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Example of Natural Gradient on 1-d problem: 2 actions, 1 state
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Every possible policy is a
point on the line segment,

parameterized by 0.
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Fisher information scalar: Fy =

99 exp(0)
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Gradient: J'(0) =

Exact PG: 9ct! = 9% +

i.e., vanilla GA moves to 8 = oo with smaller
and smaller steps, since J'(@) > 0as 8 - o©

exp(0)
(1 + exp(0))?

J(6%)

— 0, +1-99
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NPG: 0"t = 0 + g




Meta-Approach: CPI/TRPO/NPG/PPO are all pretty similar.

1. Init 71'0
2. Fork=0,...K:

k+1 0 — = ¢
nt ~ arg m@ax A (z7), where Ay(7) =g s, ~p, Z amn(s)AT (S ap)

such that p, is “close” to p«

 CPIl: conservative policy iteration

uses unconstrained optimization: 7 ~ arg max Ak(ﬂﬁ),
0
enforces closeness with “mixing”: R (1 —a)- ™+ a - 7t

 [RPO: use KL to enforce closeness.
« NPG: is TRPO up to “leading order” (via Taylor’s theorem).
 PPO: uses a Lagrangian relaxation (i.e. regularization)

3. Return 7y




“Lack of Exploration” leads to Optimization and Statistical Challenges

N\~ 9
TEAVER"
So T R=1
- S states - Thrun 92

Suppose [ ~ poly(|S|) & p(sy) = 1 (i.e. we start at ).
A randomly initialized policy 7° has prob. O(1/3!°) of hitting the goal state in a trajectory.
Implications:

 The following sample based approach, with yi(s,) = 1, require 03P trajectories.

 Holds for (sample based) Fitted DP
 Holds for (sample based) PG/CPI/TRPO/NPG/PPO

Basically, for these approaches, we are stuck without exploration, if y:(s,) = 1.



TAVa

Let’'s examine the role of i

S %

R=1

—~—

» Suppose that somehow the distribution y¢ had better coverage. > states

e e.g, 4 was uniform over the all states in our toy problem, then all approaches we
covered would work (with mild assumptions )

* Theory: CPI/TRPO/NPG/PPO have better guarantees than fitted DP methods
(assuming some “coverage”)

o Strategies:

* |f we have a simulator, sometimes we can design i to have better coverage.

* this is helpful for robustness as well.
* Imitation learning

* An expert gives us samples from a “good” /.
* EXxplicit exploration:

« UCB-VI: we’ll merge two good ideas!

* Encourage exploration in PG methods.
* Try with reward shaping

Thrun 92



loday:



What about guarantees for PG methods? (vs fitted-DP methods)
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What about guarantees for PG methods? (vs fitted-DP methods)

* The hope is that if (average case) “supervised learning” worked, then RL would also work.

exp(0' ¢(s, a))

TT\A|S) =
Al > exp(0T¢(s, a))

- Approximation error: For log linear policies, how good does ¢ need to be?

(comment: hopefully some average case condition for approximating A*(s, a))

- Sample size: hope to use a # samples that is poly in dim(¢) & 1/€,..,4cy-

» Coverage: need some coverage condition over the state space.

(comment: hopefully the coverage conditions are only in “¢-space”)

. Computation: we want NPG to find something good with poly in d,1/¢

accuracy> 11 iterations.

* Theory: (see AJKS Ch 4+13, for formal log linear policies)
There are (somewhat subtle) approx/coverage conditions where NPG converges to an €
poly sample, poly computation time.

( )

-opt policy with

accuracy
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Machine
Learning
Algorithm

Expert

Demonstrations

Imitation Learning
SVM

Policy 7T b
 (Gaussian Process

. Kernel Estimator  Maps S_tates
« Deep Networks to actions

« Random Forests
« |LWR

12



Learning to Drive by Imitation

[Pomerleau89, Saxena05, Ross11a]

Input: Output:

Steering Angle
in[-1, 1]

Camera Image
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[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories
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Supervised Learning Approach: Behavior Cloning

Expert Trajectories
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[Widrow64,Pomerleau89]

Supervised Learning Approach: Behavior Cloning

Expert Trajectories Dataset

Learned
Policy m

Mapping from state (image) to |

control (steering direction) Supervised Learning 15
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Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Expert Trajectories

Finite horizon MDP

Ground truth reward (s, a) € [0,1] is unknown;
Assume the expert has a good policy 7™ (not necessarily opt)

We have a dataset of M trajectories: & = {1}, ...7y},
where 7; = (s/, a. )i ~ p.

Goal: learn a policy from @ that is as good as the expert 7*
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Let’s formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class Il = {7 : S — A(A)}

Many choices of loss functions:
1. Negative log-likelihood (NLL): Z(x, s,a) = — Inw(a| s)
2. square loss (i.e., regression for continuous action): Z(rx, s, a) = ||z(s) — aH%

17



Theorem: IL is (almost) as easy as SL

Note a training and testing “mismatch”
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= arg min Z Z z/” T, Sh, ah

3
<21 =0

Note a training and testing “mismatch”

Theorem [BC Performance]:
suppose we assume supervised learning succeeds, with € classification error:

1 H-1
s | = D 1 [R(s) # 2*(s)] | <e
Gl Rl

(where 7™ is the experts policy, which need not be optimal)
then, under i, we have:

|[VZ — V*| < H?%
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Theorem: IL is (almost) as easy as SL M H-1

= arg min 2 Z z/” T, sh, ah

3
<21 =0

Note a training and testing “mismatch”

Theorem [BC Performance]:
suppose we assume supervised learning succeeds, with € classification error:

1
“ene | Z 1 [;T\(Sh) 7 ﬂ*(Sh)] <€

(where 7™ is the experts policy,
then, under M we have:

VT — V7| S

The quadratic amplification is annoying

18



Proof:
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Proof:

By the PDL
H-1
| Vyz*(s) — V7 ()| = S [ Z A]ff (Sh, Clh)]
h=0

19



By the PDL
| VZ(5) = VE(s)| =

Proof:

-1
—T~p % [ Z A;zz (Sh’ ah)]
h=0

H-1
_Sl,...Sthﬂ* [ Z A;ZZ' (Sha ﬂ*(sh))]
h=0
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By the PDL

R H-1
V7 (s) = VE(s)| = p[

|
I
e
=
{
h
3
*
[
Nl
>
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Distribution Shift Example (H~ factor is tight)

Assume SL returns the policy 7:

r(sy) =
R a; w/probl—He R
’ 7[(50) — o ﬂ(Sl) — Clz, 7[(52) —_ az

a, w/ prob He

Initial
state

Opt policy:
Under p_., trajectory is s, 1, 57, ...
,Oﬂ**(Sh — Sz) —_ O
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r(sy) =
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Distribution Shift Example (H~ factor is tight)

Assume SL returns the policy 7:

r(s)) =
! R a; w/probl—He R
’ ]T(SO) — . ﬂ(Sl) = Uy, ﬂ(Sz) = dy

a, w/ prob He

This policy has good supervised learning error:

1 H—-1 R
a _T"’Pn,,* E Z 1 [ﬂ(sh) 7 ﬂ*(sh)] — €
h=0

Initial note: while 7 (s,) # 7*(s,), state s, is never visited under 7*

state
Ao We have quadratic degradation (in H):
| VZ*(SO) = (1 — He) - V[’f,*(so) + He - ) = VZ*(SO) —cHH - 1)
Opt policy:

Under p_., trajectory is s, 51, ¢, - ..
,O,Ta;(Sh — Sz) — O
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Distribution Shift Example (H~ factor is tight)

Assume SL returns the policy 7:

r(s)) =
! R a; w/probl—He R
’ ]Z-(SO) — . ﬂ(Sl) = Uy, ﬂ(Sz) = dy

a, w/ prob He

This policy has good supervised learning error:

1 H—-1 R
a _T"’Pn,,* E Z 1 [ﬂ(Sh) 7 ﬂ*(sh)] — €
h=0

Initial *

note: while 7 (s,) # 7 *(s,), state s, is never visited under 7
state

Ao We have quadratic degradation (in H):
VZ(sy) = (1 — He) - VE (sy) + He - 0 = VZ (s) — eH(H — 1
Opt policy: 1 (o) = ( ) - Vi (5p) 1 (S0) ( )

Under p ., trajectory Is sy, Sy, 5y, . .. Intuition: once we make a mistake at s, we

Pn**(Sh =5) =0 end up in $, which is not in the training data!

20



What could go wrong?

* Predictions affect future inputs/
observations

Learned Policy

Expert’s trajectory

21
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Intuitive solution: Interaction

Use interaction to collect
data where learned policy
goes

27



General Idea: lterative Interactive
Approach

New Data

s Ny

Collect Data

through
Interaction

Update Policy

N

Updated Policy
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DAgger: Dataset Aggregation

Oth iteration

Expert Demonstrates Task Dataset

" 4
// > » 1st policy

Supervised Learning

[Ross11a]
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DAgger: Dataset Aggregation
1st iteration

Execute 71 and Query Expert

Steering
from 4-@- \

expert Y £ —
Q’j ( '
——

<

[Ross11a]
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DAgger: Dataset Aggregation
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New Data

Steering
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ﬁ ( /
\

<
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DAgger: Dataset Aggregation
1st iteration

Execute 71 and Query Expert
New Data
Steering

from 4-@- \

expe rt Y Vg —
ﬁ ( /
\

<

States from
the learned policy

[Ross11a]
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DAgger: Dataset Aggregation
1st 1iteration

Execute 71 and Query Expert

Steering

from ;é- \

expert f/‘k -

—

Q-

\
(:

4

——

[Ross11a]

New Data

All previous data

"EJ‘«‘S@
?%(8
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DAgger: Dataset Aggregation
1st 1iteration

Execute 71 and Query Expert

t New Data
eering
from k‘é-é- \
expertyy/‘ - |
o > Aggregate
Dataset

New policy
702

Supervised Learning

[Ross11a]
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DAgger: Dataset Aggregation
2nd iteration

Execute 1, and Query Expert
< O\
N
( ' »
Ty A 4%

New Data

Steering
from

expertY L
o

p—
&
’
Ny -*.&
~—

New policy
73

Aggregate
Dataset

Supervised Learning

[Ross11a]
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Steering

DAgger: Dataset Aggregation
nth iteration

Execute 7,.1 and Query Expert
New Data

Aggregate
Dataset

Supervised Learning

[Ross11a]
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Fortr=0—->T—1:
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The DAgger algorithm

Initialize 7°, and dataset I = &

Fort=0—-> T —1:
1. W/ ', generate dataset of trajectories 9’ = {7, 7,, ...}
where for all trajectories s, ~ p ., @, = 77(s)

2. Data aggregation: @ = 9 U @'

3. Update policy via Supervised-Learning: 771 = SL (@)

In practice, the DAgger algorithm requires less human labeled data than BC.

Informal Theorem] Under more assumptions + assuming € SL error is achievable,
the DAgger algorithm has error: | V* — V" | < He

36



[Ross AISTATS 2011]

Success!




[Ross AISTATS 2011]

Success!




Summary:

1. NPG: a simpler way to do TRPO, a “pre-conditioned” gradient method.
2. PPO: “first order” approx to TRPO

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy
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http://bit.ly/3RcTC9T

