Imitation Learning & Behavioral Cloning

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

Today

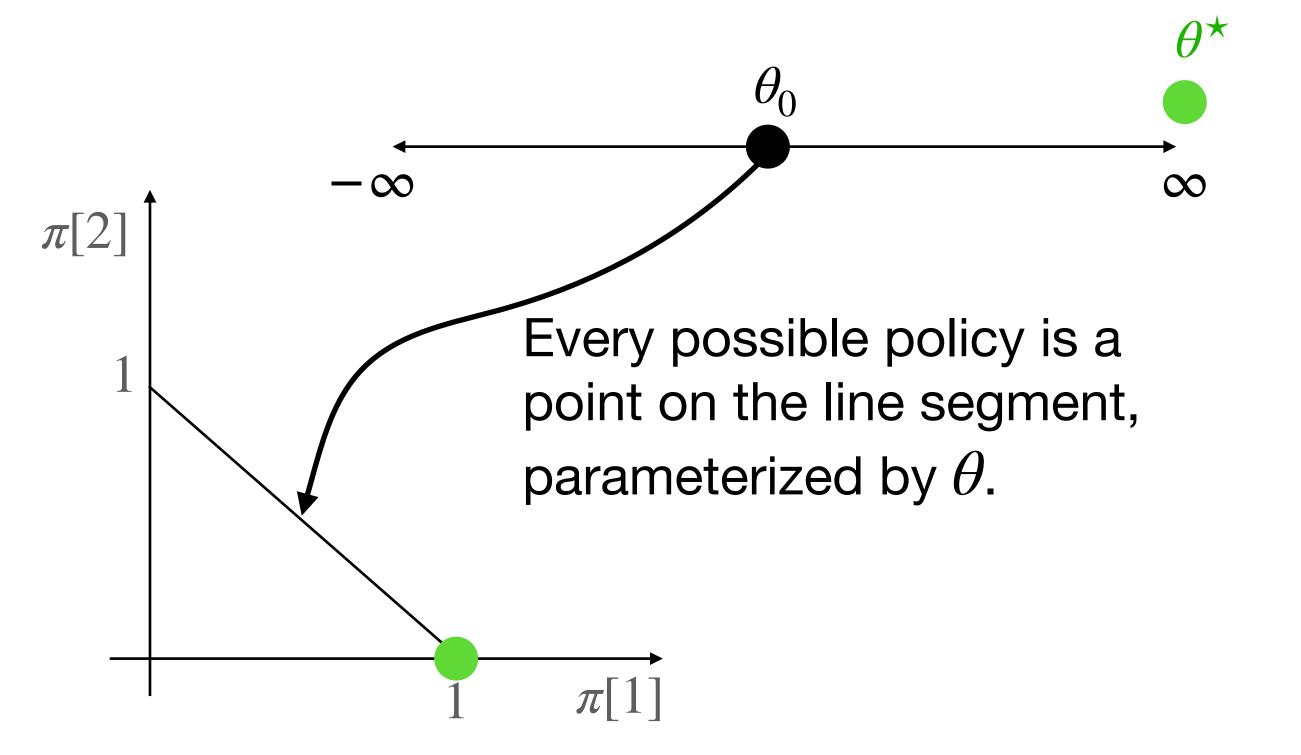
- Recap++
- Imitation Learning:
 - Behavioral Cloning
 - DAgger

Recap

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$



Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG:
$$\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$$

i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $J'(\theta)\to 0$ as $\theta\to\infty$

Fisher information scalar:
$$F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$$

$$\text{NPG: } \theta^{k+1} = \theta^k + \eta \frac{J'(\theta^k)}{F_{\theta^k}} = \theta_k + \eta \cdot 99$$

NPG moves to $\theta = \infty$ much more quickly (for a fixed η)

Meta-Approach: CPI/TRPO/NPG/PPO are all pretty similar.

- 1. Init π_0
- 2. For k = 0,...K:

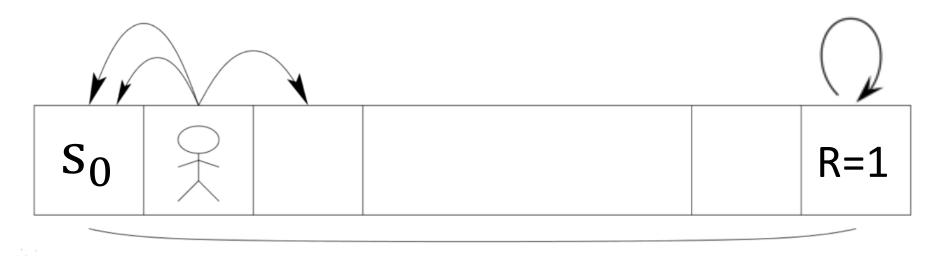
$$\pi^{k+1} \approx \arg\max_{\theta} \Delta_k(\pi^{\theta}), \qquad \text{where } \Delta_k(\pi) = \mathbb{E}_{s_0, \dots s_{H-1} \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi(s_h)} A^{\pi^k}(s_h, a_h) \right]$$

- such that ρ_{θ} is "close" to ρ_{θ^k}
- CPI: conservative policy iteration uses unconstrained optimization: $\widetilde{\pi} \approx \arg\max_{\theta} \Delta_k(\pi^{\theta})$, enforces closeness with "mixing": $\pi^{k+1} = (1-\alpha) \cdot \pi^k + \alpha \cdot \widetilde{\pi}^{k+1}$
- TRPO: use KL to enforce closeness.
- NPG: is TRPO up to "leading order" (via Taylor's theorem).
- PPO: uses a Lagrangian relaxation (i.e. regularization)
- 3. Return π_K

"Lack of Exploration" leads to Optimization and Statistical Challenges

- Suppose $H \approx \text{poly}(|S|) \& \mu(s_0) = 1$ (i.e. we start at s_0).
- A randomly initialized policy π^0 has prob. $O(1/3^{|S|})$ of hitting the goal state in a trajectory.
- Implications:
 - The following sample based approach, with $\mu(s_0) = 1$, require $O(3^{|S|})$ trajectories.
 - Holds for (sample based) Fitted DP
 - Holds for (sample based) PG/CPI/TRPO/NPG/PPO
- Basically, for these approaches, we are stuck without exploration, if $\mu(s_0) = 1$.

Let's examine the role of μ



S states

- Suppose that somehow the distribution μ had better coverage.
 - e.g, μ was uniform over the all states in our toy problem, then all approaches we covered would work (with mild assumptions)
 - Theory: CPI/TRPO/NPG/PPO have better guarantees than fitted DP methods (assuming some "coverage")
- Strategies:
 - If we have a simulator, sometimes we can design μ to have better coverage.
 - this is helpful for robustness as well.
 - Imitation learning
 - An expert gives us samples from a "good" μ .
 - Explicit exploration:
 - UCB-VI: we'll merge two good ideas!
 - Encourage exploration in PG methods.
 - Try with reward shaping

.

Thrun '92

Today:

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$

• The hope is that if (average case) "supervised learning" worked, then RL would also work.

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$

• The hope is that if (average case) "supervised learning" worked, then RL would also work.

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$

• The hope is that if (average case) "supervised learning" worked, then RL would also work.

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$

Issues: let's consider log-linear policies.

• Approximation error: For log linear policies, how good does ϕ need to be? (comment: hopefully some average case condition for approximating $A^{\pi}(s,a)$)

• The hope is that if (average case) "supervised learning" worked, then RL would also work.

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$

- Approximation error: For log linear policies, how good does ϕ need to be? (comment: hopefully some average case condition for approximating $A^{\pi}(s,a)$)
- Sample size: hope to use a # samples that is poly in $\dim(\phi) \& 1/\epsilon_{accuracy}$

• The hope is that if (average case) "supervised learning" worked, then RL would also work.

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$

- Approximation error: For log linear policies, how good does ϕ need to be? (comment: hopefully some average case condition for approximating $A^{\pi}(s,a)$)
- Sample size: hope to use a # samples that is poly in $\dim(\phi) \& 1/\epsilon_{accuracy}$.
- Coverage: need some coverage condition over the state space. (comment: hopefully the coverage conditions are only in " ϕ -space")

• The hope is that if (average case) "supervised learning" worked, then RL would also work.

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$

- Approximation error: For log linear policies, how good does ϕ need to be? (comment: hopefully some average case condition for approximating $A^{\pi}(s, a)$)
- Sample size: hope to use a # samples that is poly in $\dim(\phi) \& 1/\epsilon_{accuracy}$.
- Coverage: need some coverage condition over the state space. (comment: hopefully the coverage conditions are only in " ϕ -space")
- Computation: we want NPG to find something good with poly in $d,1/\epsilon_{accuracy},H$ iterations.

• The hope is that if (average case) "supervised learning" worked, then RL would also work.

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\mathsf{T}} \phi(s, a))}{\sum_{a'} \exp(\theta^{\mathsf{T}} \phi(s, a'))}$$

Issues: let's consider log-linear policies.

- Approximation error: For log linear policies, how good does ϕ need to be? (comment: hopefully some average case condition for approximating $A^{\pi}(s,a)$)
- Sample size: hope to use a # samples that is poly in $\dim(\phi) \& 1/\epsilon_{accuracy}$.
- Coverage: need some coverage condition over the state space. (comment: hopefully the coverage conditions are only in " ϕ -space")
- Computation: we want NPG to find something good with poly in $d,1/\epsilon_{accuracy},H$ iterations.
- Theory: (see AJKS Ch 4+13, for formal log linear policies)

 There are (see AJKS ch 4+13) approx/severes conditions where NDC conv.

There are (somewhat subtle) approx/coverage conditions where NPG converges to an $\epsilon_{accuracy}$ -opt policy with poly sample, poly computation time.

(Conditions are weaker than those for fitted-DP methods).

Today

Recap++Imitation Learning:

- Behavioral Cloning
- DAgger

Expert Demonstrations

Expert Demonstrations

Machine Learning Algorithm

- SVM
- Gaussian Process
- Kernel Estimator
- Deep Networks
- Random Forests
- LWR
- •

Expert

Demonstrations

Machine Learning Algorithm

Policy T

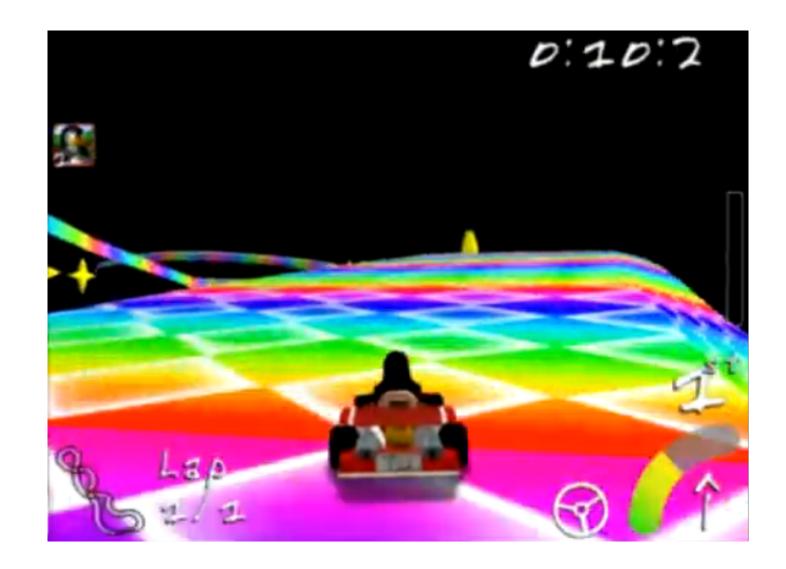
- SVM
- Gaussian Process
- Kernel Estimator
- Deep Networks
- Random Forests
- **LWR**

Maps states to actions

Learning to Drive by Imitation

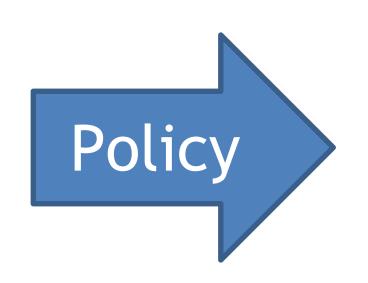
[Pomerleau89, Saxena05, Ross11a]

Input:



Camera Image

Output:

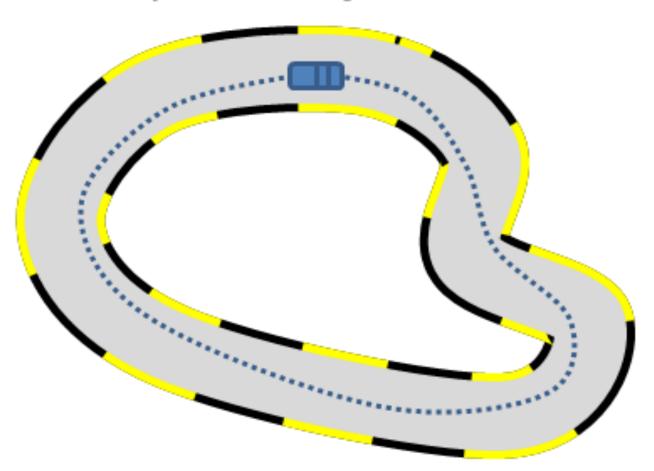


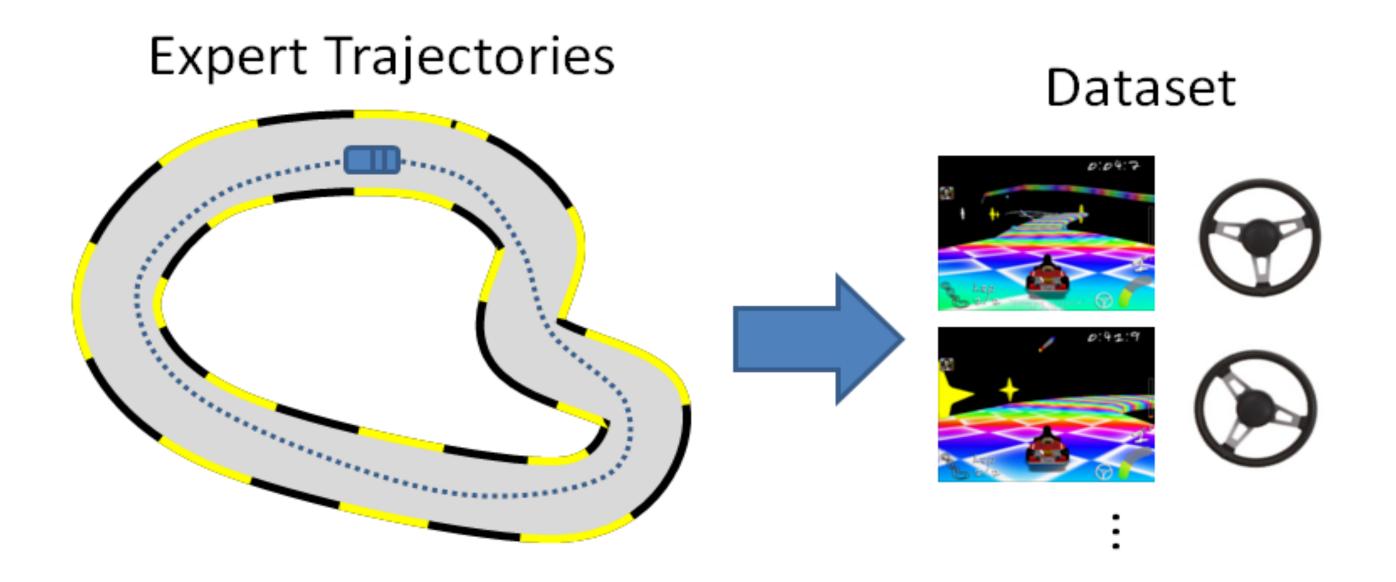
Steering Angle in [-1, 1]

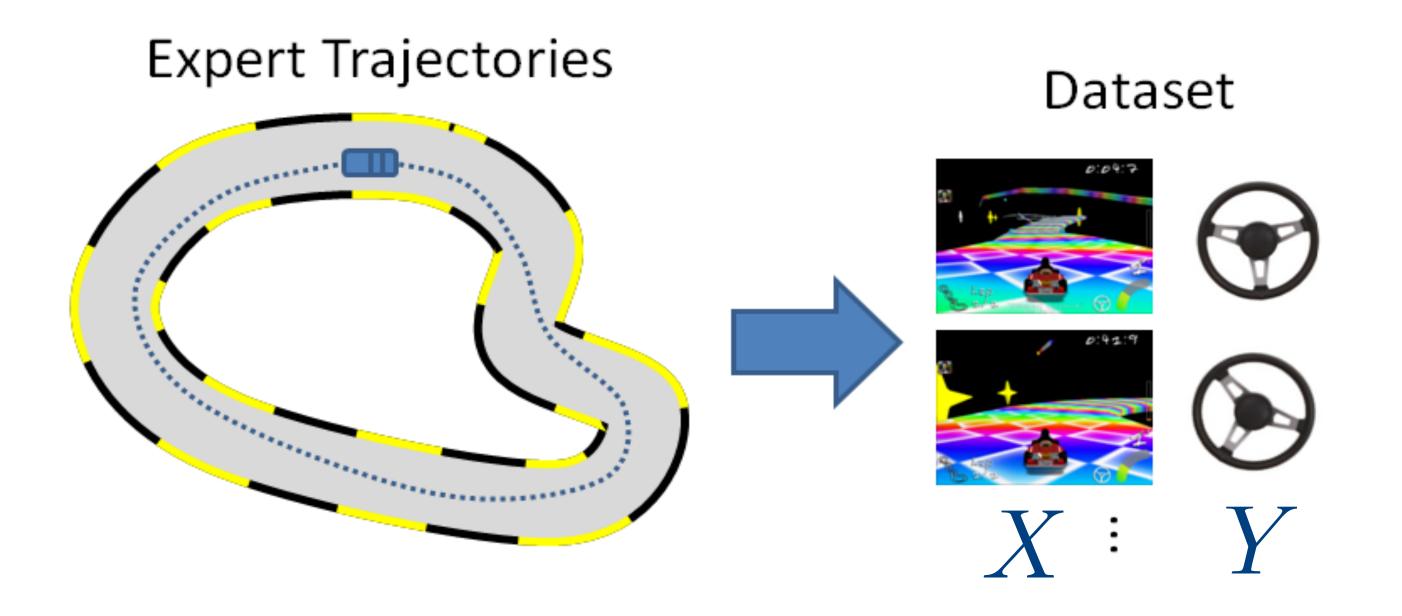
Today

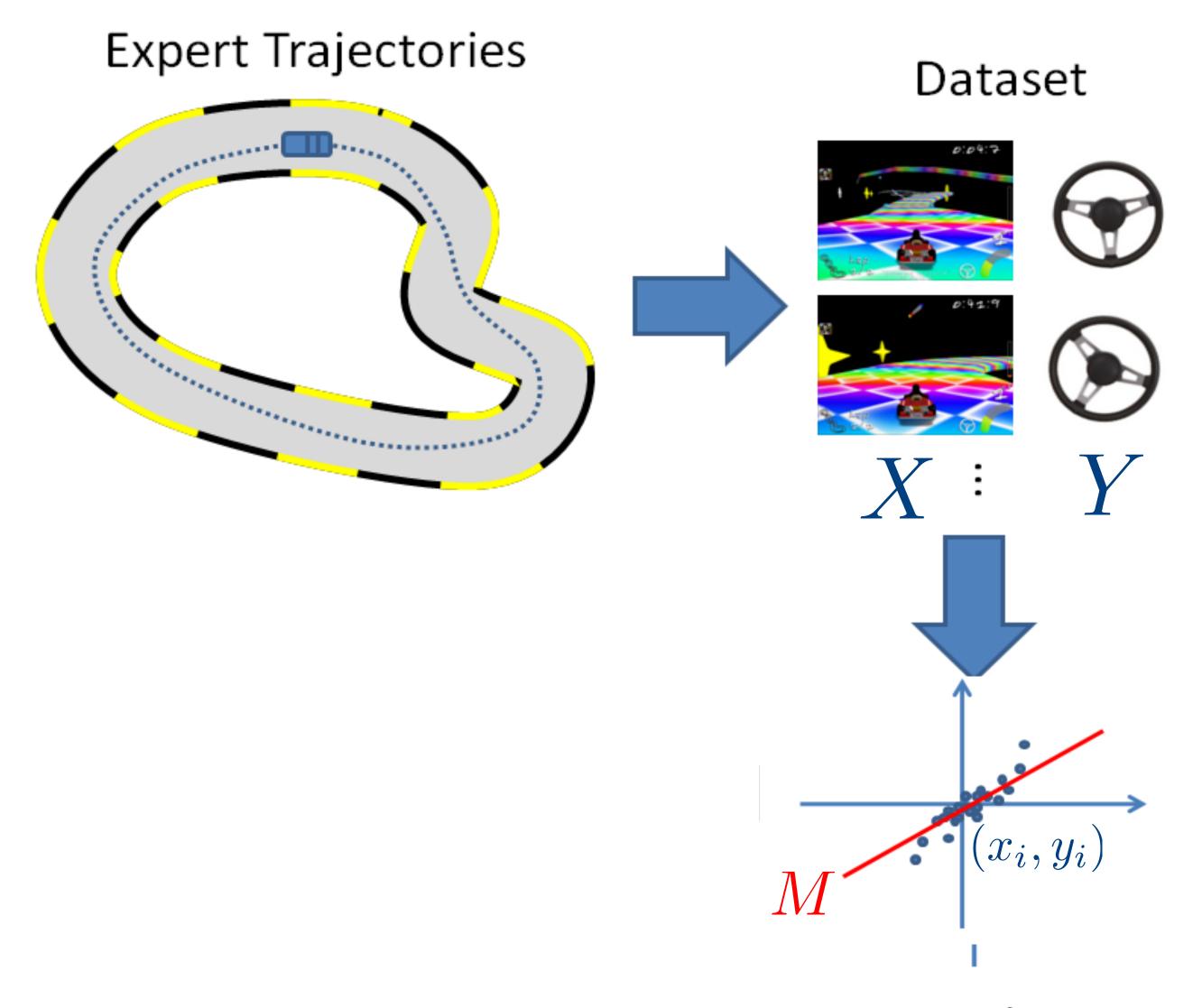
- Recap++
- Imitation Learning:
- Behavioral Cloning
 - DAgger

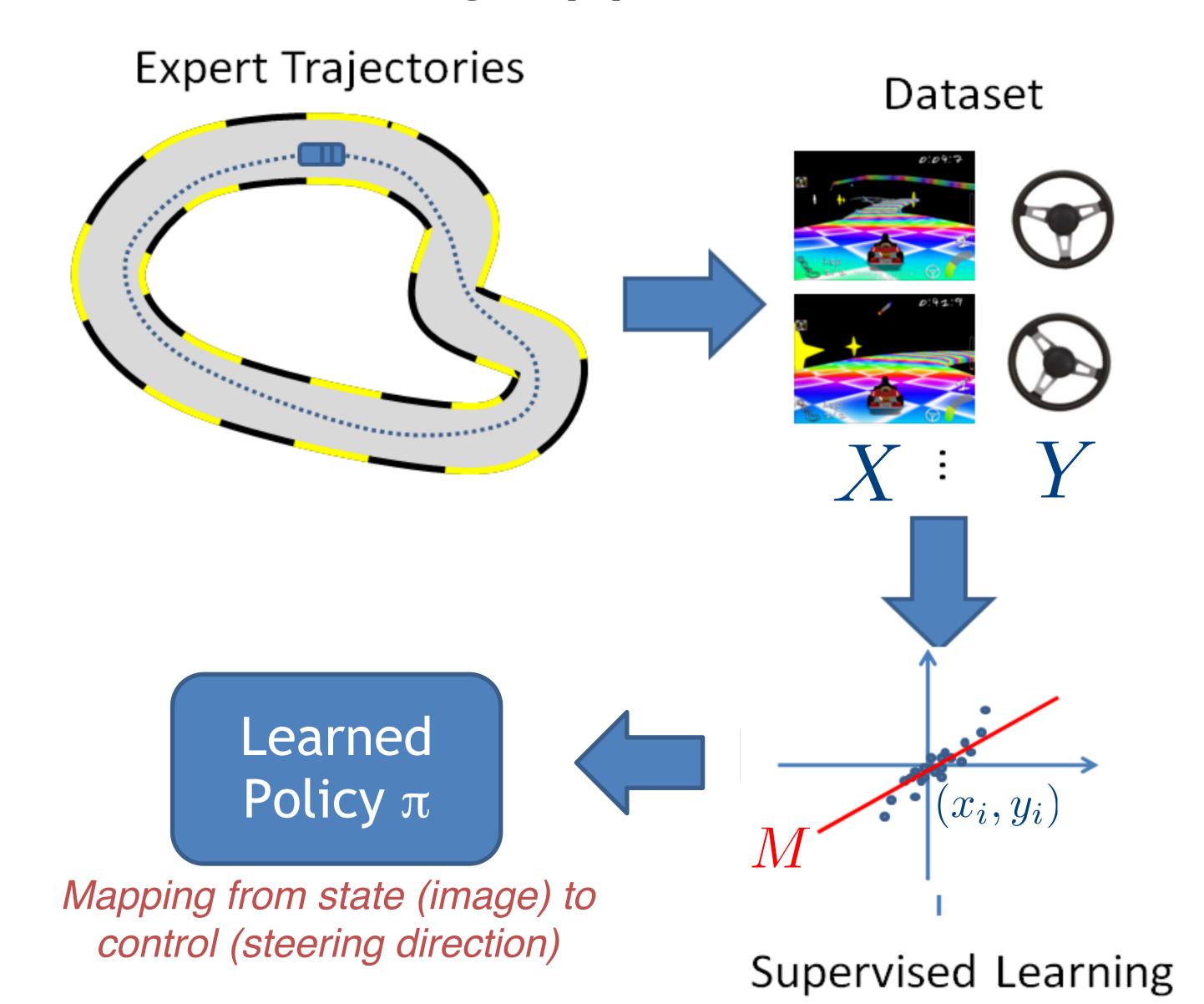
Expert Trajectories

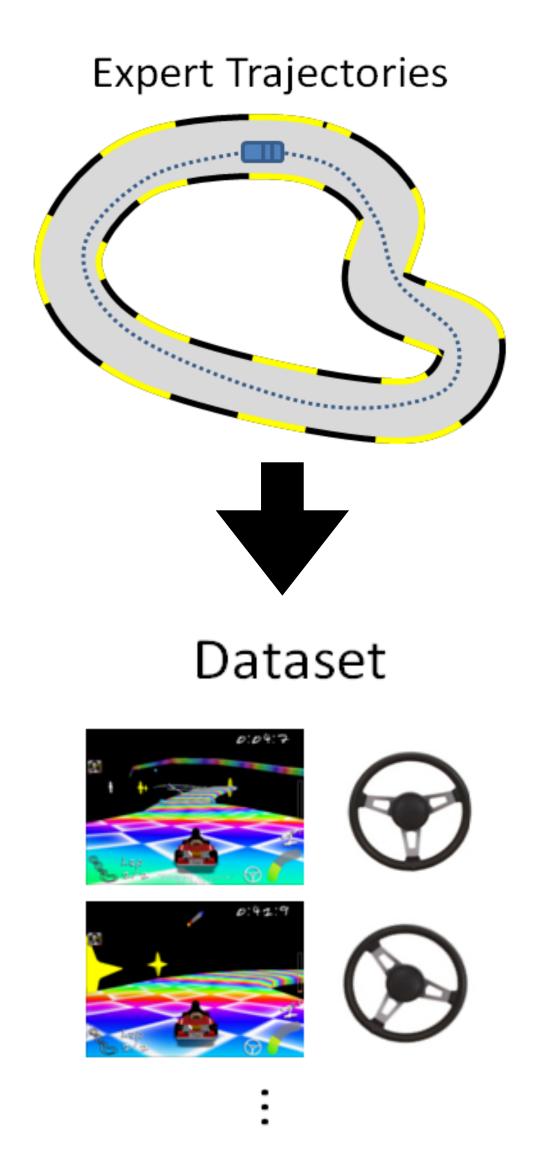




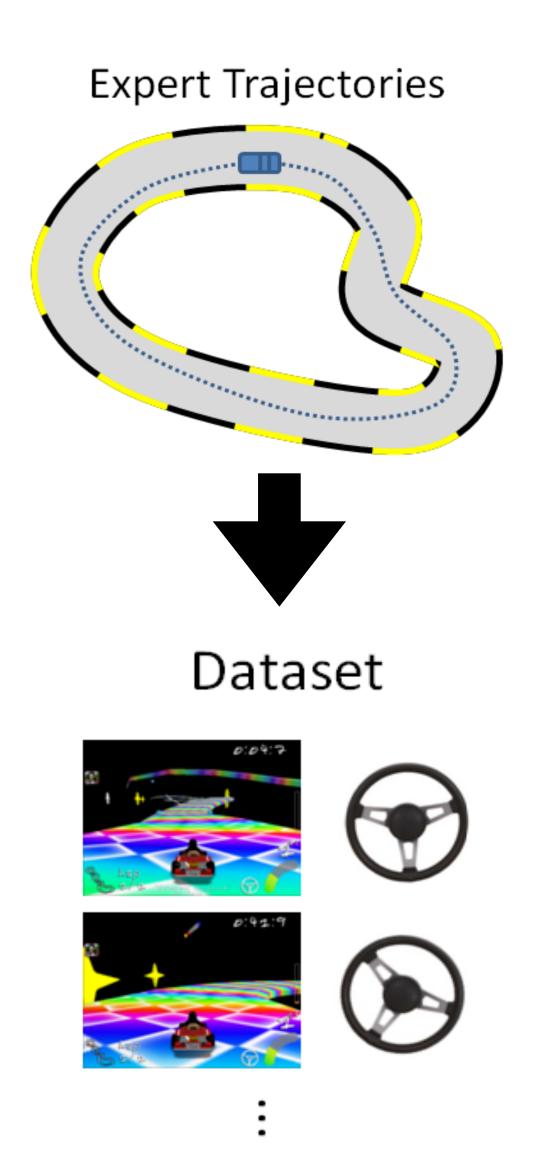








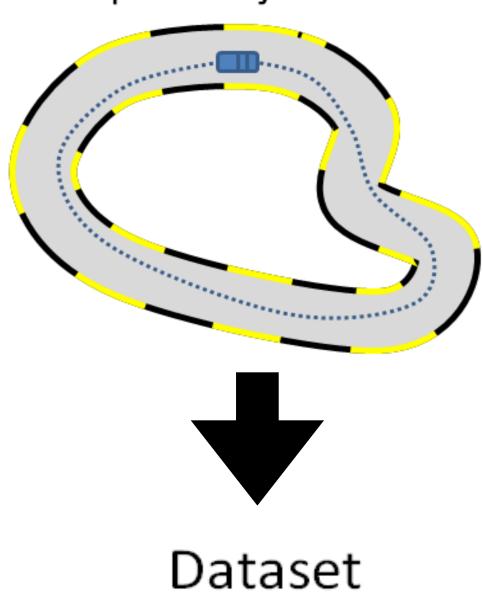
Finite horizon MDP *M*

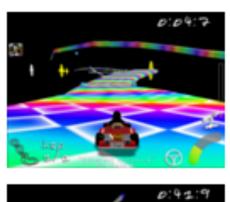


Finite horizon MDP *M*

Ground truth reward $r(s, a) \in [0,1]$ is unknown; Assume the expert has a good policy π^* (not necessarily opt)

Expert Trajectories



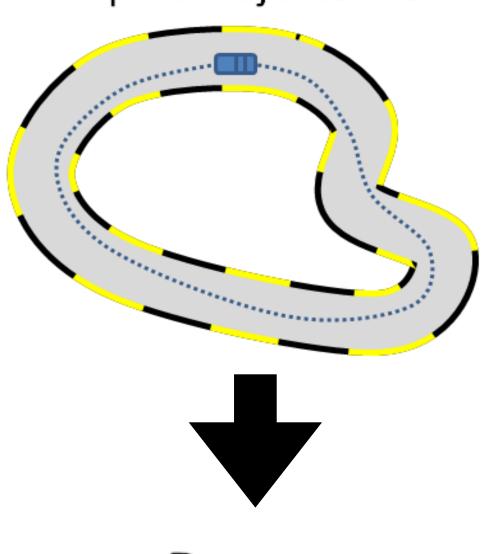


Finite horizon MDP *M*

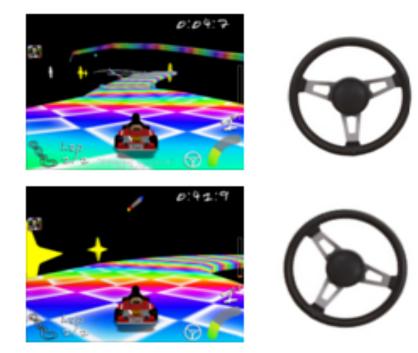
Ground truth reward $r(s, a) \in [0,1]$ is unknown; Assume the expert has a good policy π^* (not necessarily opt)

We have a dataset of M trajectories: $\mathcal{D} = \{\tau_1, \ldots \tau_M\}$, where $\tau_i = (s_h^i, a_h^i)_{h=0}^{H-1} \sim \rho_{\pi^\star}$

Expert Trajectories



Dataset



Finite horizon MDP *M*

Ground truth reward $r(s, a) \in [0,1]$ is unknown; Assume the expert has a good policy π^* (not necessarily opt)

We have a dataset of M trajectories: $\mathcal{D} = \{\tau_1, \ldots \tau_M\}$, where $\tau_i = (s_h^i, a_h^i)_{h=0}^{H-1} \sim \rho_{\pi^\star}$

Goal: learn a policy from \mathscr{D} that is as good as the expert π^*

Let's formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

Let's formalize the Behavior Cloning algorithm

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

BC is a Reduction to Supervised Learning:

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{C}(\pi, s_h^i, a_h^i)$$

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{E}\left(\pi, s_h^i, a_h^i\right)$$

Many choices of loss functions:

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{E}\left(\pi, s_h^i, a_h^i\right)$$

Many choices of loss functions:

1. Negative log-likelihood (NLL): $\ell(\pi, s, a) = -\ln \pi(a \mid s)$

BC Algorithm input: a restricted policy class $\Pi = \{\pi : S \mapsto \Delta(A)\}$

BC is a Reduction to Supervised Learning:

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{C}(\pi, s_h^i, a_h^i)$$

Many choices of loss functions:

- 1. Negative log-likelihood (NLL): $\ell(\pi, s, a) = -\ln \pi(a \mid s)$
- 2. square loss (i.e., regression for continuous action): $\ell(\pi, s, a) = \|\pi(s) a\|_2^2$

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{C}(\pi, s_h^i, a_h^i)$$

Note a training and testing "mismatch"

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{E}\left(\pi, s_h^i, a_h^i\right)$$

Note a training and testing "mismatch"

Theorem [BC Performance]:

suppose we assume supervised learning succeeds, with ϵ classification error:

$$\mathbb{E}_{\tau \sim \rho_{\pi_{\pi^{\star}}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star}(s_h) \right] \right] \leq \epsilon,$$

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{L}\left(\pi, s_h^i, a_h^i\right)$$

Note a training and testing "mismatch"

Theorem [BC Performance]:

suppose we assume supervised learning succeeds, with ϵ classification error:

$$\mathbb{E}_{\tau \sim \rho_{\pi_{\pi^{\star}}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star}(s_h) \right] \right] \leq \epsilon,$$

(where π^* is the experts policy, which need not be optimal)

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{L}\left(\pi, s_h^i, a_h^i\right)$$

Note a training and testing "mismatch"

Theorem [BC Performance]:

suppose we assume supervised learning succeeds, with ϵ classification error:

$$\mathbb{E}_{\tau \sim \rho_{\pi_{\pi^{\star}}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star}(s_h) \right] \right] \leq \epsilon,$$

(where π^* is the experts policy, which need not be optimal)

then, under μ , we have:

$$|V^{\pi^*} - V^{\widehat{\pi}}| \le H^2 \epsilon$$

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \sum_{h=0}^{H-1} \mathscr{L}\left(\pi, s_h^i, a_h^i\right)$$

Note a training and testing "mismatch"

Theorem [BC Performance]:

suppose we assume supervised learning succeeds, with ϵ classification error:

$$\mathbb{E}_{\tau \sim \rho_{\pi_{\pi^{\star}}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\hat{\pi}(s_h) \neq \pi^{\star}(s_h) \right] \right] \leq \epsilon,$$

(where π^* is the experts policy, which need not be optimal)

then, under
$$\mu$$
, we have:
$$|V^{\pi^{\star}} - V^{\widehat{\pi}}| \leq H^2 \epsilon$$

The quadratic amplification is annoying

$$|V^{\pi^{\star}}(s) - V^{\widehat{\pi}}(s)| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_h^{\widehat{\pi}}(s_h, a_h) \right] \right|$$

$$|V^{\pi^*}(s) - V^{\widehat{\pi}}(s)| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^*}} \left[\sum_{h=0}^{H-1} A_h^{\widehat{\pi}}(s_h, a_h) \right] \right|$$
$$= \left| \mathbb{E}_{s_1, \dots s_h \sim \rho_{\pi^*}} \left[\sum_{h=0}^{H-1} A_h^{\widehat{\pi}}(s_h, \pi^*(s_h)) \right] \right|$$

$$|V^{\pi^{\star}}(s) - V^{\widehat{\pi}}(s)| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_h^{\widehat{\pi}}(s_h, a_h) \right] \right|$$

$$= \left| \mathbb{E}_{s_1, \dots s_h \sim \rho_{\pi^{\star}}} \left[\sum_{h=0}^{H-1} A_h^{\widehat{\pi}}(s_h, \pi^{\star}(s_h)) \right] \right|$$

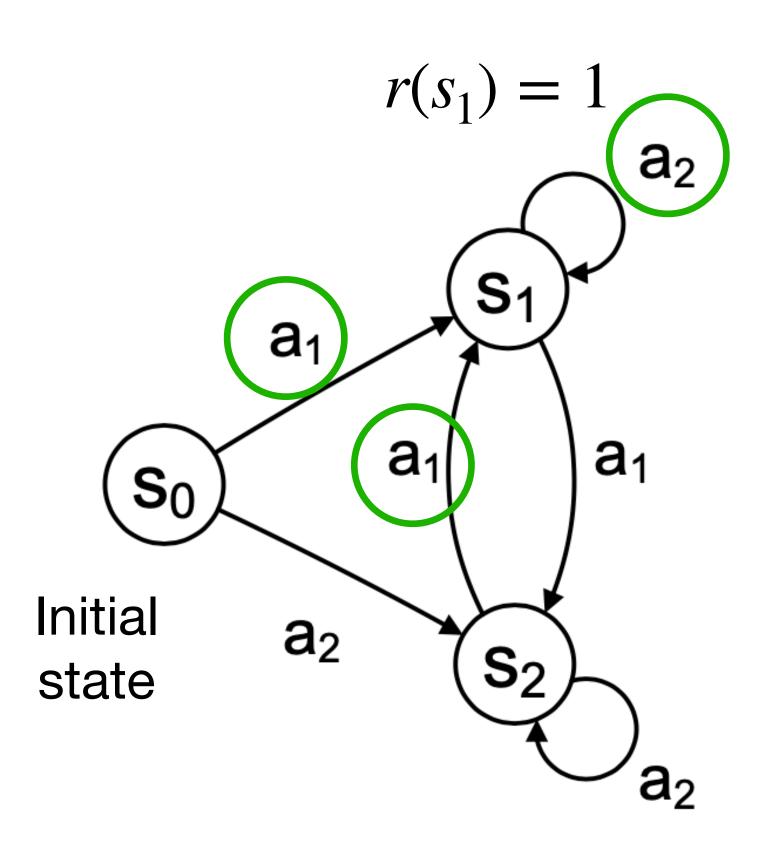
$$\leq H \left| \mathbb{E}_{\tau \sim \rho_{\pi_{\pi^{\star}}}} \left[\sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^{\star}(s_h) \right] \right] \right|$$

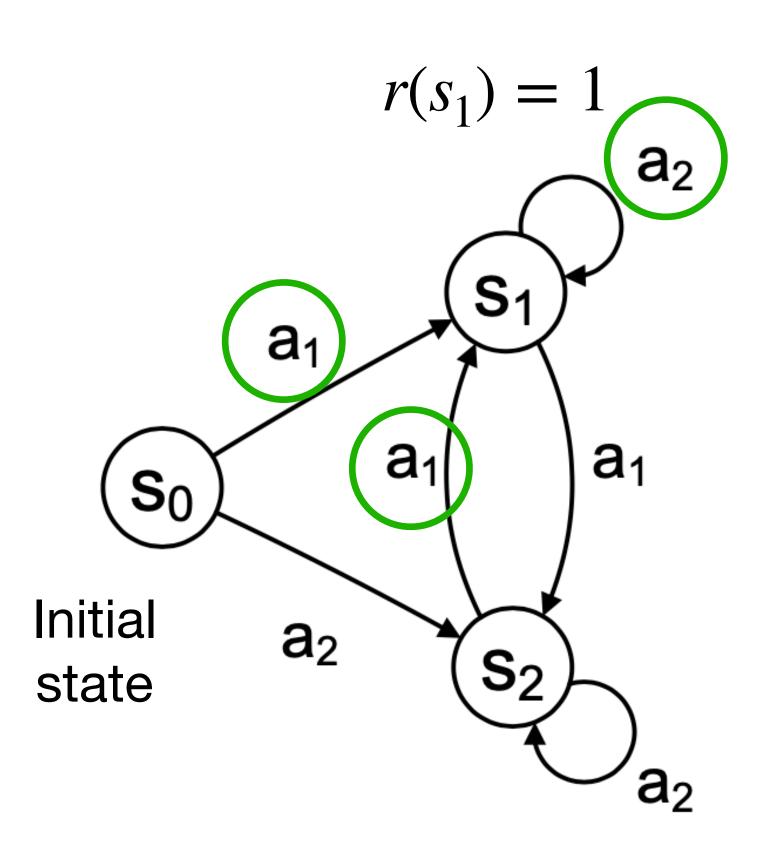
$$|V^{\pi^*}(s) - V^{\widehat{\pi}}(s)| = \left| \mathbb{E}_{\tau \sim \rho_{\pi^*}} \left[\sum_{h=0}^{H-1} A_h^{\widehat{\pi}}(s_h, a_h) \right] \right|$$

$$= \left| \mathbb{E}_{s_1, \dots s_h \sim \rho_{\pi^*}} \left[\sum_{h=0}^{H-1} A_h^{\widehat{\pi}}(s_h, \pi^*(s_h)) \right] \right|$$

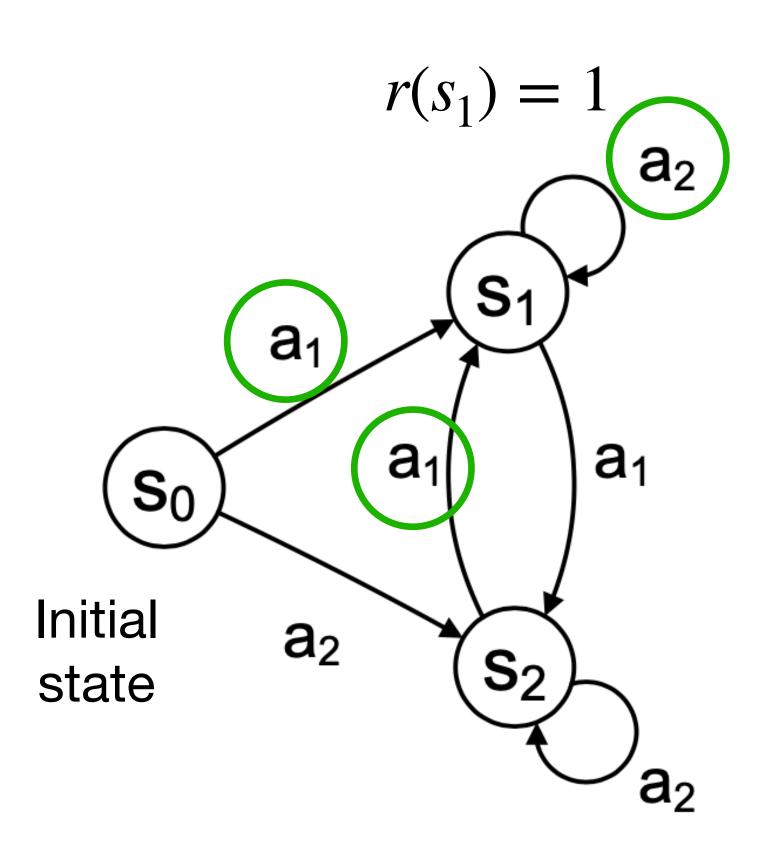
$$\leq H \left| \mathbb{E}_{\tau \sim \rho_{\pi_{\pi^*}}} \left[\sum_{h=0}^{H-1} \mathbf{1} \left[\widehat{\pi}(s_h) \neq \pi^*(s_h) \right] \right] \right|$$

$$\leq H^2 \epsilon$$

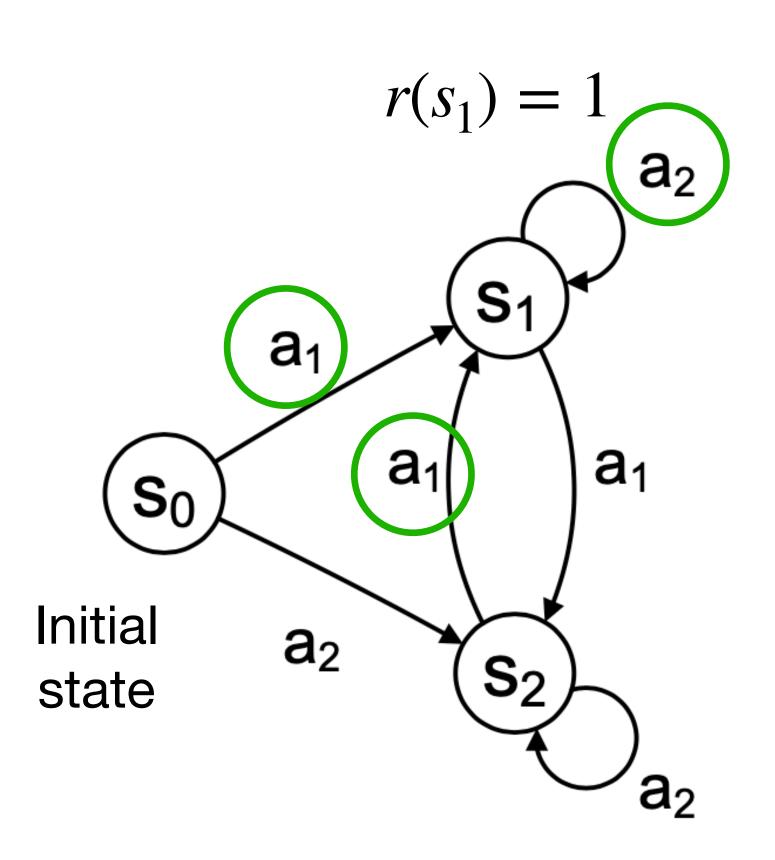




Opt policy:

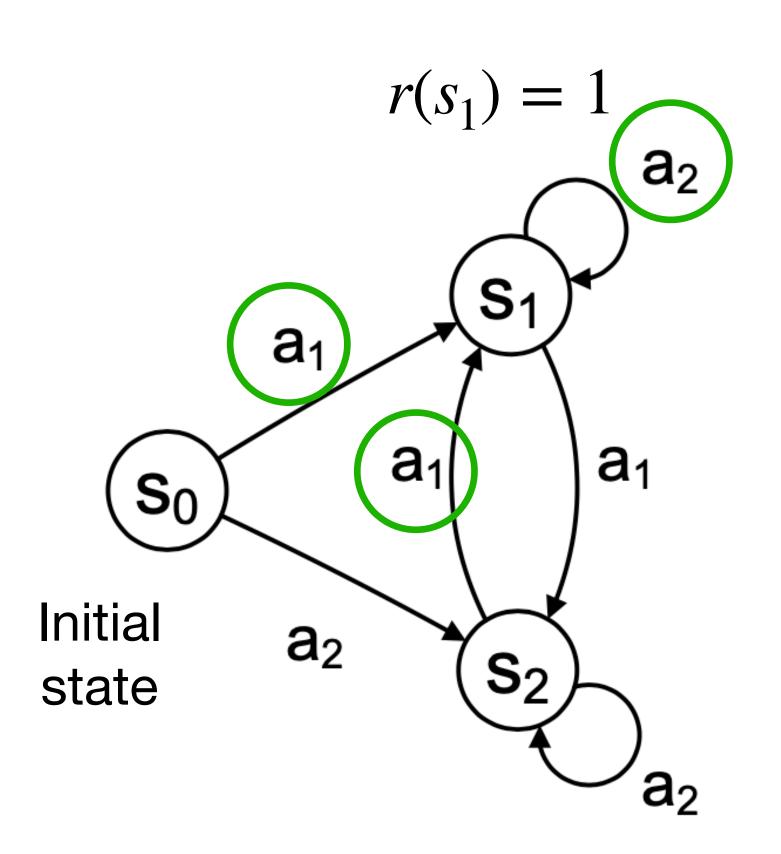


Opt policy:



Opt policy:

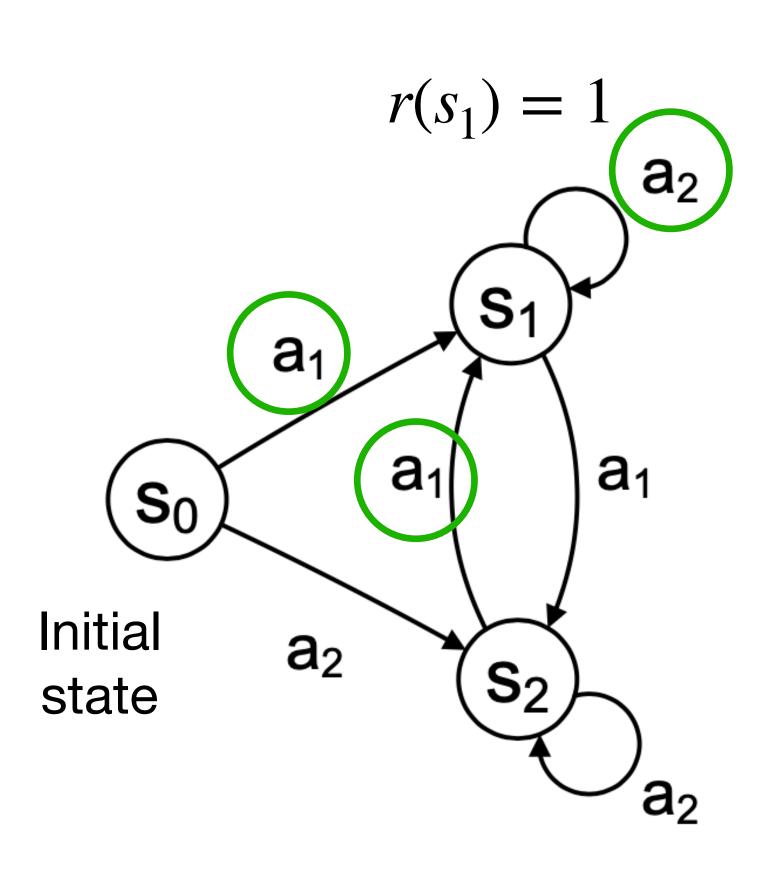
$$\rho_{\pi^{\star}}(s_h = s_2) = 0$$



Opt policy:

$$\rho_{\pi^*}(s_h = s_2) = 0$$

$$V_H^{\pi^*}(s_0) = H - 1$$



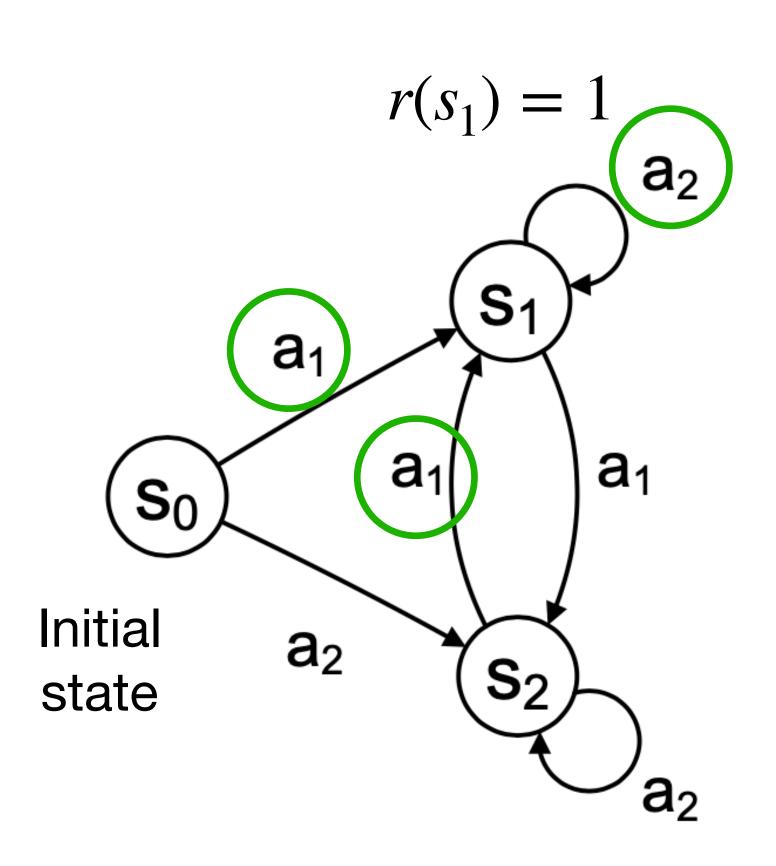
Assume SL returns the policy $\hat{\pi}$:

$$\widehat{\pi}(s_0) = \begin{cases} a_1 & \text{w/ prob } 1 - H\epsilon \\ a_2 & \text{w/ prob } H\epsilon \end{cases}, \quad \widehat{\pi}(s_1) = a_2, \, \widehat{\pi}(s_2) = a_2$$

Opt policy:

$$\rho_{\pi^*}(s_h = s_2) = 0$$

$$V_H^{\pi^*}(s_0) = H - 1$$



Assume SL returns the policy $\widehat{\pi}$:

$$\widehat{\pi}(s_0) = \begin{cases} a_1 & \text{w/prob } 1 - H\epsilon \\ a_2 & \text{w/prob } H\epsilon \end{cases}, \quad \widehat{\pi}(s_1) = a_2, \, \widehat{\pi}(s_2) = a_2$$

This policy has good supervised learning error:

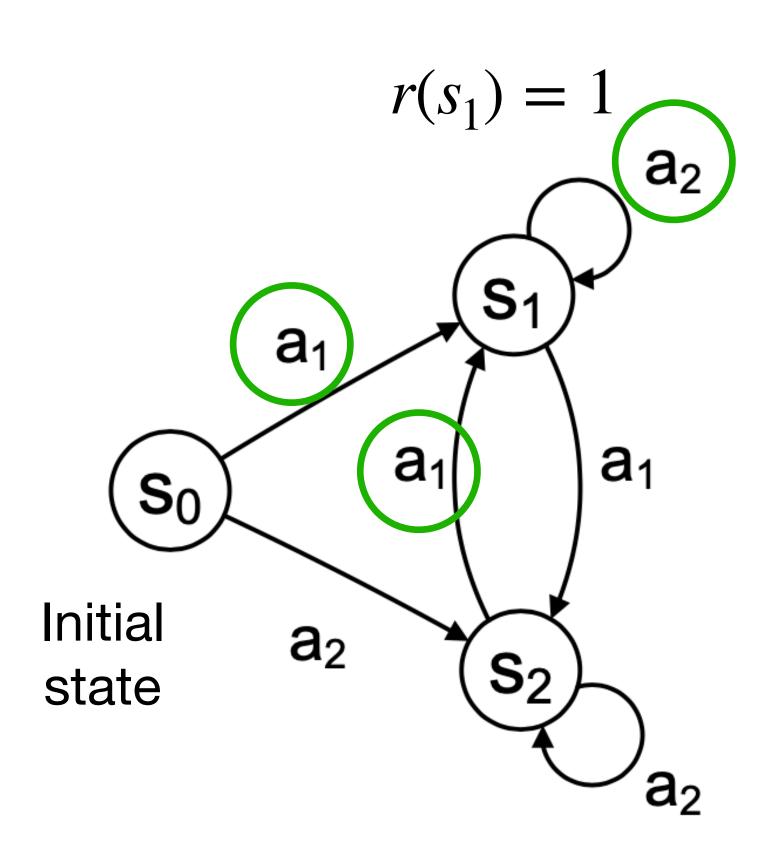
$$\mathbb{E}_{\tau \sim \rho_{\pi_{\pi^*}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\hat{\pi}(s_h) \neq \pi^*(s_h) \right] \right] = \epsilon$$

note: while $\widehat{\pi}(s_2) \neq \widehat{\pi}^*(s_2)$, state s_2 is never visited under π^*

Opt policy:

$$\rho_{\pi^*}(s_h = s_2) = 0$$

$$V_H^{\pi^*}(s_0) = H - 1$$



Opt policy:

Under ρ_{π^*} , trajectory is s_0, s_1, s_1, \ldots

$$\rho_{\pi^*}(s_h = s_2) = 0$$

$$V_H^{\pi^*}(s_0) = H - 1$$

Assume SL returns the policy $\widehat{\pi}$:

$$\widehat{\pi}(s_0) = \begin{cases} a_1 & \text{w/ prob } 1 - H\epsilon \\ a_2 & \text{w/ prob } H\epsilon \end{cases}, \quad \widehat{\pi}(s_1) = a_2, \, \widehat{\pi}(s_2) = a_2$$

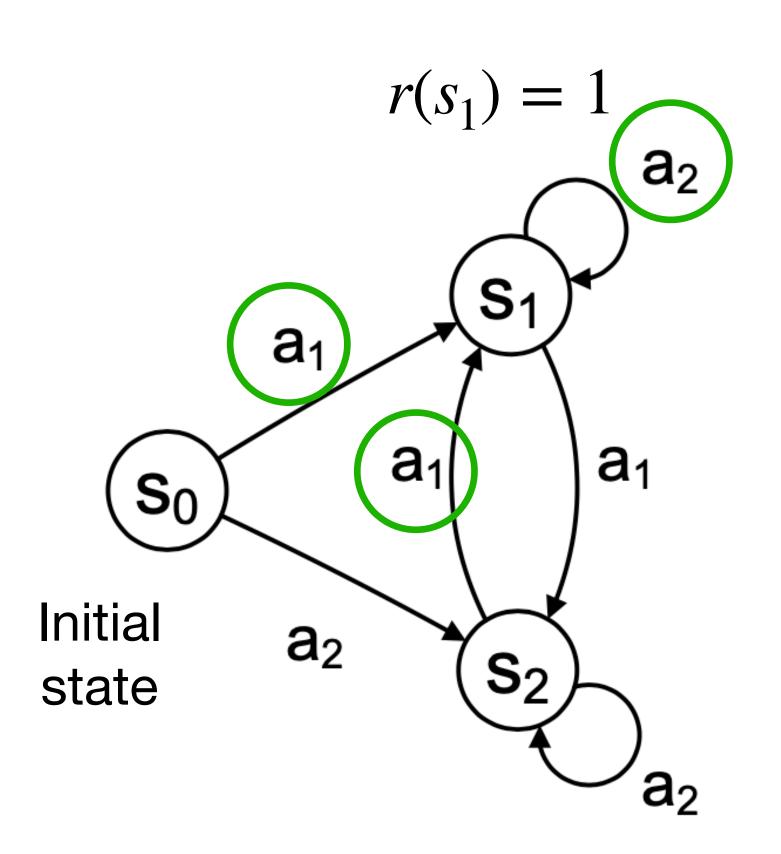
This policy has good supervised learning error:

$$\mathbb{E}_{\tau \sim \rho_{\pi_{\pi^*}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\hat{\pi}(s_h) \neq \pi^*(s_h) \right] \right] = \epsilon$$

note: while $\widehat{\pi}(s_2) \neq \widehat{\pi}^*(s_2)$, state s_2 is never visited under π^*

We have quadratic degradation (in H):

$$V_H^{\pi^*}(s_0) = (1 - H\epsilon) \cdot V_H^{\pi^*}(s_0) + H\epsilon \cdot 0 = V_H^{\pi^*}(s_0) - \epsilon H(H - 1)$$



Opt policy:

Under ρ_{π^*} , trajectory is s_0, s_1, s_1, \ldots

$$\rho_{\pi^*}(s_h = s_2) = 0$$

$$V_H^{\pi^*}(s_0) = H - 1$$

Assume SL returns the policy $\hat{\pi}$:

$$\widehat{\pi}(s_0) = \begin{cases} a_1 & \text{w/ prob } 1 - H\epsilon \\ a_2 & \text{w/ prob } H\epsilon \end{cases}, \quad \widehat{\pi}(s_1) = a_2, \, \widehat{\pi}(s_2) = a_2$$

This policy has good supervised learning error:

$$\mathbb{E}_{\tau \sim \rho_{\pi_{\pi^*}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \mathbf{1} \left[\hat{\pi}(s_h) \neq \pi^*(s_h) \right] \right] = \epsilon$$

note: while $\widehat{\pi}(s_2) \neq \widehat{\pi}^*(s_2)$, state s_2 is never visited under π^*

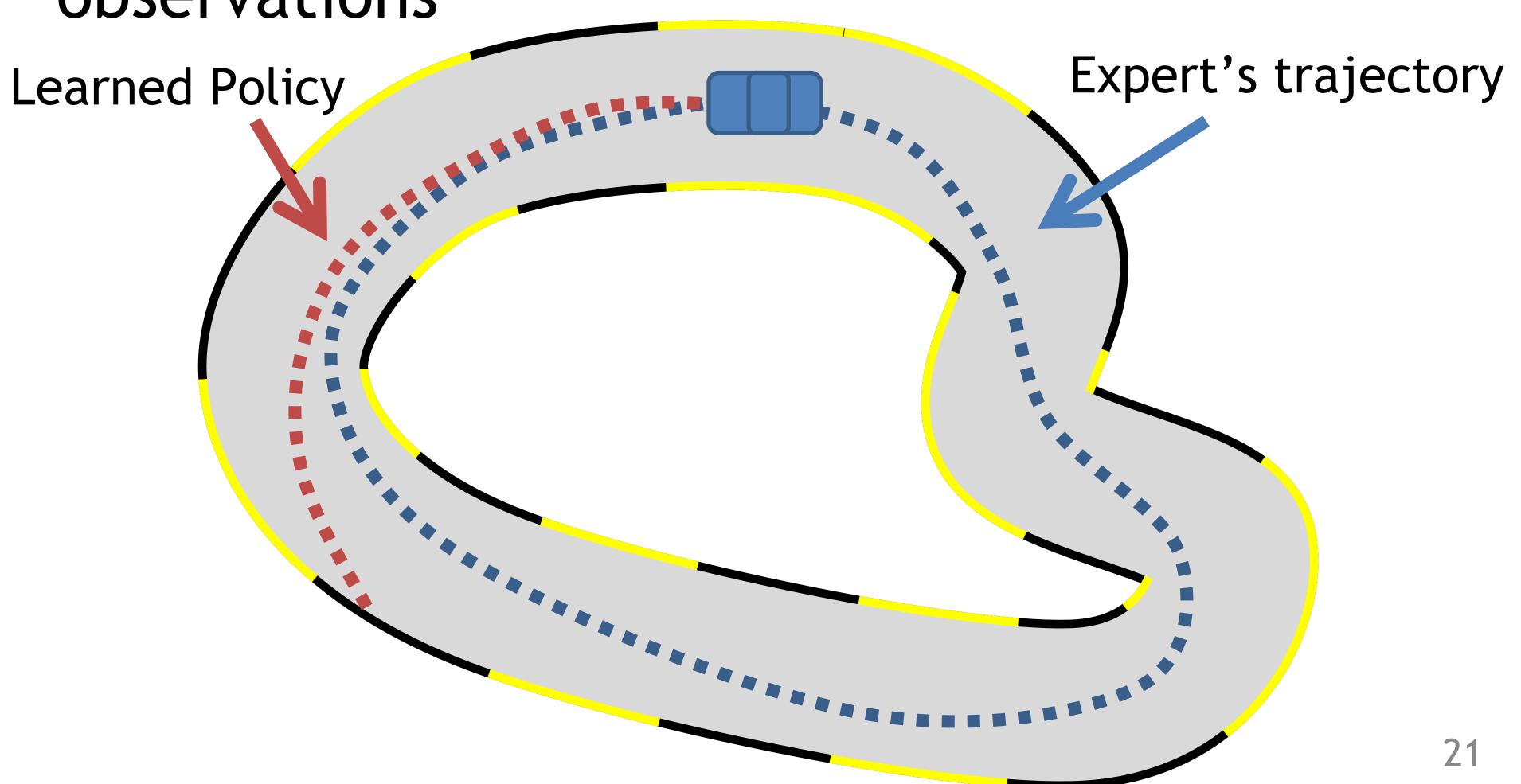
We have quadratic degradation (in H):

$$V_H^{\pi^*}(s_0) = (1 - H\epsilon) \cdot V_H^{\pi^*}(s_0) + H\epsilon \cdot 0 = V_H^{\pi^*}(s_0) - \epsilon H(H - 1)$$

Intuition: once we make a mistake at s_0 , we end up in s_2 which is not in the training data!

What could go wrong?

 Predictions affect future inputs/ observations



Expert Demos

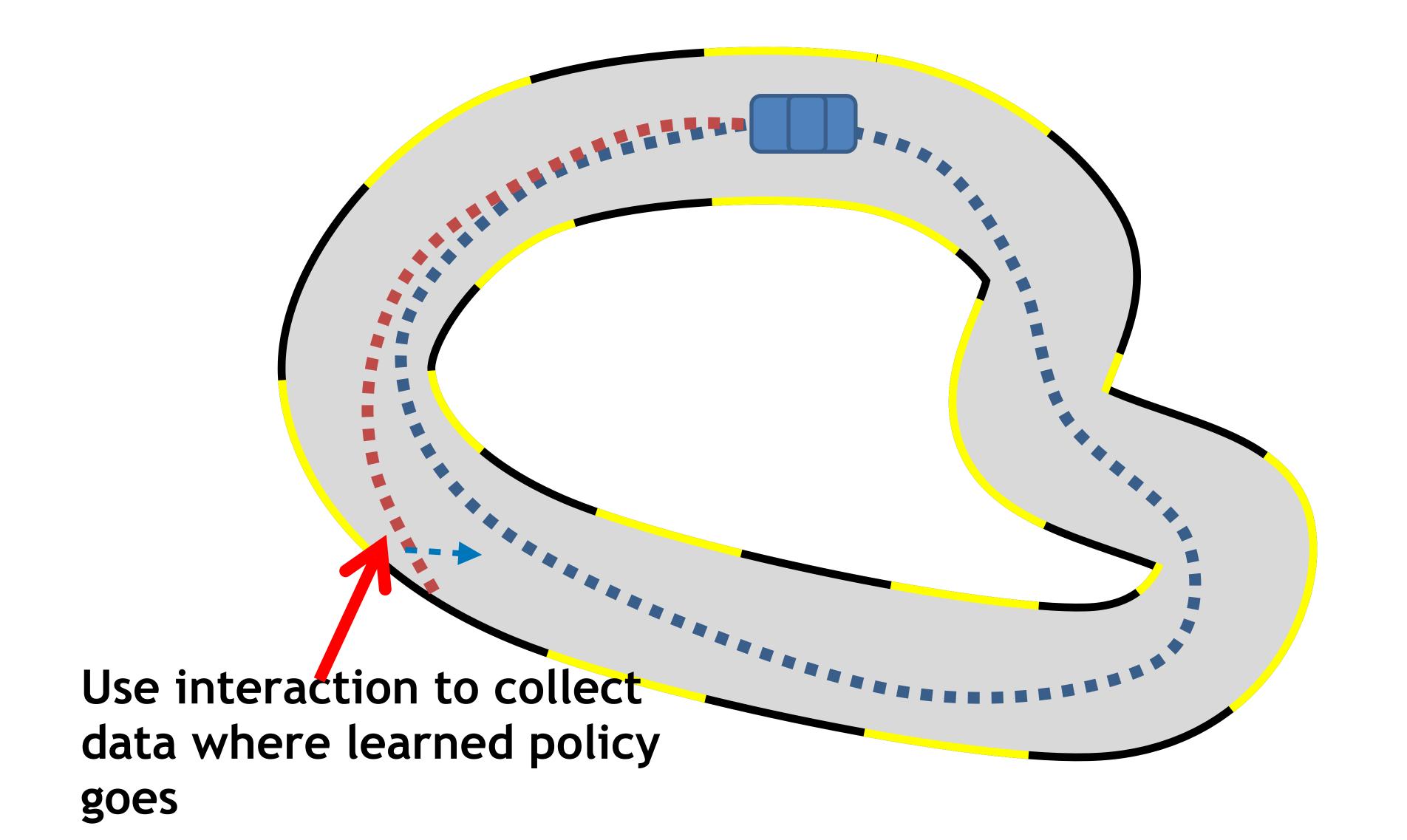
BC Policy

Today

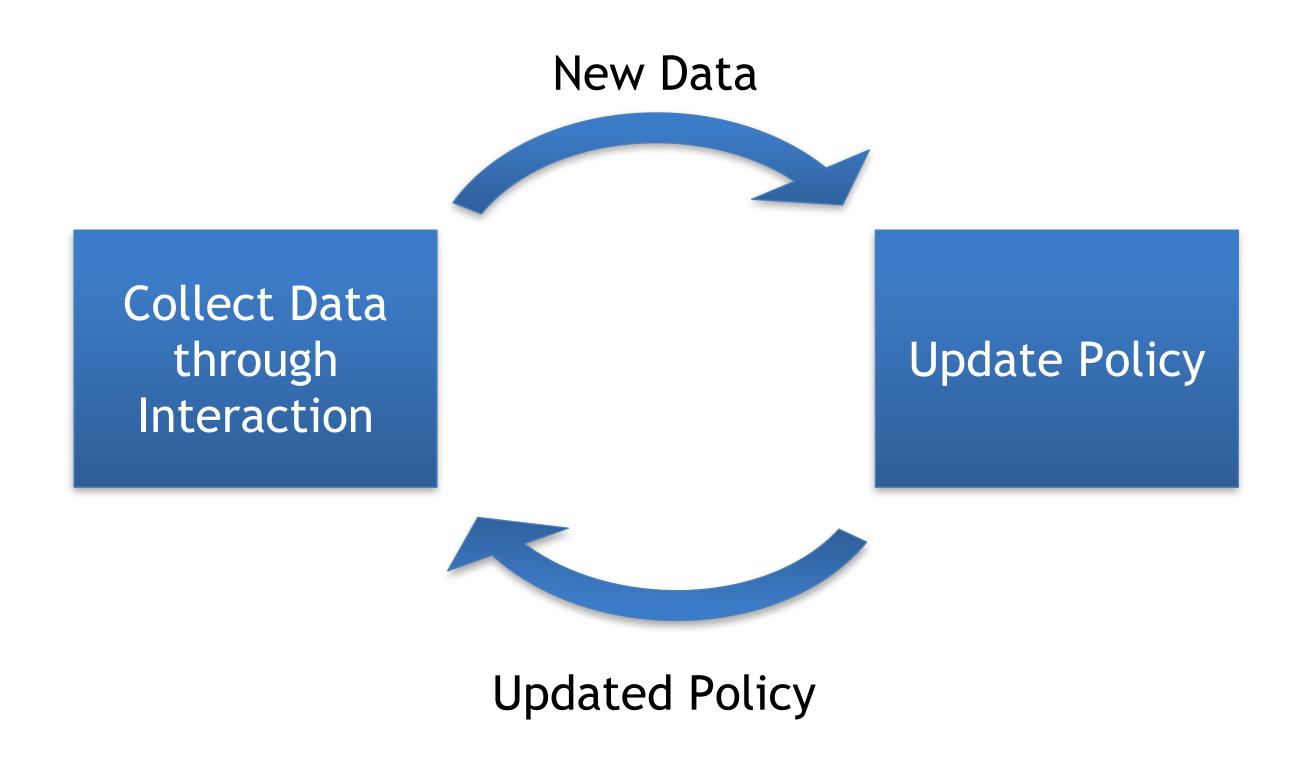
- Recap++
- Imitation Learning:
 - Behavioral Cloning

DAgger

Intuitive solution: Interaction



General Idea: Iterative Interactive Approach



[Ross11a]

DAgger: Dataset Aggregation Oth iteration

Expert Demonstrates Task Dataset 1st policy π_1

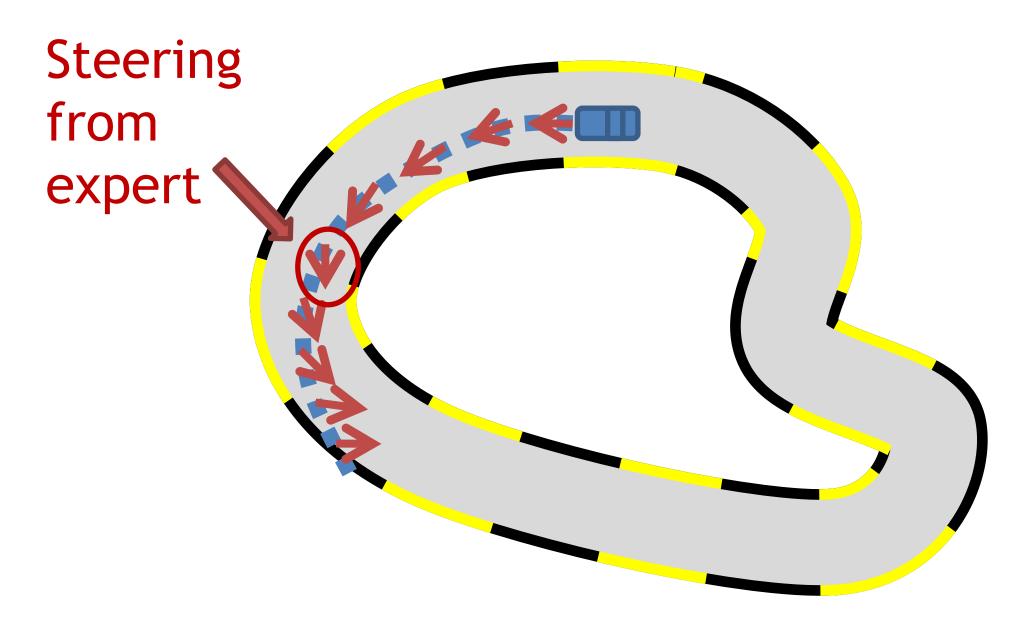
Supervised Learning

[Ross11a]

DAgger: Dataset Aggregation

1st iteration

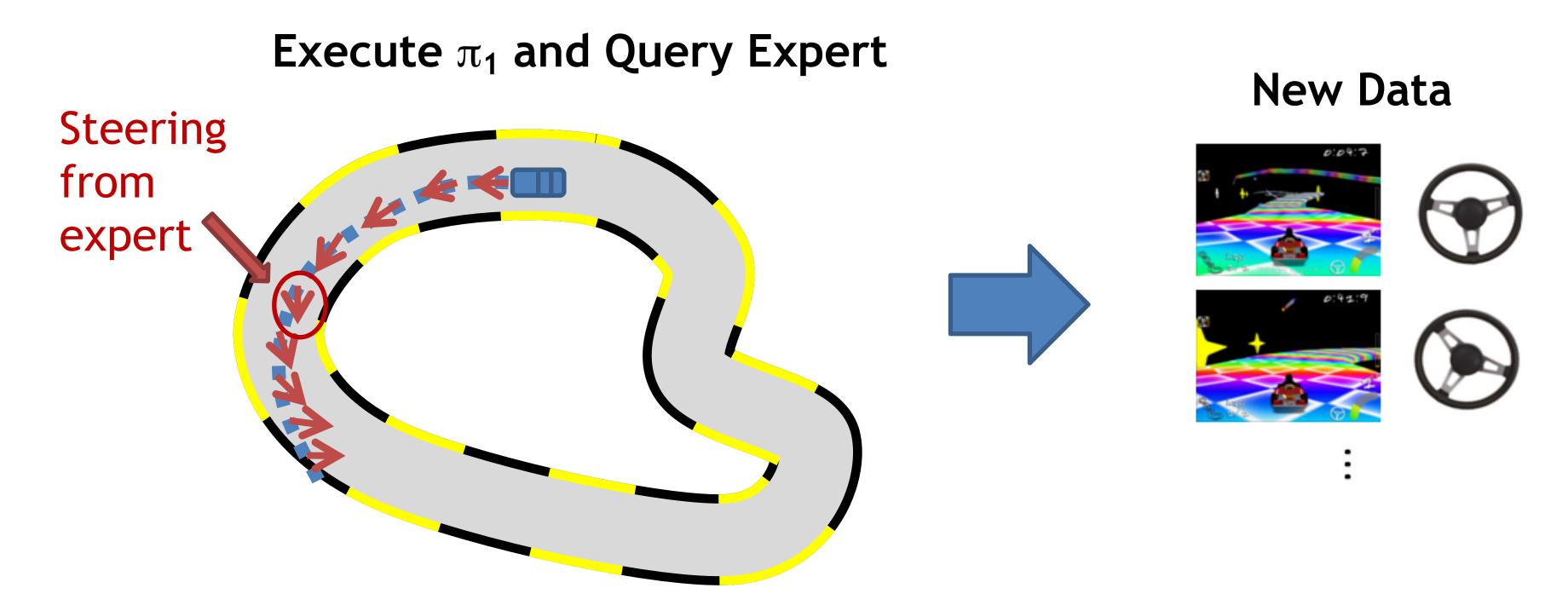
Execute π_1 and Query Expert



[Ross11a]

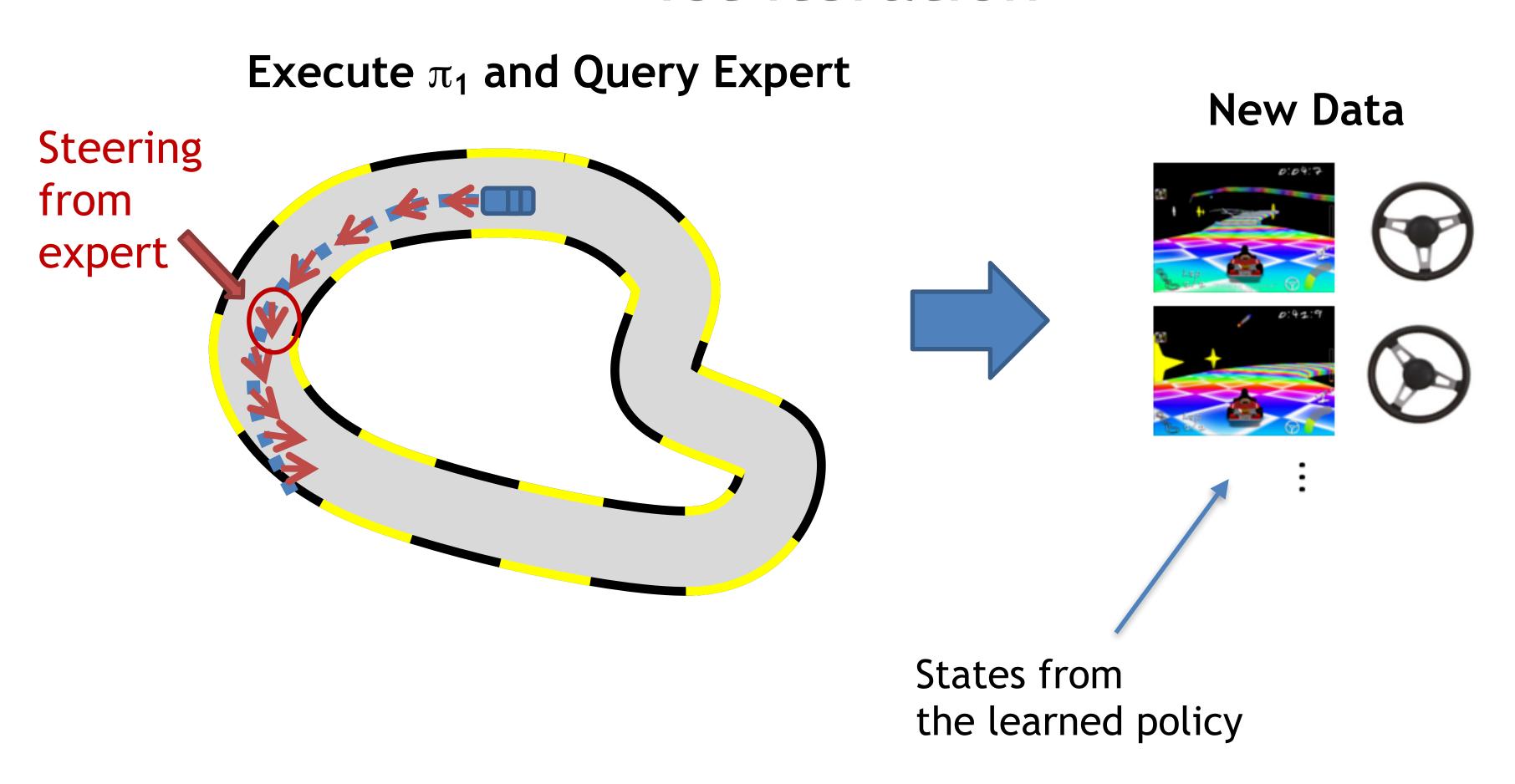
DAgger: Dataset Aggregation

1st iteration



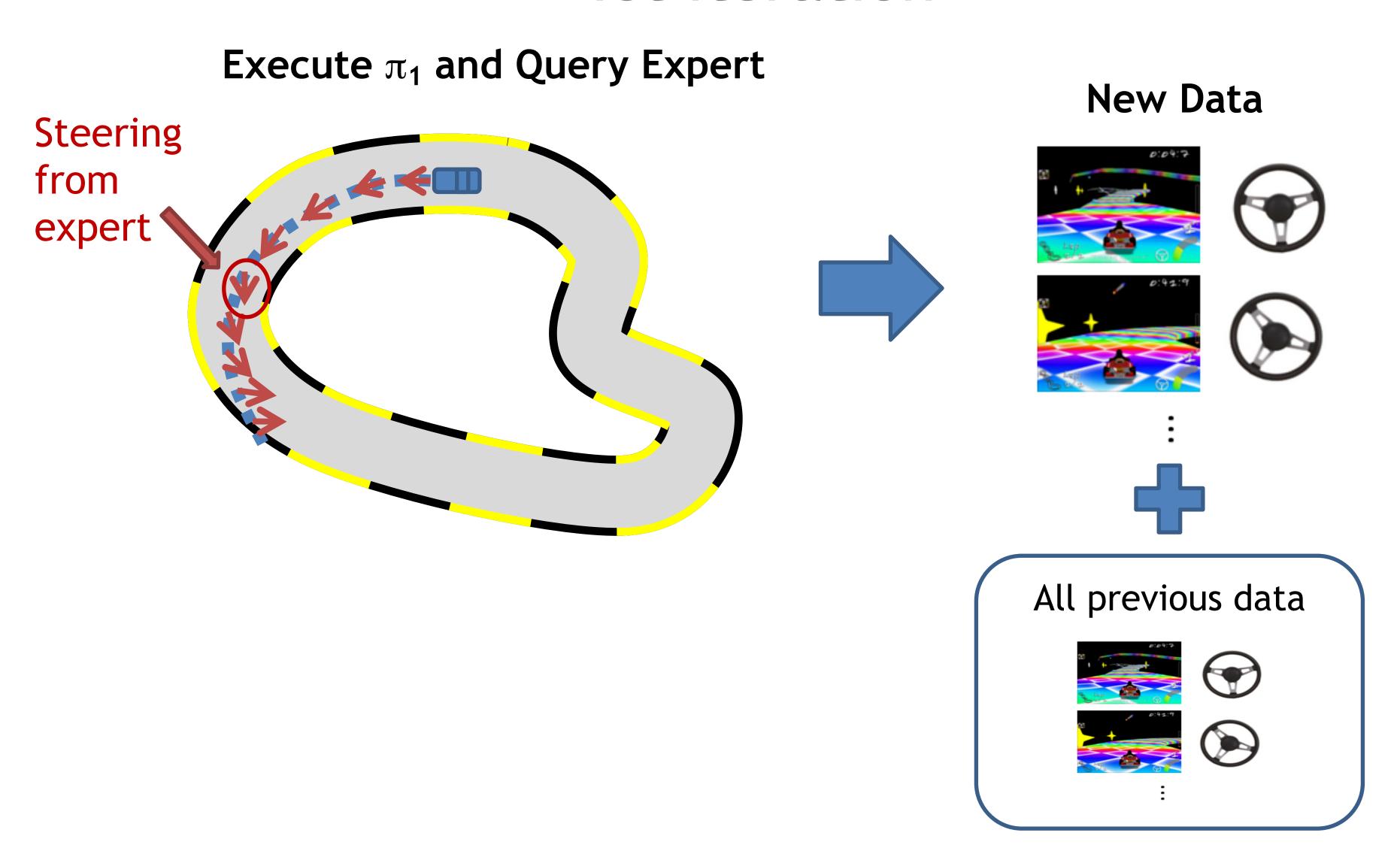
DAgger: Dataset Aggregation

1st iteration



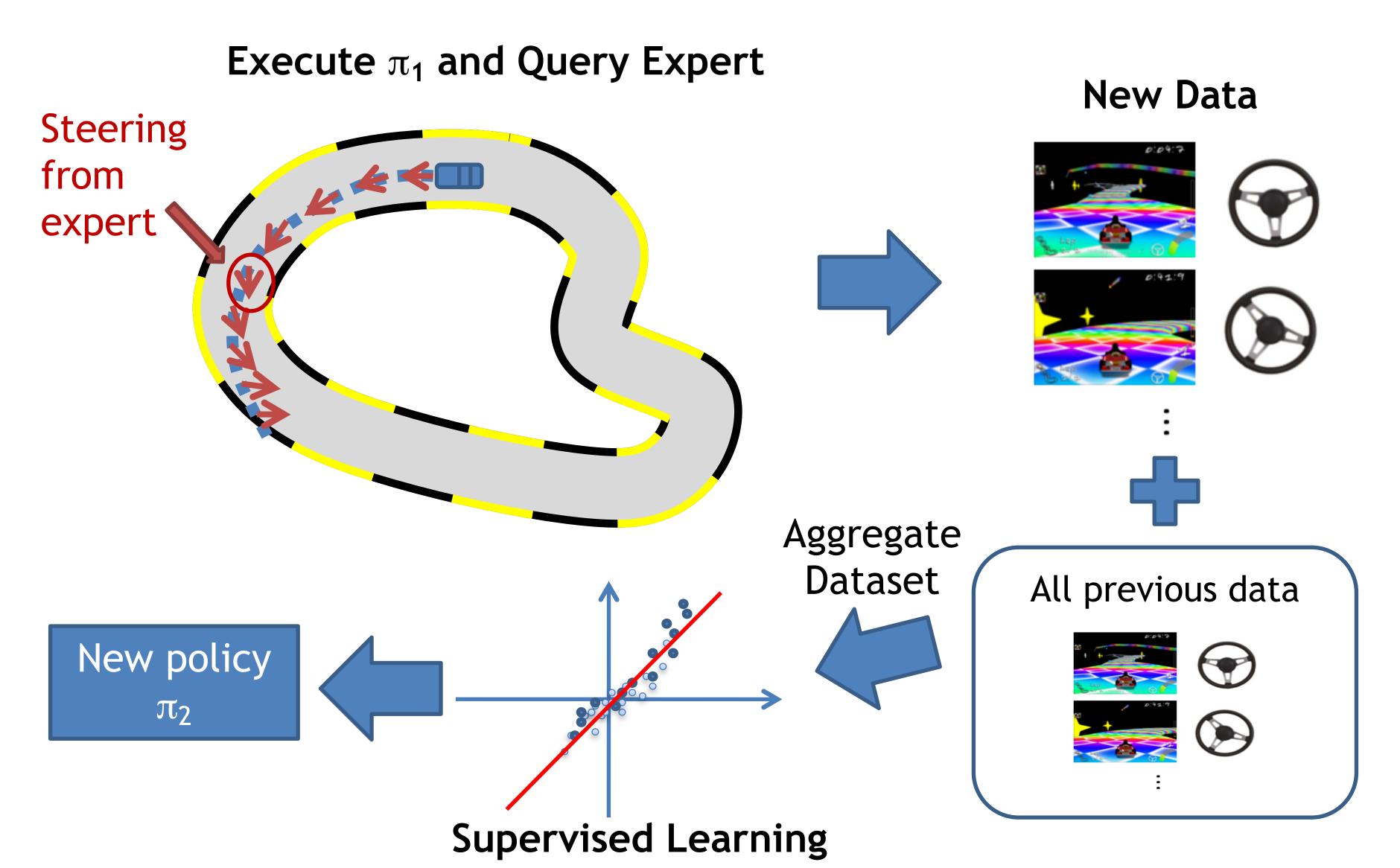
DAgger: Dataset Aggregation

1st iteration



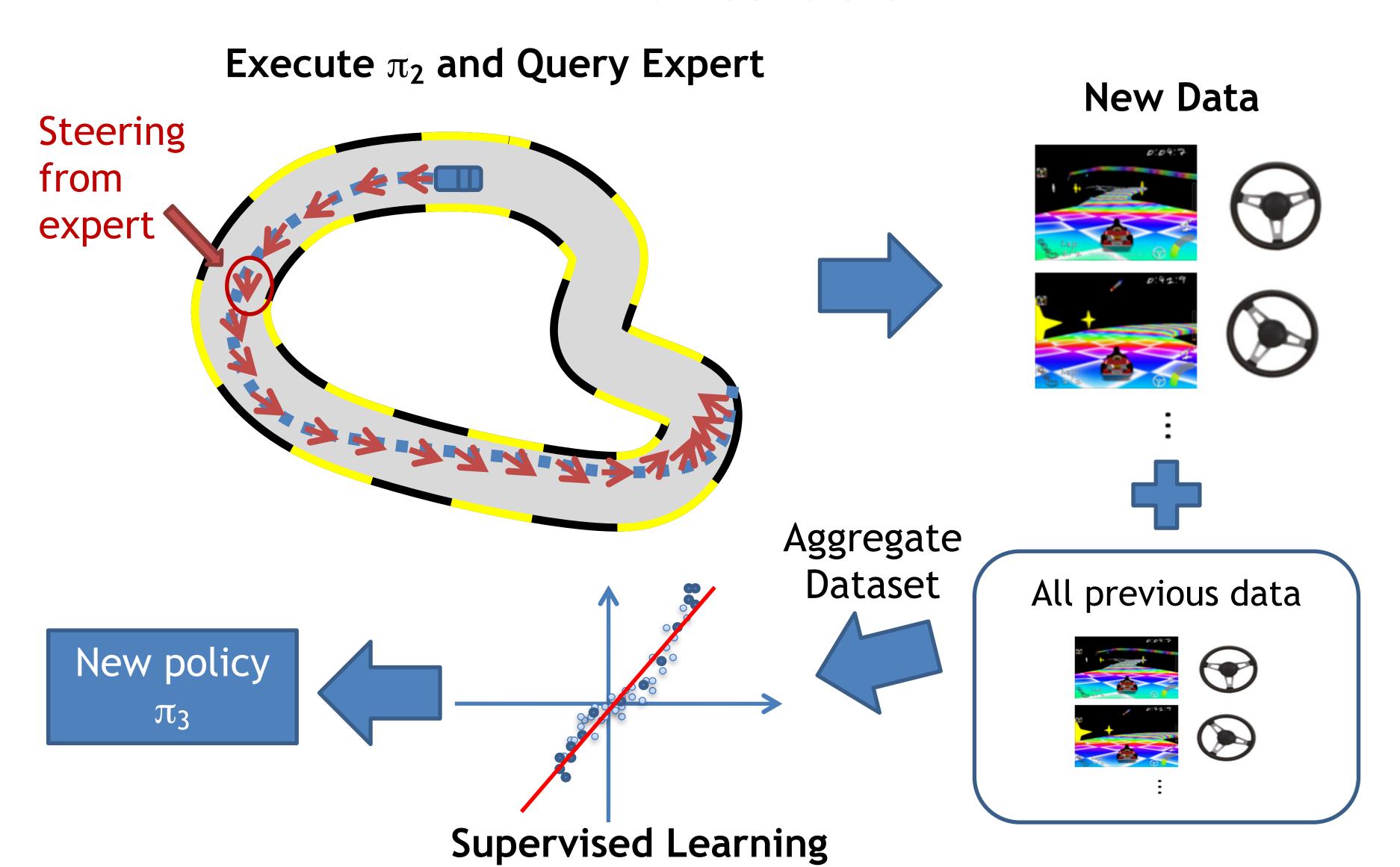
DAgger: Dataset Aggregation

1st iteration



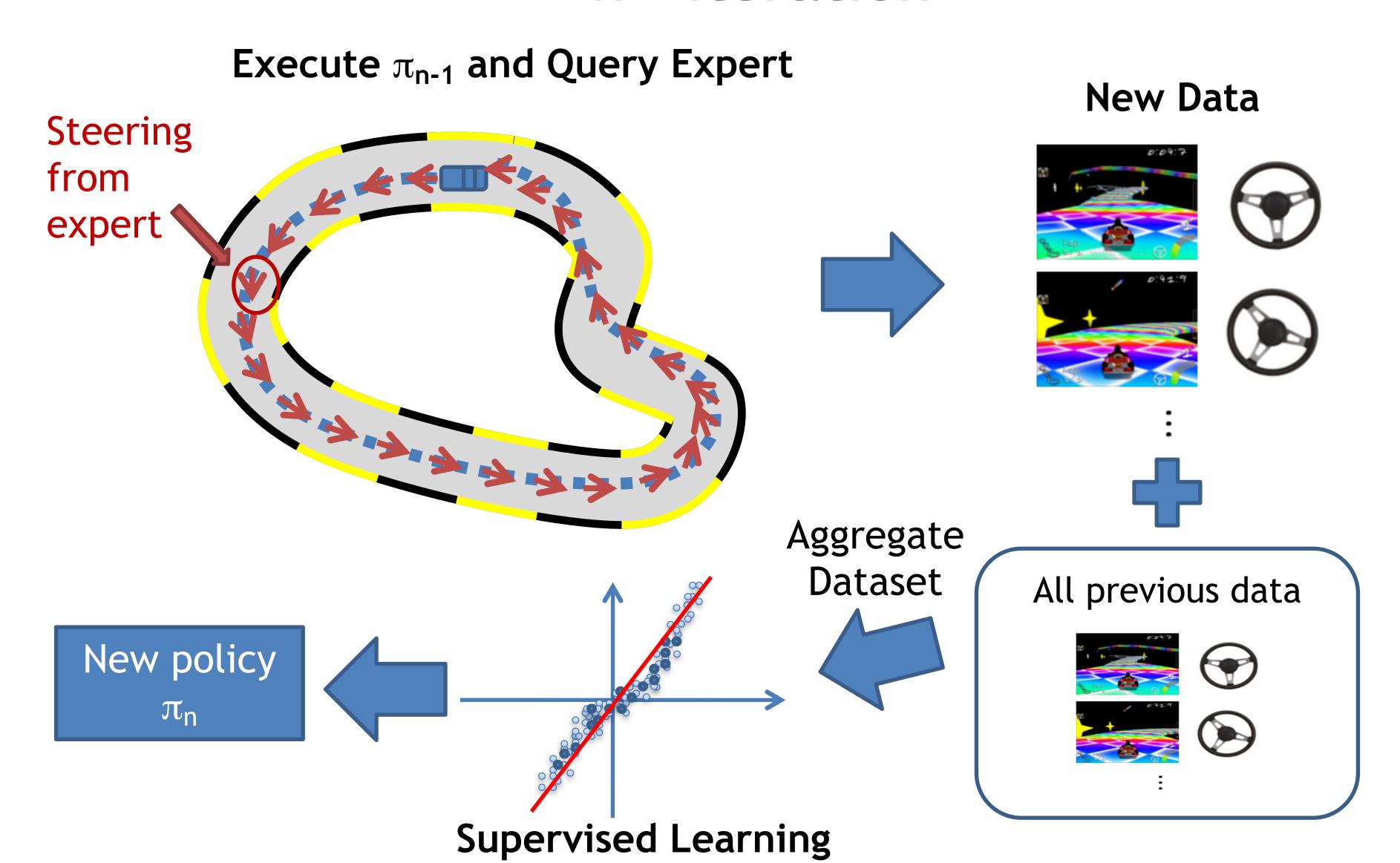
DAgger: Dataset Aggregation

2nd iteration



DAgger: Dataset Aggregation

nth iteration



Initialize π^0 , and dataset $\mathcal{D}=\mathcal{D}$ For $t=0 \to T-1$:

Initialize
$$\pi^0$$
, and dataset $\mathcal{D} = \mathcal{O}$

For
$$t = 0 \rightarrow T - 1$$
:

Initialize π^0 , and dataset $\mathscr{D}=\mathscr{O}$ For $t=0\to T-1$:

1. W/ π^t , generate dataset of trajectories $\mathscr{D}^t=\{\tau_1,\tau_2,\dots\}$ where for all trajectories $s_h\sim \rho_{\pi^t},\ a_h=\pi^\star(s_h)$

Initialize π^0 , and dataset $\mathcal{D} = \mathcal{D}$ For $t = 0 \to T-1$:

- 1. W/ π^t , generate dataset of trajectories $\mathcal{D}^t = \{\tau_1, \tau_2, ...\}$ where for all trajectories $s_h \sim \rho_{\pi^t}$, $a_h = \pi^*(s_h)$ 2. Data aggregation: $\mathcal{D} = \mathcal{D} \cup \mathcal{D}^t$

Initialize π^0 , and dataset $\mathcal{D} = \mathcal{D}$ For $t = 0 \to T-1$:

- 1. W/ π^t , generate dataset of trajectories $\mathcal{D}^t = \{\tau_1, \tau_2, ...\}$ where for all trajectories $s_h \sim \rho_{\pi^t}$, $a_h = \pi^*(s_h)$ 2. Data aggregation: $\mathcal{D} = \mathcal{D} \cup \mathcal{D}^t$ 3. Update policy via Supervised-Learning: $\pi^{t+1} = \operatorname{SL}(\mathcal{D})$

For
$$t = 0 \rightarrow T - 1$$
:

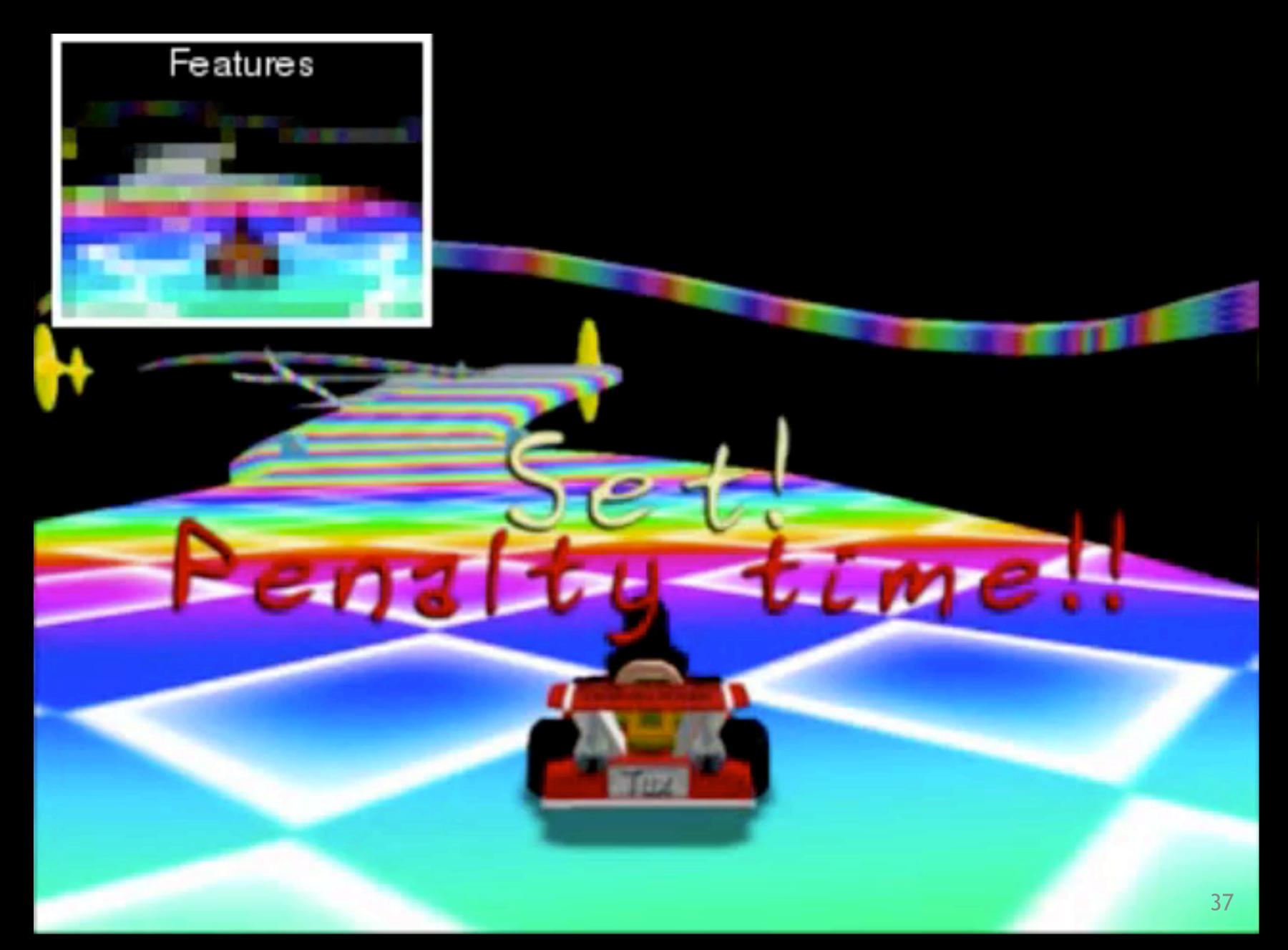
- Initialize π^0 , and dataset $\mathscr{D}=\mathscr{O}$ For $t=0 \to T-1$:

 1. W/ π^t , generate dataset of trajectories $\mathscr{D}^t=\{\tau_1,\tau_2,\ldots\}$ where for all trajectories $s_h \sim \rho_{\pi^t},\ a_h=\pi^\star(s_h)$ 2. Data aggregation: $\mathscr{D}=\mathscr{D}\cup\mathscr{D}^t$ 3. Update policy via Supervised-Learning: $\pi^{t+1}=\operatorname{SL}\left(\mathscr{D}\right)$

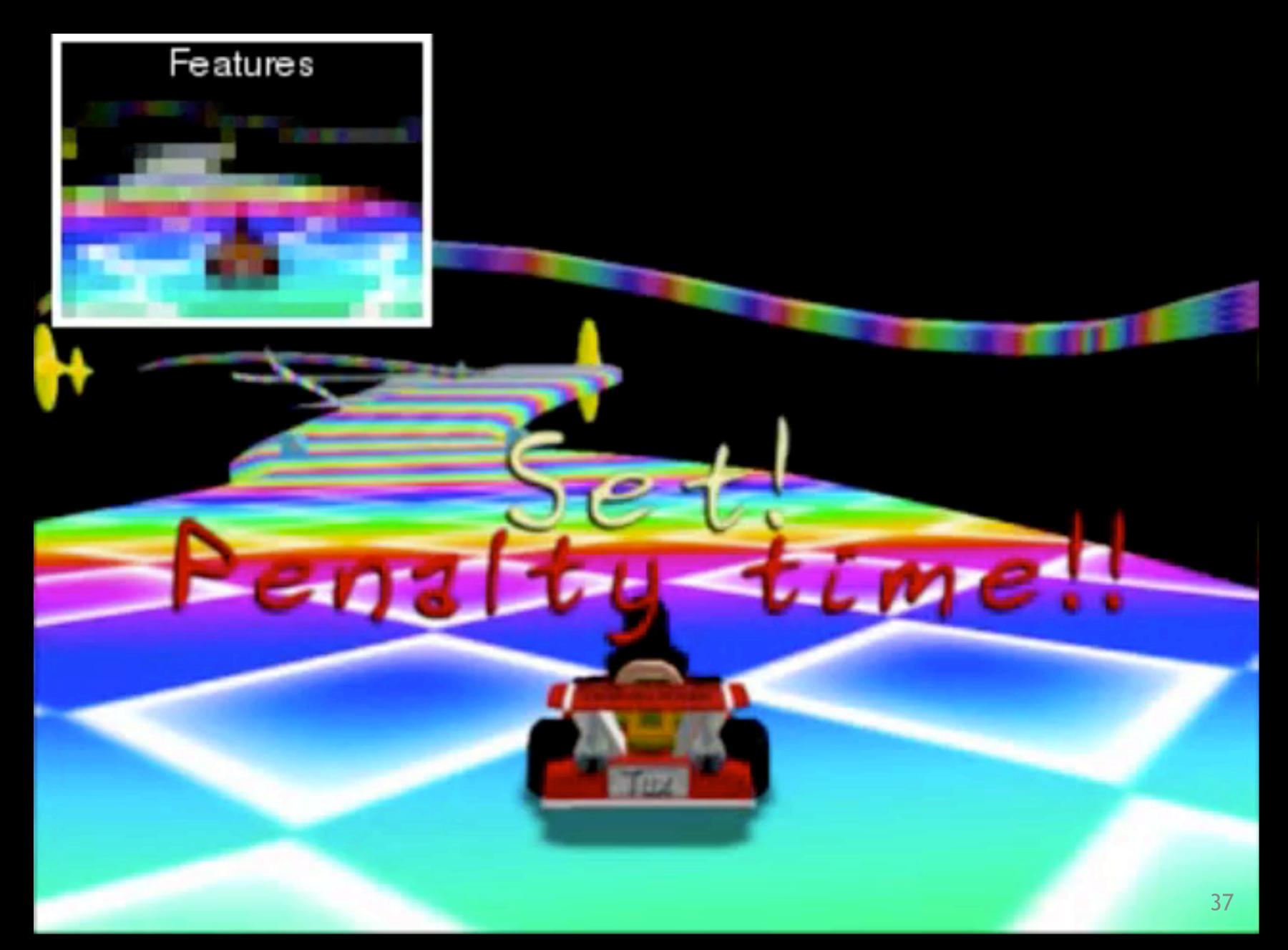
In practice, the DAgger algorithm requires less human labeled data than BC.

[Informal Theorem] Under more assumptions + assuming ϵ SL error is achievable, the DAgger algorithm has error: $|V^{\pi^*} - V^{\hat{\pi}}| \leq H\epsilon$

Success!



Success!



Summary:

- 1. NPG: a simpler way to do TRPO, a "pre-conditioned" gradient method.
- 2. PPO: "first order" approx to TRPO

Attendance:

bit.ly/3RcTC9T

Feedback:

bit.ly/3RHtlxy

