
IOJZ";(Sh — Sz) — O

20

Distribution Shift Example (H~ factor is tight)

Assume SL returns the policy 7:

r(sy) =
R a; w/probl—He R
’ 7[(50) — o ﬂ(Sl) — Clz, 7[(52) —_ az

a, w/ prob He

Initial
state

Opt policy:
Under p_., trajectory is s, 1, 57, ...
,Oﬂ**(Sh — Sz) —_ O

20

Distribution Shift Example (H~ factor is tight)

Assume SL returns the policy 7:

r(sy) =
R a; w/probl—He R
’]Z-(SO) — . ﬂ(Sl) = Uy, ﬂ(Sz) = dy

a, w/ prob He

This policy has good supervised learning error:

1 H—-1 R
a _T"’Pnﬂ* E Z 1 [ﬂ(sh) 7 ﬂ*(sh)] — €
h=0

Initial *

note: while 7 (s,) # 7 *(s,), state s, is never visited under 7
state

Opt policy:
Under p_., trajectory is s, 1, 57, ...
IOJZ";(Sh — Sz) — O

20

Distribution Shift Example (H~ factor is tight)

Assume SL returns the policy 7:

r(s)) =
! R a; w/probl—He R
’]T(SO) — . ﬂ(Sl) = Uy, ﬂ(Sz) = dy

a, w/ prob He

This policy has good supervised learning error:

1 H—-1 R
a _T"’Pn,,* E Z 1 [ﬂ(sh) 7 ﬂ*(sh)] — €
h=0

Initial note: while 7 (s,) # 7*(s,), state s, is never visited under 7*

state
Ao We have quadratic degradation (in H):
| VZ*(SO) = (1 — He) - V[’f,*(so) + He -) = VZ*(SO) —cHH - 1)
Opt policy:

Under p_., trajectory is s, 51, ¢, - ..
,O,Ta;(Sh — Sz) — O

20

Distribution Shift Example (H~ factor is tight)

Assume SL returns the policy 7:

r(s)) =
! R a; w/probl—He R
’]Z-(SO) — . ﬂ(Sl) = Uy, ﬂ(Sz) = dy

a, w/ prob He

This policy has good supervised learning error:

1 H—-1 R
a _T"’Pn,,* E Z 1 [ﬂ(Sh) 7 ﬂ*(sh)] — €
h=0

Initial *

note: while 7 (s,) # 7 *(s,), state s, is never visited under 7
state

Ao We have quadratic degradation (in H):
VZ(sy) = (1 — He) - VE (sy) + He - 0 = VZ (s) — eH(H — 1
Opt policy: 1 (o) = () - Vi (5p) 1 (S0) ()

Under p ., trajectory Is sy, Sy, 5y, . .. Intuition: once we make a mistake at s, we

Pn**(Sh =5) =0 end up in $, which is not in the training data!

20

What could go wrong?

* Predictions affect future inputs/
observations

Learned Policy

Expert’s trajectory

21

Expert Demos

BC Policy

Today

 Recap++
* Imitation Learning:
* Behavioral Cloning

 DAgger

26

Intuitive solution: Interaction

Use interaction to collect
data where learned policy
goes

27

General Idea: lterative Interactive
Approach

New Data

s Ny

Collect Data

through
Interaction

Update Policy

N

Updated Policy

28

DAgger: Dataset Aggregation

Oth iteration

Expert Demonstrates Task Dataset

" 4
// > » 1st policy

Supervised Learning

[Ross11a]

29

DAgger: Dataset Aggregation
1st iteration

Execute 71 and Query Expert

Steering
from 4-@- \

expert Y £ —
Q’j ('
——

<

[Ross11a]

30

DAgger: Dataset Aggregation
1st iteration

Execute 71 and Query Expert

New Data

Steering
from 4-@- \

expe rt Y Vg —
ﬁ (/
\

<

[Ross11a]

31

DAgger: Dataset Aggregation
1st iteration

Execute 71 and Query Expert
New Data
Steering

from 4-@- \

expe rt Y Vg —
ﬁ (/
\

<

States from
the learned policy

[Ross11a]

31

DAgger: Dataset Aggregation
1st 1iteration

Execute 71 and Query Expert

Steering

from ;é- \

expert f/‘k -

—

Q-

\
(:

4

——

[Ross11a]

New Data

All previous data

"EJ‘«‘S@
?%(8

32

DAgger: Dataset Aggregation
1st 1iteration

Execute 71 and Query Expert

t New Data
eering
from k‘é-é- \
expertyy/‘ - |
o > Aggregate
Dataset

New policy
702

Supervised Learning

[Ross11a]

33

DAgger: Dataset Aggregation
2nd iteration

Execute 1, and Query Expert
< O\
N
(' »
Ty A 4%

New Data

Steering
from

expertY L
o

p—
&
’
Ny -*.&
~—

New policy
73

Aggregate
Dataset

Supervised Learning

[Ross11a]

34

Steering

DAgger: Dataset Aggregation
nth iteration

Execute 7,.1 and Query Expert
New Data

Aggregate
Dataset

Supervised Learning

[Ross11a]

35

The DAgger algorithm

Initialize 7°, and dataset I = &

Fortr=0—->T—1:

36

The DAgger algorithm

Initialize 7°, and dataset I = &

Fort=0—-> T —1:
1. W/ ', generate dataset of trajectories 9’ = {7, 7,, ...}
where for all trajectories s, ~ p_ ., a, = 77(s)

36

The DAgger algorithm

Initialize 7°, and dataset I = &

Fort=0—-> T —1:
1. W/ ', generate dataset of trajectories 9’ = {7, 7,, ...}
where for all trajectories s, ~ p_ ., a, = 77(s)

2. Data aggregation: @ = 9 U @'

36

The DAgger algorithm

Initialize 7°, and dataset I = &

Fort=0—-> T —1:
1. W/ ', generate dataset of trajectories 9’ = {7, 7,, ...}
where for all trajectories s, ~ p ., @, = 77(s)

2. Data aggregation: @ = 9 U @'

3. Update policy via Supervised-Learning: 771 = SL (@)

36

The DAgger algorithm

Initialize 7°, and dataset I = &

Fort=0—-> T —1:
1. W/ ', generate dataset of trajectories 9’ = {7, 7,, ...}
where for all trajectories s, ~ p ., @, = 77(s)

2. Data aggregation: @ = 9 U @'

3. Update policy via Supervised-Learning: 771 = SL (@)

In practice, the DAgger algorithm requires less human labeled data than BC.

Informal Theorem] Under more assumptions + assuming € SL error is achievable,
the DAgger algorithm has error: | V* — V" | < He

36

[Ross AISTATS 2011]

Success!

[Ross AISTATS 2011]

Success!

Summary:

1. NPG: a simpler way to do TRPO, a “pre-conditioned” gradient method.
2. PPO: “first order” approx to TRPO

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy

38

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

