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MCTS: .
Monte Carlo Tree SearCh Selection - Expansion - Simulation -+ Backpropagation

Figure from Chaslot {2006)

* AlphaBeta pessimistic approach may not lead to effective heuristics.
« MCTS: to decide on an action, we build a lookahead tree. (and repeat)
Input: game state/node “R”; Output: single action to take at R

* Fortwo player games
* When building the lookahead tree, we use a heuristic to estimate the “value” of

taking action “a” at any node “s”
(ho minmax values estimated).

 Applicable to “small” games.



ActionSelectionSubroutine

Input: game state (“root node” R), # playouts N
Forrollouts7 = 1 : V
1. Obtain the 7-th roll-out: While CurrentNode & {win, lose}
a. Forplayer X € {A, B}, at current state s, define 5" = NexiStare(s, a) and define:
wins for player X at s’ log(total visits to )

UCB score/s,a) = + C X \/

visits to s’

visits to s’

b. Choose and “take” action:;

a = arg max UCB score(s, a)
a

2. Update stats: For all visited states s in this “roll-out”,
C. Uupdate visit counts:

[#visits to 5] = [#visitsto s'] + 1
d. for winner X and if s was visited by X:

[#wins for X at s'] = [#wins for X at s'] + 1
(data structure: only need to keep track of stats at visited states)

Output: return the action ¢ = arg max UCB scorey(Root Node R, a)
a
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Example Diagram:

SELECTION EEXPANSION SIMULATION BACKPROPAGATION
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 Obtaining the 7-th rollout (steps called Selection/Expansion/Simulation):
Start from “root R” and select successive child nodes until a the game ends.

At state s (for player X), choose action a leading to s = NextState(s, a) which maximizes:

wins for player X at s’ log(total visits to )
UCB score/s,a) = + C X
visits to s’ visits to s’
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 The update step for the t-th rollout (“backpropagation”):
Use the result of the rollout to update information in the nodes on the visited path:

[#visits to 5] = [#visitsto s'] + 1
|#wins for X at s'] = [#wins for X at s'] + 1




Example Diagram:
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 Repeat all steps N times, (so we do N roll-outs)
* select the “best” action at the root node R (the game state):

a = arg max UCB scorey(Root Node R, a)
a



Today

Recap

Game Playing: AlphaBeta Search/Rule Based Systems
MCTS

AlphaZero and Self-Play



AlphaGo

AlphaGo versus Lee Sedol

4-1
Seoul, South Korea, 9-15 March 2016
Game one AlphaGo W+R
Game two AlphaGo B+R
Game three AlphaGo W+R
Game four Lee Sedol W+R
Game five AlphaGo W+R

* Lots of moving parts:

ALPHAGO

00:08:32 08 00 : "~ LEE SEDOL

o 00:00:27

e e

oy O
@ ‘\ ’ ®
L) ® ‘O

AlphaGo

Google DeepMind

* Imitation Learning: first, the algo estimates the values from historical games.
* |t then uses an MCTS-stye lookahead with learned value functions.
 AlphaZero (2017) is a simpler more successful approach.
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AlphalZero

* AlphaZero: MCTS + Deeplearning
* There is a value network and policy network:

« a value network estimating for the state of the board
A policy network that is a probabillity vector over all possible actions.

(think of as an estimate of which actions the “subroutine” selects)
* There is a termination condition for each rollout,

e.g. each rollout is no longer than K steps
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AlphaZero: ActionSelectionSubroutine

Input: game state (“root node” R), # playouts N, value network v,(s), policy network p,(a | s)

Forrolloutsr =1 : NV
1. Obtain the #-th roll-out: While CurrentNode & {termination condition}
a. At current state s, define s = NextState(s, a) and define:
log(total visits to s)

UCB score/(s,a) = AvValue(s’) + C - py(a|s) - \/

visits to s’

b. Choose and “take” action:
a = arg max UCB score/(s, a)
a
2. Update stats: For all visited states s in this “roll-out”,
c. Let C be the terminal node in this rollout.
d. Update counts: N(s) < N(s) + 1
N(s
e. If state s was for player A: AvValue(s) < () AvValue(s) 4
N(s) + 1 N(s) + 1

f. If state s was for player B: same update but with —v,(C)

Output: return the action ¢ = arg max UCB scorey(Root Node R, a)
a

Ve(C)



AlphalZero

SELECTION EXPANSION SIMULATION BACKPROPAGATION

N N
FATRRAN Sy db dpde Iy Ik

Y
Q

* Obtaining the 7-th rollout (steps called Selection/Expansion/Simulation):
e Start from “root R” (current game) and do a rollout of no more than K steps.
» At state s, choose action a leading to s = NextState(s, a) which maximizes:

« We’ll specify AverageValue(s’) soon.
wins at s’

. In MCTS, this average was

visits to s
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AlphalZero

SELECTION EXPANSION SIMULATION BACKPROPAGATION

N N
FATRRAN Sy db dpde Iy Ik

Q

 The update step for the t-th rollout (“backpropagation”):
» Suppose the Simulation ends at node C after K steps.

 Update AvValue(s) on all s in the path from the root R to C (for player A):

(use negative values for player B)
* Repeat all steps N times, then select “best” action at the root node R (the game state).

14



AlphaZero: Learning

* |nput: dataset of M self-play games
 The point in the dataset is of the (s, a,, R,), which says action a, was taken in state s, and the

game resulted in outcome R, (e.g. win=1,loose=-1, draw=0)
e Supervised Learning: try learn @ so to predict the actions and rewards

Loss(0) = Z (vy(s,) — R)* —log py(a,|s,)

AlphaZero was trained solely via self-play, using 5,000 first-generation TPUs to generate the games and 64 second-generation TPUs to train
the neural networks. In parallel, the in-training AlphaZero was periodically matched against its benchmark (Stockfish, elmo, or AlphaGo Zero) in

15



Year
2018
2019
2019
2019
2020
2020
2020
2021
2021
2022
2023

Comparing Monte Carlo tree search searches, AlphaZero searches just 80,000 positions per second in chess and 40,000 in shogi, compared to

70 million for Stockfish and 35 million for elmo. AlphaZero compensates for the lower number of evaluations by using its deep neural network to

Cup

Time Controls
30+10
30+5
30+5
30+5
30+5
30+5
30+5
30+5
30+5
30+3
30+3

Result
1st
andlnote 1]
2nd
1st
1st
3rd
1st
1st
1st
1st
2nd

Ref
[63]

[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]

[73]

Chess [edit]

In AlphaZero's chess match against Stockfish 8 (2016 TCEC world champion), each program was given one minute per move. Stockfish was
allocated 64 threads and a hash size of 1 GB,!!! a setting that Stockfish's Tord Romstad later criticized as suboptimal.[”lnot 1 AlphaZero was
trained on chess for a total of nine hours before the match. During the match, AlphaZero ran on a single machine with four application-specific
TPUs. In 100 games from the normal starting position, AlphaZero won 25 games as White, won 3 as Black, and drew the remaining 72181 In a
series of twelve, 100-game matches (of unspecified time or resource constraints) against Stockfish starting from the 12 most popular human
openings, AlphaZero won 290, drew 886 and lost 24.!]

Shogi [ edit]

AlphaZero was trained on shogi for a total of two hours before the tournament. In 100 shogi games against elmo (World Computer Shogi
Championship 27 summer 2017 tournament version with YaneuraOu 4.73 search), AlphaZero won 90 times, lost 8 times and drew twice.8] As
in the chess games, each program got one minute per move, and elmo was given 64 threads and a hash size of 1 GB.[]

Go [edit]

After 34 hours of self-learning of Go and against AlphaGo Zero, AlphaZero won 60 games and lost 40.[118]

Leela Chess Zero (abbreviated as LCZero, Ic0) is a free, open-source,

and deep neural network—based chess engine and volunteer computing
Leela Chess Zero project. Development has been spearheaded by programmer Gary
Linscott, who is also a developer for the Stockfish chess engine. Leela
Chess Zero was adapted from the Leela Zero Go engine,!'! which in turn
was based on Google's AlphaGo Zero project.?! One of the purposes of
Leela Chess Zero was to verify the methods in the AlphaZero paper as

Original author(s) Gian-Carlo Pascutto, Gary
Linscott applied to the aame of chess.
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Comments:

Question:
When do we use rollout methods (MPC/AlphaZero) vs PG methods?

MuZero
* Basically AlphaZero but we don’t know game rules.
* We learn the transition function as we play.

17



Warmup for UCB-V|



How we do find 7* in an unknown MDP?
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* Episodic setting with an unknown MDP;
* Suppose we start at s, ~ U.

 We act for H steps.
* Then repeat.

» How do we find 7*7?
* How do get low regret?

» So both r(s,a) and P( - | s, a) are deterministic.
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Algorithm: ExploreThenExploit
(For Det MDPs)

Let’s say a state-action pair (s,a) is
 Whenis (s,a) known at episode N?
 Let K, be the set of known state-action

S0

R=1

S states

if both NextState(s, a) and r(s, a) are known.

pairs at episode V.

Define the BonusMDP M, respect to a known set K

 For(s,a) € K,

« define the dynamics and rewards in M, to be same as in the true MDP.

(note this is possible for us to do (s, a) € K)
« assume the reward is O for these state-action pics.

« For (s,a) & K, assume we transition to a special state s* which is absorbing (i.e. we stay

at s*) and we always achieve a reward of 1 at this absorbing state.
Let 71'; and Vl’g be the optimal policy and value in M.

Assume H > | §|.

If K does not contain all state-action pairs, then Vl’é > () and 71'; will reach some (s,a) € K

(in at most | S| steps).

20
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Algorithm: ExploreThenExploit AV O

(For Det MDPs) s+ -

~—— ———
—_— I

« Let’s say a state-action pair (s,a) is known if both NextState(s, a) and r(s, a) are known.
 When is (s,a) known at episode N?
« Let Ky be the set of known state-action pairs at episode V.

e Init: K=0@
e \While not terminated
. Compute 7y and V7 in M.
o |f Vl’é > (), execute le’é and update the known set K

* Else: terminate
 Return: the optimal policy in the known MDP.

Theorem: Assuming H > | S|, this algorithm returns an optimal policy in most |S]| - |A]
trajectories.

21



Comments:

* Shortest path computation:
How do we formulate this as computing an optimal policy in some modified MDP?

« How do we modify the algorithm for general H?

 What is the regret of this algorithm?

22



(Rest of) Today

 Why we don’t want to treat MDPs as big bandits
 UCB-VI for tabular MDPs
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Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?

(1a19)"

So treating each policy as an “arm” and running UCB gives us regret 0(\/ | A \‘S‘HN)

This seems bad, so are MDPs just super hard or can we do better?

24



An example of MDP as bandit

S={a,b}, A={12}, H=2 AP =24 =16

All state transitions happen with probability 1/2 for all actions

Reward function: ra,1) =rb1)=0

ra,2) =r(b2) =1

Suppose we have a lot of data already on a policy 7D that always takes action 1
and a policy 7% that always takes action 2 (note e ﬂ*)

What do we know about a policy 7) which always takes action 1 in the first time step, and
always takes action 2 at the second time step?

Everything: we have a lot of data on every state-action reward and transition!

If we treat the MDP as a bandit, we treat 7) as a new “arm” about which we know nothing...

25



Today

 Why we don’t want to treat MDPs as big bandits
 UCB-VI for tabular MDPs
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Recall: Value lteration (VI)

VI = DP is a backwards in time approach for computing the optimal policy:

1. Startat H — 1,

Q5 _((s,a) =r(s,a) =m7;_,(s) =argmax QF_,(s,a)

V;_l = max Q[j—]‘(_l(sa a) = Q;;_l(sa ﬂg_l(s))

2. Assuming we have computed V ,, h < H — 2, i.e., assuming
we know how to perform optimally starting at 7 + 1, then:

Q]:lk(sa a) — r(Sa a) + _S’NP(S,a)V};:_](S,)

7 (s) = arg mfx Qr(s,a), Vr= mfx Q7 (s, a)

27



Recall: UCB

Fort=0,..., 7T — 1:
Choose the arm with the highest upper confidence bound, i.e.,

a, = arg max ﬂgk) +4/In(2T K/(S)/ZNt(k)
kell,....K}

High-level summary: estimate action quality, add exploration bonus, then argmax

28



UCBVI: Tabular optimism in the face of uncertainty

Assume reward function r;,(s, a) known

Inside 1teration 7 :

N

Use all previous data to estimate transitions P 7, ..., P/, ,

Design reward bonus b, (s, a), Vs, a, h

Optimistic planning with learned model: 7" = VI ({ P, r + [9” - 11)

Collect a new trajectory by executing 7" in the true system {Ph}H o Starting from s

29



Model Estimation

Let us consider the very beginning of episode n:
n_ foi i o n—I
Dy = S U Sy Vimy > Vh
Let’s also maintain some statistics using these datasets:

n—1 n—1
N, (s,a) = Z 1{(s},a}) = (s,a)},VYs,a,h, N(s,a,s) = Z 1{(s;.a,,s,.,) = (s,a,5)},VYs,a,h
=1 =1

N

Estimate model P /(s'|s,a),Vs,a,s’,h:

~ N (s, a,s’
P(s'|s,a) = 15, 6,5)
Nj(s, a)
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Reward Bonus Design and Value lteration

Let us consider the very beginning of episode n:

n—1
D} = {Sli’ a;;, S/i+1}?=_11’ Vh, N,(s,a) = Z 1{(s,,a,) = (s,a)},Vs,a,h,
i=1

loe (SAHN/6 Encourage to explore
bX(s, a) = CH\/ & ) ot

new state-actions
NJ\(s, a)

Value Iteration (aka DP) at episode n using { f’\Z} pand {r,+ b},

/V\I’ZI(S) = 0,Vs /Q\Z(s, a) = min {rh(s, a)+ b, (s,a) + ?\Z( - |s,a) - T/\Z . H }, Vs, a

/V\Z(S) = max /Q\Z(s, a), m;(s)= argmax /Q\Z(s, a),Vs /V\Z < HVYVh,n

a o0
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UCBVI: Put All Together

Forn=1—-> N:

n—1
1.Set Ni(s,a) = ) 1{(s,a) = (s.a)},Vs,a,h

i=1
n—1
2.Set N)(s,a,s’) = Z 1{(5;;, a;;, S;;+1) =(s,a,s)},Vs,a,a’, h
i=1

o~ o~ Ni(s,a,s’
3. Estimate P": P (s'|s,a) = L ),‘v’s, a,s’, h

Nji(s, a)
log(SAHN/ o)

4. Plan: n”zVI( f’\”,r + b ),with b'(s,a) = cH
(P b)) with b5, \/ o

n . n
5. Execute 7" 1 {8y, Ays 1gys ++ s Spy_15 Q15 Try_ 15 Spy)
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High-level Idea: Exploration Exploitation Tradeoft
Upper bound per-episode regret: Vg( (Sg) — V(’)’n(so) < T/\’g(so) — Vgn(so)
1. What if ?S(SO) — V(’)’n(so) is small?

Then 7"t is close to 7™, i.e., we are doing exploitation

Not obvious 2. What if O(SO) Vi (sg) is large?

~ N\ ]

Vo(so) — Vgn(So) < Z C 5 andi” lb”(s a) + ( P 2 ]s,a)—P,(-]|s,a)) - Vh+1] must be large

We collect data at steps where bonus is large or model is wrong, i.e., exploration

- |Regret, | := [i v ] < 0 (H*/3AN)

n=1
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Today

 Why we don’t want to treat MDPs as big bandits
 UCB-VI for tabular MDPs
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Summary:

UCBVI algorithm applies UCB idea to MDPs to achieve exploration/exploitation trade-off

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy
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http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

