
 
Supervised Learning (in 1

Lecture)
 

Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning 

Fall 2023

1

Today

• Feedback from last lecture

• Recap

• Supervised learning setup

• Linear regression

• Neural networks

2

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.

3

Today

• Feedback from last lecture

• Recap

• Supervised learning setup

• Linear regression

• Neural networks

4

Recap

•Thompson sampling is a good heuristic for bandits

•Couple more slides on it, then we move on (rest of today unrelated to
bandits)

5

Thompson sampling in practice (cont’d)

6

So Thompson sampling is basically exactly optimal for large T
What could go wrong for smaller ? Suppose and , and:

• : ,

• : ,

• (last time step, with and): ?

T K = 2 T = 3
t = 0 a0 = 1 r0 = 1
t = 1 a1 = 2 r1 = 0
t = 2 ̂μ(1)

2 = 1 ̂μ(2)
2 = 0 a2 =

Thompson sampling has a decent probability of choosing , since with just
one sample from each arm, Thompson sampling isn’t sure which arm is best.

a2 = 2

But is clear right choice here: there is no future value to learning more, i.e.,
no reason to explore rather than exploit.

a2 = 1

Thompson sampling doesn’t know this, and neither does UCB (although UCB
wouldn’t happen to make the same mistake in this case).

Thompson sampling in practice (cont’d)

7

For small , Thompson sampling is not greedy enoughT

Fix: add a tuning parameter to make it more greedy. Some possibilities:

• Update the Beta parameters by instead of just 1 each time

• Instead of just taking one sample of and computing the greedy action with
respect to it, take samples, compute the greedy action with respect to each,
and pick the mode of those greedy actions

All of these favor arms that the algorithm has more confidence are good (i.e., arms
that have worked well so far), as opposed to arms that may be good

1+ϵ
μ

n

Such tuning can improve Thompson sampling’s performance even for reasonably
large (the asymptotic optimality of vanilla TS is very asymptotic)T

Today

• Feedback from last lecture

• Recap

• Supervised learning setup

• Linear regression

• Neural networks

8

Supervised learning setup

9

Data: i.i.d. pairs drawn from distribution (y1, x1), …, (yn, xn) ℙ(y, x) = ℙ(y |x)ℙ(x)

Goal: learn a good predictor of f(x) y
Note: minimizes mean squared error𝔼[y |x]

MSE(f) = 𝔼[(y − f(x))2]
= 𝔼[(y − 𝔼[y |x] + 𝔼[y |x] − f(x))2]

= 𝔼[(y − 𝔼[y |x])2] + 𝔼[(𝔼[y |x] − f(x))2] + 2𝔼[(y − 𝔼[y |x])(𝔼[y |x] − f(x))]

𝔼 [(y − 𝔼[y |x]) (𝔼[y |x] − f(x))] = 𝔼 [𝔼 [(y − 𝔼[y |x]) (𝔼[y |x] − f(x)) x]]
= 𝔼 [𝔼 [(y − 𝔼[y |x]) x] (𝔼[y |x] − f(x))] = 0

How do we now know that minimizes MSE?f(x) = 𝔼[y |x]

Empirical risk minimization (ERM)

10

Fact: 𝔼[y |x] = arg min
f

𝔼[(y − f(x))2]

This fact both motivates as a target for learning, and suggests how to do it𝔼[y |x]

Law of large numbers: 𝔼[(y − f(x))2] ≈
1
n

n

∑
i=1

(yi − f(xi))2

Empirical risk minimization (ERM): ̂f(x) = arg min
f

1
n

n

∑
i=1

(yi − f(xi))2

Seems great, but if we allow in the argmin to range over all functions, we can get
ridiculous solutions. Can anyone think of one?

f

E.g., achieves zero training error (as long as no ties in the ’s)f(x) =
n

∑
i=1

yi1{x=xi} xi

But it predicts at every value not in the training data, regardless of the data!0 x

 training error of =: f

Function classes

11

Statistical learning theory: the ERM optimum (criterion 3) will perform well if ’s
approximation error (criterion 1) and complexity (criterion 2) are low

̂f ℱ

Need to constrain ERM to a function class : ℱ ̂f(x) = arg min
f∈ℱ

1
n

n

∑
i=1

(yi − f(xi))2

How to choose ?ℱ Three main high-level criteria:

1. Approximation:

2. Complexity: doesn’t contain “too many” functions/dimensions

3. Optimizable: need to be able to compute the argmin (or something like it)

𝔼[y |x] ≈ arg min
f∈ℱ

𝔼[(y − f(x))2]

ℱ

E.g. (if scalar) quadratic functions: x ℱ = {f(x) = ax2 + bx + c : (a, b, c) ∈ ℝ3}

Optimization

12

Typically our function class is parameterized by a parameter vector ,
i.e., every can be written as for some

ℱ θ ∈ ℝd

f ∈ ℱ fθ(x) θ ∈ ℝd

Notation: , , gradient operator Li(θ) = (yi − fθ(xi))2 L(θ) =
1
n

n

∑
i=1

Li(θ) ∇θ

Parameterized ERM optimization: ; ̂θ = arg min
θ∈ℝd

1
n

n

∑
i=1

(yi − fθ(xi))2 ̂f = f ̂θ

Gradient descent: initialize at , update via θ0 θ(i+1) = θ(i) − η∇θL(θ(i))
Downside: computing at each step expensive for big data∇θL(θ(i))

Stochastic gradient descent: initialize at , update via θ0 θ(i+1) = θ(i) − η∇θLi(θ(i))
Can do multiple passes of data, or uses batch size at each stepb > 1

Main takeaway: this works (for good choices of and , which may vary with)b η i

Today

• Feedback from last lecture

• Recap

• Supervised learning setup

• Linear regression

• Neural networks

13

Linear model

14

Linear model (if , let): d = dim(x) θ ∈ ℝd fθ(x) = x⊤θ

ERM optimization: ̂θ = arg min
θ∈ℝd

1
n

n

∑
i=1

(yi − x⊤
i θ)2

Let and , can rewrite ERM as: Y := (y1, …, yn) ∈ ℝn X := (x⊤
1 ; …; x⊤

n) ∈ ℝn×d

̂θ = arg min
θ∈ℝd

1
2

∥Y − Xθ∥2

Let : , L(θ) =
1
2

∥Y − Xθ∥2 ∇θL(θ) = X⊤(Y − Xθ) ∇θLi(θ) = xi(yi − x⊤
i θ)

Instead of (S)GD, leads to closed-form solution ∇θL(θ) = 0 ̂θ = (X⊤X)−1X⊤Y
If , non-invertible; many solutions exists (think: fitting line through 1 point)n < d X⊤X

Surprising fact: GD initialized at finds solution with smallest norm!0

Notes on linear models

15

1. Can work surprisingly well in practice, especially in high dimensions

a) Linear functions approximate smooth functions pretty well, if very smooth

2. Need good features

a) Can use domain knowledge to construct transformation which can be

higher- or lower-dimensional than , and then just use linear model in

3. Adding penalty to ERM objective can help a lot, especially in high dimensions

a) Ridge penalty: add to training loss to discourage huge entries

b) Lasso penalty: add to training loss to encourage sparse

ϕ(x)
x ϕ(x)

λ
d

∑
j=1

θ2
j

̂θ

λ
d

∑
j=1

|θj | ̂θ

Today

• Feedback from last lecture

• Recap

• Supervised learning setup

• Linear regression

• Neural networks

16

Neural network model

17

Building blocks:

1. Linear transformation (multiplication by matrix , then addition by vector)

2. Nonlinear transformation , e.g., ReLU , applied element-wise

W b
σ σ(a) = max(a,0)

Simplest nontrivial NN is . Can think of as:

1. Start with input ,

2. Linearly transform with and to get

3. Apply (element-wise) the nonlinearity to get

4. Linearly transform with and to get

f(x) = W2σ(W1x+b1)+b2

x ∈ ℝd

W1 ∈ ℝm×d b1 ∈ ℝm W1x+b1 ∈ ℝm

σ σ(W1x+b1) ∈ ℝm

W2 ∈ ℝm×1 b2 ∈ ℝ W2σ(W1x+b1)+b2 ∈ ℝ
With layers: p f(x) = Wpσ(Wp−1σ(⋯ σ(W1x+b1) ⋯)+bp−1)+bp
Parameter vector concatenates all ’s and ’s; scales as width depthθ W b dim(θ) ×

Optimizing the neural network

18

Computing gradients, even stochastic gradients , is daunting∇θLi(θ)

A trick called backpropagation allows such gradients to be computed efficiently

Too notationally cumbersome to cover here, but basically the hierarchical structure
of neural networks plays very nicely with the chain rule (see Wikipedia or many

other sources on internet for more)

Unfortunately, is non-convex, i.e., it will in general have many local optimaL(θ)

We hope that SGD finds a good one… in practice there are optimization tricks that
are like SGD but perform better, e.g., one very popular one is called Adam

Notes on NNs

19

1. Work well for all problems, breaking criterion 1 (approximation)

a) Actually, NNs need a lot of data, and are often worse than classical methods

on smaller data sets

b) Many of the most famous / impressive NNs, such as CNNs for vision or

AlphaFold for protein structure, heavily incorporate problem-specific
structure into their models

2. Work better when larger / more complex, breaking criterion 2 (complexity)

a) This is true, though larger / more complex NNs also need more data to train

b) The number of NN parameters is not a good measure of its “complexity”

3. Are highly non-convex, breaking criterion 3 (optimization)

a) The optimizers used for NNs don’t find arbitrary solutions, they actually find

“low-complexity” solutions!

Today

• Feedback from last lecture

• Recap

• Supervised learning setup

• Linear regression

• Neural networks

20

Summary:

Feedback:

bit.ly/3RHtlxy

21

Attendance: 
bit.ly/3RcTC9T

•Given data comprised of a bunch of pairs, there exists a huge toolbox (a
whole field’s worth) to approximate the function

•Generally, we write down a squared-error loss function for a parameterized
function class and optimize it via (possibly stochastic) gradient descent

(y, x)
𝔼[y |x]

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

