
Monte Carlo Tree Search (MCTS) 
& AlphaZero 

 
Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning 

Fall 2023

• Recap

• Game Playing: AlphaBeta Search/Rule Based Systems

• MCTS

• AlphaZero and Self-Play

Today

2

Recap

3

Let’s formalize the offline IL Setting and the Behavior Cloning algorithm

Finite horizon MDP ℳ

Ground truth reward is unknown;

Assume the expert has a good policy (not necessarily opt)

r(s, a) ∈ [0,1]
π⋆

We have a dataset of trajectories: ,

where

M 𝒟 = {τ1, …τM}
τi = (si

h, ai
h)

H−1
h=0 ∼ ρπ⋆

Goal: learn a policy from that is as good as the expert 𝒟 π⋆

4

Theorem: IL is (almost) as easy as SL

5

Theorem [BC Performance]:

suppose we assume supervised learning succeeds, with classification error:  

	 ,

(where is the experts policy, which need not be optimal)

then, under , we have: 
	  

ϵ

𝔼τ∼ρπ⋆ [1
H

H−1

∑
h=0

1 [̂π (sh) ≠ π⋆(sh)]] ≤ ϵ

π⋆

μ
|Vπ⋆ − V ̂π | ≤ H2ϵ

Note a training and testing “mismatch”

The quadratic amplification is annoying

̂π = arg min
π∈Π

M

∑
i=1

H−1

∑
h=0

ℓ (π, si
h, ai

h)

Proof:

6

By the PDL 

  

	 	

 

	 	

 
	 	  

|Vπ⋆(s) − V ̂π (s) | = 𝔼τ∼ρπ⋆[
H−1

∑
h=0

A ̂π
h (sh, ah)]

= 𝔼s1,…sh∼ρπ⋆[
H−1

∑
h=0

A ̂π
h (sh, π⋆(sh))]

≤ H 𝔼τ∼ρπ⋆[
H−1

∑
h=0

1[̂π (sh) ≠ π⋆(sh)]]
≤ H2ϵ

What could go wrong?
• Predictions affect future inputs/

observations

7

Expert’s trajectoryLearned Policy

Intuitive solution: Interaction

8

Use interaction to collect
data where learned policy
goes

DAgger: Dataset Aggregation 
 1st iteration

9

Execute π1 and Query Expert

Steering
from
expert

[Ross11a]

DAgger: Dataset Aggregation 
 1st iteration

10

Execute π1 and Query Expert
New Data

[Ross11a]

Steering
from
expert

States from

the learned policy

DAgger: Dataset Aggregation 
 1st iteration

11

Execute π1 and Query Expert
New Data

All previous data

[Ross11a]

Steering
from
expert

DAgger: Dataset Aggregation 
 1st iteration

12

Execute π1 and Query Expert
New Data

Supervised Learning

New policy
π2

All previous data

Aggregate
Dataset

[Ross11a]

Steering
from
expert

DAgger: Dataset Aggregation 
 2nd iteration

13

Execute π2 and Query Expert
New Data

Supervised Learning

New policy
π3

All previous data

Aggregate
Dataset

Steering
from
expert

[Ross11a]

DAgger: Dataset Aggregation 
 nth iteration

14

[Ross11a]

Execute πn-1 and Query Expert
New Data

Supervised Learning

New policy
πn

All previous data

Steering
from
expert

Aggregate
Dataset

The DAgger algorithm

Initialize , and dataset π0 𝒟 = ∅
For :t = 0 → T − 1

1. W/ , generate dataset of trajectories

where for all trajectories

πt 𝒟t = {τ1, τ2, …}
sh ∼ ρπt, ah = π⋆(sh)

2. Data aggregation: 𝒟 = 𝒟 ∪ 𝒟t

3. Update policy via Supervised-Learning: πt+1 = SL (𝒟)

15

In practice, the DAgger algorithm requires less human labeled data than BC. 
 
[Informal Theorem] Under more assumptions + assuming SL error is achievable,

the DAgger algorithm has error:

ϵ
|Vπ⋆ − V ̂π | ≤ Hϵ

Today:

16

• Recap

• Game Playing: AlphaBeta Search/Rule Based Systems

• MCTS

• AlphaZero

Today

17

• DeepBlue v. Kasparov (1997)

• winning in chess wasn’t a good indicator of

“progress in AI”

Fascination with AI and Games…

18

Game Trees for 
Two Player Games

• In principle, one could work out the optimal
strategy for any zero-sum game with
lookahead.

Figure not fully expanded.
19

AlphaBeta Search

• To take a single move, we build an (incomplete) lookahead tree.  
(a lookahead tree is built before taking every action).
• maintain two values, alpha and beta, representing the score that the

maximizing player is assured of getting and the score that the minimizing
player is assured of getting.

• assume opponents will always try to do “best responses”

• Need a heuristic for which branches to search.
• Try to prune away as may branches as we can.

20

21

It’s a “rule-based” system.

Today

22

• Recap

• Game Playing: AlphaBeta Search/Rule Based Systems

• MCTS

• AlphaZero and Self-Play

MCTS:
Monte Carlo Tree Search

• AlphaBeta pessimistic approach may not lead to effective heuristics.

• MCTS: to decide on an action, we build a lookahead tree. (and repeat)  

Input: game state/node “R”; Output: single action to take at R
• For two player games

• When building the lookahead tree, we use a heuristic to estimate the “value” of

taking action “a” at any node “s”  
(no minmax values estimated).

• Applicable to “small” games.

23

ActionSelectionSubroutine

24

Input: game state (“root node”), # playouts

For rollouts

1. Obtain the -th roll-out: While CurrentNode {win, lose}

a. For player , at current state , define and define: 

b. Choose and “take” action:  

2. Update stats: For all visited states in this “roll-out”,

c. update visit counts:  

d. for winner and if was visited by :  

 (data structure: only need to keep track of stats at visited states)

Output: return the action

R N
t = 1 : N

t ∉
X ∈ {A, B} s s′￼ = NextState(s, a)

UCB scoret(s, a) =
#wins for player X at s′￼

#visits to s′￼

+ C ×
log(total visits to s)

#visits to s′￼

̂a = arg max
a

UCB score(s, a)

s

[#visits to s′￼] = [#visits to s′￼] + 1
X s X

[#wins for X at s′￼] = [#wins for X at s′￼] + 1

̂a = arg max
a

UCB scoreN(Root Node R, a)

• Obtaining the -th rollout (steps called Selection/Expansion/Simulation):  
Start from “root R” and select successive child nodes until a the game ends.

• At state (for player), choose action leading to which maximizes:

	

t

s X a s′￼ = NextState(s, a)

UCB scoret(s, a) =
#wins for player X at s′￼

#visits to s′￼

+ C ×
log(total visits to s)

#visits to s′￼

25

Example Diagram:

• The update step for the t-th rollout (“backpropagation”):  
Use the result of the rollout to update information in the nodes on the visited path: 

 

[#visits to s′￼] = [#visits to s′￼] + 1
[#wins for X at s′￼] = [#wins for X at s′￼] + 1

26

Example Diagram:

• Repeat all steps N times, (so we do N roll-outs)

• select the “best” action at the root node R (the game state): 

	 ̂a = arg max
a

UCB scoreN(Root Node R, a)

27

Example Diagram:

MCTS also“works” with a simulator for (single-agent) RL

28

• The basic idea of “roll-outs/lookahead” is common, if we have a simulator: 
e.g. MPC (Model Predictive Control)

• MCTS also applicable to RL, but:

• need the number of states in the lookahead tree to be “small” 

(e.g. doesn’t work if we tend not to visit the same state again)

Today

29

• Recap

• Game Playing: AlphaBeta Search/Rule Based Systems

• MCTS

• AlphaZero and Self-Play

AlphaGo

30

• Lots of moving parts:

• Imitation Learning: first, the algo estimates the values from historical games.

• It then uses an MCTS-stye lookahead with learned value functions.

• AlphaZero (2017) is a simpler more successful approach.

AlphaZero

• AlphaZero: MCTS + DeepLearning

• There is a value network and policy network:

• a value network estimating for the state of the board

• A policy network that is a probability vector over all possible actions. 

(think of as an estimate of which actions the “subroutine” selects)

• There is a termination condition for each rollout, 

e.g. each rollout is no longer than steps 

vθ(s)
pθ(a |s)

pθ(a |s)

K

31

AlphaZero: ActionSelectionSubroutine

32

Input: game state (“root node”), # playouts , value network , policy network

For rollouts

1. Obtain the -th roll-out: While CurrentNode {termination condition}

a. At current state , define and define: 

b. Choose and “take” action:  

2. Update stats: For all visited states in this “roll-out”,

c. Let be the terminal node in this rollout.

d. Update counts:

e. If state was for player A:

f. If state was for player B: same update but with

Output: return the action

R N vθ(s) pθ(a |s)
t = 1 : N

t ∉
s s′￼ = NextState(s, a)

UCB scoret(s, a) = AvValue(s′￼) + C ⋅ pθ(a |s) ⋅
log(total visits to s)

#visits to s′￼

̂a = arg max
a

UCB scoret(s, a)

s
C

N(s) ← N(s) + 1
s AvValue(s) ←

N(s)
N(s) + 1

AvValue(s) +
1

N(s) + 1
vθ(C)

s −vθ(C)
̂a = arg max

a
UCB scoreN(Root Node R, a)

AlphaZero

• Obtaining the -th rollout (steps called Selection/Expansion/Simulation):

• Start from “root R” (current game) and do a rollout of no more than steps.

• At state , choose action leading to which maximizes:

	 	

• We’ll specify soon.

• in MCTS, this average was

t
K

s a s′￼ = NextState(s, a)

UCB score(a) = AvValue(s′￼) + C ⋅ pθ(a |s) ⋅
log(total visits to s)

#visits to s'
AverageValue(s′￼)

#wins at s'
#visits to s'

33

• The update step for the t-th rollout (“backpropagation”):
• Suppose the Simulation ends at node after steps.
• Update AvValue() on all in the path from the root R to C (for player A): 

 

 
(use negative values for player B)

• Repeat all steps N times, then select “best” action at the root node R (the game state).

C K
s s

AvValue(s) ←
N(s)

N(s) + 1
AvValue(s) +

1)
N(s) + 1

vθ(C)

N(s) ← N(s) + 1

34

AlphaZero

AlphaZero: Learning

35

• Input: dataset of M self-play games

• The point in the dataset is of the , which says action was taken in state and the

game resulted in outcome (e.g. win=1,loose=-1, draw=0)

• Supervised Learning: try learn so to predict the actions and rewards  

 
	 	

(st, at, Rt) at st
Rt
θ

Loss(θ) = ∑
t

(vθ(st) − Rt)2 − log pθ(at |st)

36

MuZero

37

• MuZero

• Basically AlphaZero but we don’t know game rules.

• We learn the transition function as we play.

Summary:

Feedback:

bit.ly/3RHtlxy

38

Attendance: 
bit.ly/3RcTC9T

1. Search is powerful: MCTS

2. Search + learning is better: AlphaZero

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

