Monte Carlo Tree Search (MCTS)
& AlphaZero

CS/Stat 184: Introduction to Reinforcement Learning
Fall 2023



Today

Recap

Game Playing: AlphaBeta Search/Rule Based Systems
MCTS

AlphaZero and Self-Play



Recap



Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Expert Trajectories

Finite horizon MDP

Ground truth reward r(s, a) € [0,1] is unknown;
Assume the expert has a good policy 7™ (not necessarily opt)

We have a dataset of M trajectories: D = {1y, ...7),},

— (ol N1

Goal: learn a policy from & that is as good as the expert T*




Theorem: IL is (almost) as easy as SL M H-1

= arg min 2 Z z/” JZ' sh, ah
A
Note a training an estlng ‘mismatch”
/1 N

Theorem [BC Performance]: i (/K (5 ”‘\ # . )
suppose we assume supervised learning succeeds, with € classification error:

1 H-1
e | = Y 1 [RGs) # 7%(sp)] | <e
ﬂ H h=0

(where 7™ is the experts policy,
then, under M we have:

VT — V7| S

ed not be optimal)

The quadratic amplification is annoying



Proof:

By the PDL
H—-1
[V (s) = Vi(s)| = |E @’, ZAZf (s, ah)]
h=0

H—-1

=Sy e Sy gk [ Z A;? (Sps ”*(Sh))]

h=0

H-1
<H|E,.,, [ Z 1|7 (s)) # ﬂ*(sh)]]

h=0




What could go wrong?

* Predictions affect future inputs/
observations

Learned Policy

Expert’s trajectory



Intuitive solution: Interaction

Use interaction to collect
data where learned policy
goes



[Ross11a]

DAgger: Dataset Aggregation
1st iteration
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DAgger: Dataset Aggregation
1st iteration

Execute 71 and Query Expert
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DAgger: Dataset Aggregation
1st iteration

Execute 71 and Query Expert
New Data
Steering

from 4-@- \
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States from
the learned policy
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DAgger: Dataset Aggregation
1st 1iteration

Execute 71 and Query Expert

Steering

from ;é- \
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New Data

All previous data
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DAgger: Dataset Aggregation
1st 1iteration

Execute 71 and Query Expert

t New Data
eering
from k‘é-é- \
expertyy/‘ - |
o > Aggregate
Dataset

New policy
702

Supervised Learning

[Ross11a]
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DAgger: Dataset Aggregation
2nd iteration

Execute 1, and Query Expert
< O\
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Ty A 4%
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Steering
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New policy
73

Aggregate
Dataset

Supervised Learning

[Ross11a]
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Steering

DAgger: Dataset Aggregation
nth iteration

Execute 7,.1 and Query Expert
New Data

Aggregate
Dataset

Supervised Learning

[Ross11a]
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The DAgger algorithm

Initialize 7°, and dataset I = &

Fort=0—-> T —1:
1. W/ ', generate dataset of trajectories 9’ = {7, 7,, ...}
where for all trajectories s, ~ p ., @, = 77(s)

2. Data aggregation: @ = 9 U @'

3. Update policy via Supervised-Learning: 771 = SL (@)

In practice, the DAgger algorithm requires less human labeled data than BC.

Informal Theorem] Under more assumptions + assuming € SL error is achievable,
the DAgger algorithm has error: | V* — V" | < He
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Fascination with Al and Games...

History of Game Al
Kaissa By: Andrey Kurenkov
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Fascination with Al and Games...

 DeepBlue v. Kasparov (1997)
* winning in chess wasn’t a good indicator of
“progress in Al”

History of Game Al
Kaissa By: Andrey Kurenkov

1974: first world TD- Monte MCTS Go

computer chess

Dartmouth champion Gammon | Carlo Go 2006: French

researchers advance

Conference e 1992: RL and neural 1993: first research Go Al with MCTS
1956 the birth of Al e net based back- on Go with stochastic

gammon Al shown search

predicted probability C r a Zy

of winning, v,
NeuroGo Stone
‘'R 1996: ConvNet with 2008: MCTS Go Al
RL for Go, 13 kyu beats 4 dan player
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1962: Samuel's “ : Deep
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NATURAL ‘PROZAC” DOES IT REALLY WORK?

-
 DeepBlue v. Kasparov (1997) veek

* winning in chess wasn’t a good indicator of e Man v
“progress in Al” . Machine:
" The Rematch

Fascination with Al and Games...

History of Game Al
Kaissa By: Andrey Kurenkov

1974: first world TD- Monte MCTS Go

computer chess

Dartmouth champion Gammon | Carlo Go il

researchers advance

Conference : e~ 1992: RL and neural 1993: first research Go Al with MCTS
1956: the birth of Al net based back- on Go with stochastic

gammon Al shown search C ra zy

NeuroGo Stone
1996: ConvNet with 2008: MCTS Go Al

RL for Go, 13 kyu beats 4 dan player
(amateur)

Mac Hack Zen19

1967: chess Al beats ' 2012: MCTS based Go ' >_ ,
person in tournament Al reaches 5-dan rank T

Chess champion Garry Kasparov

What
Computers

Will Do Next

of winning, V,

pdoidy DeepMind
Checkefs Al A CNN CHINOOK | Deep Blue | 2014 Google buys

deep-RL Al compan
1956: IBM Chejfkers Al 1989: convolutional 1994: checkers Al 1997: IBM chess Al Pfor 5400Mi|p 4
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Game Trees for
Two Player Games :

o
><O\
o

X X 0 X X| 0 X X
0 0
X[ | X X
0 X 0 X 0 X 0 X |X 0 X 0 X 0 X
M\x\x
o | 0 0 N
0 X | X o x| X 0 XX 0 X | X o0 x| X 0 X| X
/IO\O 0
X 0 X| o | o 0 'o
o x| X 0 x| X 0 X | X 0 X| X 0 X | X
/x\x x
0 0 0l o 0 0
0 X | X 0 X | X 0 X | X 0 X | X
X X X| 0 X 0
* |n principle, one could work out the optimal T - ;
ol XX o XX 0 XX
0 X

strategy for any zero-sum game with Bl b X Lo

lookahead. e B
X| 0 X0 0
X1 0|0
0 X | X
X 0| X
(Winner - X)

Figure not fully expanded.
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AlphaBeta Search

Minimax with alpha-beta pruning on a two-person game tree of 4 plies

Current state
of the game

Player's potential
moves (plies)

. . . Next potential
game states

Opponent’s potential
moves (re-plies)

Next potential
game states

Player's potential
moves (re-plies)

Next potential
game states

Opponent’s potential
moves (re-plies)

Last potential game
states considered

Visiting Candidate
— Vi1S1ted — D 1scarded

—— EVAlUALING . Approved
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Minimax with alpha-beta pruning on a two-person game tree of 4 plies

AlphaBeta Search

 To take a single move, we build an (incomplete) lookahead tree.
(a lookahead tree is built before taking every action).

20

Current state
of the game

Player's potential
moves (plies)

Next potential

game states
Opponent's potential
moves (re-plies)
Next potential

game states
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moves (re-plies)
Next potential

game states
Opponent’s potential
moves (re-plies)

Last potential game
states considered
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Minimax with alpha-beta pruning on a two-person game tree of 4 plies

AlphaBeta Search

Current state
of the game

Player's potential
moves (plies)

Next potential
game states

Opponent's potential
moves (re-plies)

Next potential
game states

Player's potential
moves (re-plies)

Next potential
game states

Opponent’s potential
moves (re-plies)

Last potential game
states considered

 To take a single move, we build an (incomplete) lookahead tree.
(a lookahead tree is built before taking every action). Vettng cendiaate
e maintain two values, alpha and beta, representing the score that the — Vit Discardd
maximizing player is assured of getting and the score that the minimizing
player is assured of getting.
* assume opponents will always try to do “best responses”

—— EValuating Approved
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Minimax with alpha-beta pruning on a two-person game tree of 4 plies

AlphaBeta Search

of the game

Player's potential
moves (plies)

Next potential
game states

Opponent's potential
moves (re-plies)

Next potential
game states

Player's potential
moves (re-plies)

Next potential
game states

Opponent’s potential
moves (re-plies)

Last potential game
states considered

 To take a single move, we build an (incomplete) lookahead tree.

(a lookahead tree is built before taking every action). iiting Candidate
* maintain two values, alpha and beta, representing the score that the — Visted — Discardes
—— EValuating Approved

maximizing player is assured of getting and the score that the minimizing
player is assured of getting.

* assume opponents will always try to do “best responses”

 Need a heuristic for which branches to search.

 Try to prune away as may branches as we can.
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Stockfish 15.1

Strong open source chess engine

Download Stockfish

Latest from the blog

2022-12-04: Stockfish 15.1

2022-11-18: ChessBase GmbH and the Stockfish team reach an
agreement and end their legal dispute

2022-06-22: Public court hearing soon!

. Vv | X
CheSS.com @ Analysis Board | Play ® Tournaments

= Evaluation @@ Lines @D depth=19 | Stockfish.js 10 ¥
¥y Home -0.

-0.05 15...Bd5 16.e3 Ne4 17.Nc5 Qe8 18.Qc2 5 19.Nd3 Rf6 20.Nfe5 Rh6 2... ¥

Play XL 15...Bxf3 16.Bxf3 Nd5 17.e3 Qh4 18.Kf1 Rad8 19.Nc5 Nf6 20.Nd3 Ng- ¥

EXL] 15...Be4 16.63 Nd5 17.Nbd2 Bg6 18.Ne5 Bh5 19.Re1 Rc8 20.Ned Bb-- ¥
Puzzles

(@ EO05: Catalan Opening: Open Defense, Classical Line, 6.0-0... [ )
Learn

1.d4 d5 2. c4 e6 3. Nf3 Nf6 4. g3 Be7 5. Bg2 0-0 6. 0-O dxc4 7. Qc2

a6 8. Qxc4 b5 9. Qc2 Bb7 10. Bf4 Nc6 11. Rd1 Nb4 12. Qc1 Nbd5 13.
Today Nbd2 Nxf4 14. gxf4 Bd6 15. Nb3

It’'s a “rule-based” system. &&=

More

K < > P SEOX K Q&
8 : % illa Y
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MCTS: .
Monte Carlo Tree SearCh Selection - Expansion - Simulation -+ Backpropagation

Figure from Chaslot {2006)

* AlphaBeta pessimistic approach may not lead to effective heuristics.
« MCTS: to decide on an action, we build a lookahead tree. (and repeat)
Input: game state/node “R”; Output: single action to take at R

* Fortwo player games
* When building the lookahead tree, we use a heuristic to estimate the “value” of

taking action “a” at any node “s”
(ho minmax values estimated).

 Applicable to “small” games.
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ActionSelectionSubroutine



ActionSelectionSubroutine

Input: game state (“root node” R), # playouts N

24



ActionSelectionSubroutine

Input: game state (“root node” R), # playouts N
Forrolloutsr =1 : NV
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ActionSelectionSubroutine

Input: game state (“root node” R), # playouts N | OMVO 7f/;,(~ 0
Forrolloutsr =1 : NV Y
1. Obtain the 7-th roll-out: While CurrentNode & {win, lose}

f\f
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ActionSelectionSubroutine

Input: game state (“root node” R), # playouts N
Forrollouts 7 = 1 : V
1. Obtain the 7-th roll-out: While CurrentNode & {win, lose}
a. Forplayer X € {A, B}, at current state s, define 5" = NexiStare(s, a) and define:
wins for player X at s’ log(total visits to s
y . \/ g( )

UCB score (s, a) =

visits to s’

visits to s’

24



ActionSelectionSubroutine

Input: game state (“root node” R), # playouts N
Forrollouts7r = 1| : V
1. Obtain the 7-th roll-out: While CurrentNode & {win, lose}
a. Forplayer X € {A, B}, at current state s, define 5" = NexiStare(s, a) and define:

e wins for player X at s’ log(total visits to )
UCB score/s,a) = + C X

visits to s’ visits to s’
> b. Choose and “take” action:

a = arg max UCB score(s, a)
a
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ActionSelectionSubroutine

Input: game state (“root node” R), # playouts N
Forrollouts 7 = 1 : V
1. Obtain the 7-th roll-out: While CurrentNode & {win, lose}
a. Forplayer X € {A, B}, at current state s, define 5" = NexiStare(s, a) and define:
wins for player X at s’ log(total visits to s
y . \/ g )

UCB score (s, a) =

visits to s’

visits to s’

b. Choose and “take” action:;

a = arg max UCB score(s, a)
a

2. Update stats: For all visited states s in this “roll-out”,
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ActionSelectionSubroutine

Input: game state (“root node” R), # playouts N
Forrollouts 7 = 1 : V
1. Obtain the 7-th roll-out: While CurrentNode & {win, lose}
a. Forplayer X € {A, B}, at current state s, define 5" = NexiStare(s, a) and define:
wins for player X at s’ log(total visits to s
y . \/ g )

UCB score (s, a) =

visits to s’

visits to s’

b. Choose and “take” action:;

a = arg max UCB score(s, a)
a

2. Update stats: For all visited states s in this “roll-out”,
C. Uupdate visit counts:

[#visits to 5] = [#visitsto s'] + 1
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ActionSelectionSubroutine

Input: game state (“root node” R), # playouts N
Forrollouts 7 = 1 : V
1. Obtain the 7-th roll-out: While CurrentNode & {win, lose}
a. Forplayer X € {A, B}, at current state s, define 5" = NexiStare(s, a) and define:
wins for player X at s’ log(total visits to s
y . \/ g )

UCB score (s, a) =

visits to s’

visits to s’

b. Choose and “take” action:;

a = arg max UCB score(s, a)
a

2. Update stats: For all visited states s in this “roll-out”,
C. Uupdate visit counts:

[#visits to 5] = [#visitsto s'] + 1
d. for winner X and if s was visited by X:
[#wins for X at s'] = [#wins for X at s'] + 1
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ActionSelectionSubroutine

Input: game state (“root node” R), # playouts N
Forrollouts 7 = 1 : V
1. Obtain the 7-th roll-out: While CurrentNode & {win, lose}
a. Forplayer X € {A, B}, at current state s, define 5" = NexiStare(s, a) and define:
wins for player X at s’ log(total visits to )

UCB score/s,a) = + C X \/

visits to s’

visits to s’

b. Choose and “take” action:;

a = arg max UCB score(s, a)
a

2. Update stats: For all visited states s in this “roll-out”,
C. Uupdate visit counts:

[#visits to 5] = [#visitsto s'] + 1
d. for winner X and if s was visited by X:

[#wins for X at s'] = [#wins for X at s'] + 1
(data structure: only need to keep track of stats at visited states)
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ActionSelectionSubroutine

Input: game state (“root node” R), # playouts N
Forrollouts 7 = 1 : V

1. Obtain the 7-th roll-out: While CurrentNode & {win, lose}

_a. Forplayer X € {A, B}, at current state s, define s = NexitState(s, a) and define:
wins for player X at s’ log(total visits to )

UCB score/s,a) = + C X \/

visits to s’

visits to s’

b. Choose and “take” action:;

a = arg max UCB score(s, a)
a

2. Update stats: For all visited states s in this “roll-out”,
C. Uupdate visit counts:

[#visits to 5] = [#visitsto s'] + 1
d. for winner X and if s was visited by X:

[#wins for X at s'] = [#wins for X at s'] + 1
(data structure: only need to keep track of stats at visited states)

Output: return the action ¢ = arg max %@CoreN(Root Node R, a)

a
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Example Diagram:

SELECTION EEXPANSION SIMULATION BACKPROPAGATION

IO OIOIONOIOENOIOIONOIOENOIOIONOIOEENOIOIC

0/1
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A ro 1o vy " _Example Diagram:

«C

Al

SELECTION EXPANSION SIMULATION

(11ﬁ21] fllf?lf

a2 ) (23 ) [ 2/3 ) C2/4 ) [ 16 ) (12 ) (2/3) [ 2/3 ) (24 ) 1/6 (12) (2/3) ( 2/3 )

/”"_4\\ | ,/’_”*\ /}“_‘\E
[ 2/3 ) ( 3/3 (2/3 ) ( 3/3)
A4 S U

@

Obtaining the 7-th rollout (steps called Selection/Expansion/Simulation):

Start from “root R” and select successive child nodes until a the game ends.

25

BACKPROPAGATION
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Example Diagram:

SELECTION EXPANSION SIMULATION BACKPROPAGATION
11721 11/21 |

[ 3/8 | (7/10 ) (03 ) [ 3/8 ) (7/10 | [ 0/3 ) [ 3/8 )

[ 2/3 ] @ (2/3) (33) ‘

!

v
0/1

Obtaining the 7-th rollout (steps called Selection/Expansion/Simulation):
Start from “root R” and select successive child nodes until a the game ends.

At state s (for player X), choose action a leading to s = NextState(s, a) which maximizes:

25



Example Diagram:

SELECTION EEXPANSION SIMULATION BACKPROPAGATION

(11721 ‘11721

N ya'd A N A A5
(. 3/8 ': | 7/10 | | 0/3 .:I :. 3/8

< < < Y < < 4

P _—N - - - - Pa N\ - -~ -—. - i -\
/ \ y \ J \ h \ / = \
/ \ § \ / \ f \ / \
\ § \ / \ / \ / \
/ \ f \ / \ { \ / \
¥, \ § \ \ { \ / \
J \ f \ / \ f \ / \
/ \ ) \ \ [ \ / \
\ f \ / \ / \ J \
/ \ f \ / \ { \ / \
/ \ f \ / \ / \ / \
/ \ f \ \ f \ / \
/ \ f \ / \ / \ / \
: ) \ \ | \ 8
™ S, \ - S, e, e - N — e A ] S
‘ “~ > o~ “~ < > . - . o >

(12 ) (2/3) ( 2/3) C2/a ) 1/6 ) (12 ) (2/3) ( 2/3) [ 2/4 ) 1/6 ) (12 ) (273 ) ( 2/3)

" /.-—-’l\\n \ '/_-—."__\I. I/:L_--\I|
(2/3 ) ( 3/3 (2/3) (3/3)
< W
@

Y
0/1

 Obtaining the 7-th rollout (steps called Selection/Expansion/Simulation):
Start from “root R” and select successive child nodes until a the game ends.

At state s (for player X), choose action a leading to s = NextState(s, a) which maximizes:

wins for player X at s’ log(total visits to )
UCB score/s,a) = + C X
visits to s’ visits to s’
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Example Diagram:

SELECTION EEXPANSION SIMULATION BACKPROPAGATION

IO OIOIONOIOENOIOIONOIOENOIOIONOIOEENOIOIC

0/1
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Example Diagram:

SELECTION [EXPANSION SIMULATION BACKPROPAGATION

(11/21) 11/21 )

(12 ) (273 ) [ 2/3 C2/a ) 176 ) (12 ) (273 ) ( 2/3 [ 2/4 ) ( 1/6 | (12 ) (2/3) ( 2/3 ) [ 2/4 |

[ 2/3 ] ( 3/3 | 2/
4 A

®
(; $4 § ces 5 \\F‘—:O Cﬁuve, /@serS\

S O
* The update step for the t-th rollout (“backpropagation”):

Use the result of the rollout to update information in the nodes on the visited path:
[#visits to §'] = [#visits to s'] + 1
|[#wins for X at s'] = [#wins for X at s'] + 1
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Example Diagram:

SELECTION EEXPANSION SIMULATION BACKPROPAGATION

IO OIOIONOIOENOIOIONOIOENOIOIONOIOEENOIOIC

0/1
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Example Diagram:

SELECTION EEXPANSION SIMULATION BACKPROPAGATION

(11721 (1121

N o 'd AN
| | 7/10 | | 0/3 | I,
4 < N 4 < < b4

|
||\ "I
e - Ja— — - N\ J— — SO
",.' J \ "' \ '...‘
,".' { \ .".. ,'l \ ,-". ."._
}'. \ / I‘,

f \ r 4 f \

/ —— \ —— ——— - S} — —— N\ — — —— P -~ g ——
{ ' y \ § o Jo \ § \ { ' \ ( Yl \ { e { ) \ / Y !
| 2/ ' { ' l / l /o | | ! I 2 / l
\ - ( '. -~ | ' | I| ! ) -~ ‘| \ -~ | ) - f l‘ - |

 Repeat all steps N times, (so we do N roll-outs)
* select the “best” action at the root node R (the game state):

a = arg max UCB scorey(Root Node R, a)
a
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MCTS also“works” with a simulator for (single-agent) RL



MCTS also“works” with a simulator for (single-agent) RL

 The basic idea of “roll-outs/lookahead” is common, if we have a simulator:

e.g. MPC (Model Predictive Control)/iLQR
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MCTS also“works” with a simulator for (single-agent) RL

 The basic idea of “roll-outs/lookahead” is common, if we have a simulator:
e.g. MPC (Model Predictive Control)/iLQR
« MCTS also applicable to RL, but:
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MCTS also“works” with a simulator for (single-agent) RL

 The basic idea of “roll-outs/lookahead” is common, if we have a simulator:

e.g. MPC (Model Predictive Control)4&&m
« MCTS also applicable to RL, but:

e need the number of states in the lookahead tree to be “small”
(e.g. doesn’t work if we tend not to visit the same state again)

28



Today

Recap

Game Playing: AlphaBeta Search/Rule Based Systems
MCTS

AlphaZero and Self-Play
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AlphaGo

AlphaGo versus Lee Sedol

4-1

Seoul, South Korea, 9-15 March 2016

Game one
Game two
Game three
Game four

Game five

AlphaGo W+R
AlphaGo B+R
AlphaGo W+R
Lee Sedol W+R
AlphaGo W+R

e e
O /. O
& f’
O.O.O

AlphaGo

Google DeepMind

30
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AlphaGo

AlphaGo versus Lee Sedol

4-1
Seoul, South Korea, 9-15 March 2016
Game one AlphaGo W+R
Game two AlphaGo B+R
Game three AlphaGo W+R
Game four Lee Sedol W+R
Game five AlphaGo W+R

* Lots of moving parts:

ALPHAGO

00:08:32 08 00 : "~ LEE SEDOL

o 00:00:27

e e

oy O
@ ‘\ ’ ®
L) ® ‘O

AlphaGo

Google DeepMind

* Imitation Learning: first, the algo estimates the values from historical games.
* |t then uses an MCTS-stye lookahead with learned value functions.
 AlphaZero (2017) is a simpler more successful approach.
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AlphalZero



AlphalZero

* AlphaZero: MCTS + Deeplearning

31



AlphalZero

* AlphaZero: MCTS + Deeplearning
* There is a value network and policy network:

« a value network estimating for the state of the board
A policy network that is a probabillity vector over all possible actions.
(think of as an estimate of which actions the “subroutine” selects)
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AlphalZero

* AlphaZero: MCTS + Deeplearning
* There is a value network and policy network:

« a value network estimating for the state of the board
A policy network that is a probabillity vector over all possible actions.

(think of as an estimate of which actions the “subroutine” selects)
* There is a termination condition for each rollout,

e.g. each rollout is no longer than K steps

31



AlphaZero: ActionSelectionSubroutine



AlphaZero: ActionSelectionSubroutine
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b. Choose and “take” action:;
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A
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c. Let C be the terminal node in this rollout.
d. Update counts: N(s) < N(s) + 1
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Input: game state (“root node” R), # playouts N, value network v,(s), policy network p,(a | s)

Forrollouts 7 = | : NV
1. Obtain the #-th roll-out: While CurrentNode & {termination condition}
a. At current state s, define s = NextState(s, a) and define:
log(total visits to s)

UCB score/(s,a) = AvValue(s’) + C - py(a|s) - \/
visits to s’

b. Choose and “take” action:;

a = arg max UCB score/(s, a)
A

2. Update stats: For all visited states s in this “roll-out”,
c. Let C be the terminal node in this rollout.

d. Update counts: N(s) < N(s) + 1
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e. If state s was for player A: AvValue(s) < () AvValue(s) 4 Vy(C)
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Input: game state (“root node” R), # playouts N, value network v,(s), policy network p,(a | s)

Forrollouts 7 = | : NV
1. Obtain the #-th roll-out: While CurrentNode & {termination condition}
a. At current state s, define s = NextState(s, a) and define:
log(total visits to s)

UCB score/(s,a) = AvValue(s’) + C - py(a|s) - \/
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AlphaZero: ActionSelectionSubroutine

Input: game state (“root node” R), # playouts N, value network v,(s), policy network p,(a | s)

Forrollouts 7 = | : NV
1. Obtain the #-th roll-out: While CurrentNode & {termination condition}
a. At current state s, define s = NextState(s, a) and define:
log(total visits to s)

UCB score/(s,a) = AvValue(s’) + C - py(a|s) - \/

visits to s’

b. Choose and “take” action:
a = arg max UCB score/(s, a)
a
2. Update stats: For all visited states s in this “roll-out”,
c. Let C be the terminal node in this rollout.
d. Update counts: N(s) < N(s) + 1
N(s
e. If state s was for player A: AvValue(s) < () AvValue(s) 4
N(s) + 1 N(s) + 1

f. If state s was for player B: same update but with —v,(C)

Output: return the action ¢ = arg max UCB scorey(Root Node R, a)
a

Ve(C)
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* Obtaining the 7-th rollout (steps called Selection/Expansion/Simulation):
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* Obtaining the 7-th rollout (steps called Selection/Expansion/Simulation):
e Start from “root R” (current game) and do a rollout of no more than K steps.
» At state s, choose action a leading to s = NextState(s, a) which maximizes:
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* Obtaining the 7-th rollout (steps called Selection/Expansion/Simulation):
e Start from “root R” (current game) and do a rollout of no more than K steps.
» At state s, choose action a leading to s = NextState(s, a) which maximizes:

« We’ll specify AverageValue(s’) soon.
wins at s’

. In MCTS, this average was

visits to s
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 The update step for the t-th rollout (“backpropagation”):
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 The update step for the t-th rollout (“backpropagation”):
» Suppose the Simulation ends at node C after K steps.
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 The update step for the t-th rollout (“backpropagation”):
» Suppose the Simulation ends at node C after K steps.
 Update AvValue(s) on all s in the path from the root R to C (for player A):

(use negative values for player B)
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 The update step for the t-th rollout (“backpropagation”):
» Suppose the Simulation ends at node C after K steps.

 Update AvValue(s) on all s in the path from the root R to C (for player A):

(use negative values for player B)
* Repeat all steps N times, then select “best” action at the root node R (the game state).
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 The point in the dataset is of the (s, a,, R,), which says action a, was taken in state s, and the

game resulted in outcome R, (e.g. win=1,loose=-1, draw=0)
e Supervised Learning: try learn @ so to predict the actions and rewards

Loss(0) = Z (vy(s,) — R)* —log py(a,|s,)
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AlphaZero: Learning

* |nput: dataset of M self-play games
 The point in the dataset is of the (s, a,, R,), which says action a, was taken in state s, and the

game resulted in outcome R, (e.g. win=1,loose=-1, draw=0)
e Supervised Learning: try learn @ so to predict the actions and rewards

Loss(0) = Z (vy(s,) — R)* —log py(a,|s,)

AlphaZero was trained solely via self-play, using 5,000 first-generation TPUs to generate the games and 64 second-generation TPUs to train
the neural networks. In parallel, the in-training AlphaZero was periodically matched against its benchmark (Stockfish, elmo, or AlphaGo Zero) in
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Comparing Monte Carlo tree search searches, AlphaZero searches just 80,000 positions per second in chess and 40,000 in shogi, compared to
70 million for Stockfish and 35 million for elmo. AlphaZero compensates for the lower number of evaluations by using its deep neural network to

Chess [edit]

In AlphaZero's chess match against Stockfish 8 (2016 TCEC world champion), each program was given one minute per move. Stockfish was
allocated 64 threads and a hash size of 1 GB,!!! a setting that Stockfish's Tord Romstad later criticized as suboptimal.[”lnot 1 AlphaZero was
trained on chess for a total of nine hours before the match. During the match, AlphaZero ran on a single machine with four application-specific
TPUs. In 100 games from the normal starting position, AlphaZero won 25 games as White, won 3 as Black, and drew the remaining 72.1! In a
series of twelve, 100-game matches (of unspecified time or resource constraints) against Stockfish starting from the 12 most popular human
openings, AlphaZero won 290, drew 886 and lost 24.!]

Shogi [ edit]

AlphaZero was trained on shogi for a total of two hours before the tournament. In 100 shogi games against elmo (World Computer Shogi
Championship 27 summer 2017 tournament version with YaneuraOu 4.73 search), AlphaZero won 90 times, lost 8 times and drew twice.8] As
in the chess games, each program got one minute per move, and elmo was given 64 threads and a hash size of 1 GB.[]

Go [edit]

After 34 hours of self-learning of Go and against AlphaGo Zero, AlphaZero won 60 games and lost 40.1118!
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Year
2018
2019
2019
2019
2020
2020
2020
2021
2021
2022
2023

Comparing Monte Carlo tree search searches, AlphaZero searches just 80,000 positions per second in chess and 40,000 in shogi, compared to

70 million for Stockfish and 35 million for elmo. AlphaZero compensates for the lower number of evaluations by using its deep neural network to

Cup

Time Controls
30+10
30+5
30+5
30+5
30+5
30+5
30+5
30+5
30+5
30+3
30+3

Result
1st
andlnote 1]
2nd
1st
1st
3rd
1st
1st
1st
1st
2nd

Ref
[63]

[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]

[73]

Chess [edit]

In AlphaZero's chess match against Stockfish 8 (2016 TCEC world champion), each program was given one minute per move. Stockfish was
allocated 64 threads and a hash size of 1 GB,!!! a setting that Stockfish's Tord Romstad later criticized as suboptimal.[”lnot 1 AlphaZero was
trained on chess for a total of nine hours before the match. During the match, AlphaZero ran on a single machine with four application-specific
TPUs. In 100 games from the normal starting position, AlphaZero won 25 games as White, won 3 as Black, and drew the remaining 72181 In a
series of twelve, 100-game matches (of unspecified time or resource constraints) against Stockfish starting from the 12 most popular human
openings, AlphaZero won 290, drew 886 and lost 24.!]

Shogi [ edit]

AlphaZero was trained on shogi for a total of two hours before the tournament. In 100 shogi games against elmo (World Computer Shogi
Championship 27 summer 2017 tournament version with YaneuraOu 4.73 search), AlphaZero won 90 times, lost 8 times and drew twice.8] As
in the chess games, each program got one minute per move, and elmo was given 64 threads and a hash size of 1 GB.[]

Go [edit]

After 34 hours of self-learning of Go and against AlphaGo Zero, AlphaZero won 60 games and lost 40.[118]

Leela Chess Zero (abbreviated as LCZero, Ic0) is a free, open-source,

and deep neural network—based chess engine and volunteer computing
Leela Chess Zero project. Development has been spearheaded by programmer Gary
Linscott, who is also a developer for the Stockfish chess engine. Leela
Chess Zero was adapted from the Leela Zero Go engine,!'! which in turn
was based on Google's AlphaGo Zero project.?! One of the purposes of
Leela Chess Zero was to verify the methods in the AlphaZero paper as

Original author(s) Gian-Carlo Pascutto, Gary
Linscott applied to the aame of chess.
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MulZero

* Mulero
* Basically AlphaZero but we don’t know game rules.
* We learn the transition function as we play.
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Summary:

1. Search is powerful: MCTS
2. Search + learning is better: AlphaZero

Attendance: Feedback:
bit.ly/3RHtIxy

bit.ly/3RcTCOT
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