
Policy Gradient Descent 
 

Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning 

Fall 2023

Today

• Recap ++

• Gradient Descent

• Policy Gradient

• Likelihood ratio method

• REINFORCE

• Estimation

Recap++

3

Q-Value Dynamic Programming Algorithm:

4

Recall from HW1, Problem 2, the Bellman equations for :Q⋆

Q⋆
h (s, a) = r(s, a) + 𝔼s′ ∼P(⋅|s,a) [max

a′

Q⋆
h+1(s′ , a′)]

1. Initialization:

2. Solve (via dynamic programming): 

3. Return:

Q(s, a, H) = 0 ∀s, a

Q(s, a, h) = r(s, a) + 𝔼s′ ∼P(s,a) [max
a′ ∈A

Q(s′ , a′ , h + 1)] ∀s, a, h

πh(s) = arg max
a {Q(s, a, h)}

Analogous Q-value DP, with same notational change as previous slide: as argumenth

What if we can’t just evaluate the expectations?

5

If and/or are very large, computing expectations could be very expensiveS A

Since we’re trying to approximate conditional expectations, seems like it kind of fits
into supervised learning—can we use an approach like that? Yes!

Suppose:

• We have trajectories

Each trajectory is of the form

• is often referred to as our data collection policy.

N τ1, …τN ∼ ρπdata

τi = {si
0, ai

0, …si
H−1, ai

H−1, si
H}

πdata

Want: Q(s, a, h) ≈ r(s, a) + 𝔼s′ ∼P(s,a) [max
a′ ∈A

Q(s′ , a′ , h + 1)] ∀s, a, h

We may not have a way to directly compute those expectations, but instead only
have access to a simulator (or the real world), where we can collect data

This is now full RL!!

Connection to Supervised Learning

6

What are the and ?y x

Q(s, a, h) ≈ r(s, a) + 𝔼s′ ∼P(s,a) [max
a′ ∈A

Q(s′ , a′ , h + 1)] ∀s, a, h

Note that the RHS can also be written as

𝔼 [r(sh, ah) + max
a′

Q(sh+1, a′ , h + 1) sh, ah, h]
This suggests that and y = r(sh, ah) + max

a′

Q(sh+1, a′ , h + 1) x = (sh, ah, h)
Then we’d be happy if we found a

Q(sh, ah, h) = f(x) = 𝔼[y |x] = 𝔼 [r(sh, ah) + max
a′

Q(sh+1, a′ , h + 1) sh, ah, h]

Connection to Supervised Learning (cont’d)

7

Setting that aside for the moment, to fit supervised learning, we’d minimize a least-

squares objective function: ̂f(x) = arg min
f∈ℱ

NH

∑
i=1

(yi − f(xi))2

Then if we have enough data, choose a good , and optimize well,ℱ

Q(sh, ah, h) := ̂f(x) ≈ 𝔼[y |x] = 𝔼 [r(sh, ah) + max
a′

Q(sh+1, a′ , h + 1) sh, ah, h]

We can convert our data , into pairs; how many?τ1, …τN ∼ ρπdata
(y, x) NH

BUT, to compute each , we need to already know !y Q

Fitted (Q-)Value Iteration

Input: offline dataset

1. Initialize fitted function at

2. For :

3. With as an estimate of , return

τ1, …τN ∼ ρπdata

Q f0
k = 1,…, K

fk = arg min
f∈ℱ

N

∑
i=1

H−1

∑
h=1

(f(si
h, ai

h, h) − (r(si
h, ai

h) + max
a

fk−1(si
h+1, a, h + 1)))2

fK Q⋆ πh(s) = arg max
a {fK(s, a, h)}

8

Q-Learning is an online version, i.e., draw new trajectories at each based on as -functionk fk Q

To address the circularity problem of not knowing for computing the , we have
an algorithmic tool… what is it?

Q y

Hint: we used it for another VI algorithm before…

Fixed point iteration! Initialize, then at each step, pretend is known by plugging in
the previous time step’s to compute the ’s, and then use that to get next

Q
Q y Q

Bonus: Q-learning

9

(Tabular) Q-Learning

10

• Init:

• For episodes

• Within each episode, for

• Act: choose actions however you like! 

(but try to maintain exploration)

• Update: 

• Return

Qh(s, a)
k = 1,2,…K

h = 0,1,…H − 1

Qh(sh, ah) ← Qh(sh, ah) + η (rh + max
a

Qh+1(sh+1, a) − Qh(sh, ah))
Qh(s, a)

• Q-learning is an “off-policy” algorithm.

• Guarantee: Assuming states, actions visited infinitely often (which can be

guaranteed with the action policy), .Qh → Q⋆
h

Q-Learning with Function Approximation
(extra material: read later if interested)

11

• Init:

• For episodes

• Within each episode, for

• Act: choose actions however you like! 

(but try to maintain exploration)

• Update: 

• Return

Qh(s, a)
k = 1,2,…K

h = 0,1,…H − 1

θ ← θ − η(fθ(sh, ah, h) − rh − γ max
a

fθ(sh+1, a, h + 1))∇fθ(sh, ah, h)

Qh(s, a)

• How to understand this expression?  
Consider doing a small step of SGD on the fitted-Q objective function.

Recall: Policy Iteration (PI)
• Initialization: choose a policy

• For

1. Policy Evaluation: Solve (via dynamic programming):

2. Policy Improvement: set

π0 : S ↦ A
k = 0,1,…

Qπk(s, a, h) = r(s, a) + 𝔼s′ ∼P(⋅|s,a) [Qπk(s′ , πk(s), h + 1)] ∀s, a, h

πk+1
h (s) := arg max

a
Qπk(s, a, h)

12

Again: what if we’re in full RL setting where we can’t just evaluate expectations?

This breaks the Policy Evaluation step, so can we do a fitted version?

Yes! RHS can be written as 𝔼 [r(sh, ah) + Qπk(sh+1, πk(sh), h + 1) sh, ah, h]

Fitted Policy Iteration:

13

• Initialization: choose a policy and a sample size

• For

1. Fitted Policy Evaluation: Using sampled trajectories
, obtain approximation

2. Policy Improvement: set

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk Q̂πk ≈ Qπk

πk+1
h (s) := arg max

a
Q̂πk(s, a, h)

Direct Policy Evaluation option

Input: policy , dataset

Return:

π τ1, …τN ∼ ρπ

Q̂π = arg min
f∈ℱ

N

∑
i=1

H−1

∑
h=1

(f(si
h, ai

h, h) −
H−1

∑
t=h

r(si
t , ai

t))2

14

Using the definition of the function, can do a non-iterative fitted policy evaluation Q

Qπ(s, a, h) = 𝔼 [
H−1

∑
t=h

r(st, at) sh, ah, h]

Another Fitted Policy Evaluation

Input: policy , dataset

1. Initialize fitted function at

2. For :

3. Return the function as an estimate of

π τ1, …τN ∼ ρπ
Qπ f0

k = 1,…, K

fk = arg min
f∈ℱ

N

∑
i=1

H−1

∑
h=1

(f(si
h, ai

h, h) − (r(si
h, ai

h) + fk−1(si
h+1, π(si

h), h + 1)))2

fK Qπ

15

We can also use fixed point iteration

Bonus: TD(0)

(see posted slides)

16

The “tabular” TD(0) Algorithm of Qπ

• Init:

• For episodes

• Within each episode, for

• execute , and transition to

• update: 

• Return

Qh(s, a)
k = 1,2,…K

h = 0,1,…H − 1
ah ∼ π(⋅ |sh) sh

Qh−1(sh−1, ah−1) ← Qh−1(sh−1, ah−1) − η (rh−1 + Qh(sh, ah) − Qh−1(sh−1, ah−1))
Qh(s, a)

17

• Just like Q-learning, TD(0) is an “online” approach for policy evaluation.

• It can be helpful for variance reduction.

• Recall Bellman consistency conditions for : Qπ

Qπ
h (s, a) = r(s, a) + 𝔼s′ ∼P(⋅|s,a) [Qπ

h+1(s′ , πh+1(s′))]

TD(0) Algorithm for , with function approximationQπ

• Init:

• For episodes

• Within each episode, for

• execute , and transition to

• update: 

• Return

Qh(s, a)
k = 1,2,…K

h = 0,1,…H − 1
ah ∼ π(⋅ |sh) sh

θ ← θ − η(fθ(sh, ah, h) − rh − γfθ(sh+1, ah+1, h + 1))∇fθ(sh, ah, h)

Qh(s, a)

18

• Again, this is an “online” approach for policy evaluation, but with FA.

Today:

19

Today

• Recap

• Gradient Descent

• Policy Gradient

• Likelihood ratio method

• REINFORCE

• Estimation

Gradient Descent (GD) and Stochastic Gradient Descent (SGD) 
(we really do ascent in RL, so we should say GA and SGA)

21

• Given an objective function  
	 , (e.g.,), 
our objective is:  

• Gradient Descent is an iterative approach,  
to decrease the objective function as follows:

• Initialize , for k = 0, … : 
	  
 

• Stochastic Gradient Descent uses (unbiased) estimates of :

• Initialize , for k = 0, … :  

 , where  

J(θ) : ℝd ↦ ℝ J(θ) = 𝔼x,y(fθ(x) − y)2

min
θ

J(θ)

θ0

θk+1 = θk − η∇J(θk)

∇J(θ)
θ0

θk+1 = θk − ηkgk 𝔼[gk] = ∇θJ(θk)

Example of GD

22

• Given an objective function  

	 , , 

our objective is:

• We have , so GD is:

• Initialize ,

• for t = 0, … : 

	  
 

• Note with , we find the optima, , in one step. 

J(θ) : ℝ ↦ ℝ J(θ) =
1
2

(θ − c)2

min
θ

J(θ)

∇J(θ) = θ − c
θ0 = 0

θk+1 = θk − η(θk − c)

η = 1 θ⋆ = c

Brief overview of GD/SGD:

• Different types of “stationary points” (e.g. points with 0 gradients):  
global optima, local optima, and saddle points (by picture) 

• For convex functions (with certain regularity conditions, such as “smoothness”),

• GD (with an appropriate constant learning rate) converges to the global optima.

• SGD (with an appropriately decaying learning rate) converges to the global optima. 

(lower variance is better for SGD)  

• For non-convex functions, we could hope to find a local minima. 

• What we can prove (under some regularity conditions) is a little weaker: 
Both GD (with some constant learning rate) and SGD (with some decaying learning rate)
converge to a stationary point, i.e. 
	 As , k → ∞ ∇J(θk) → 0

23

Today

• Recap

• Gradient Descent

• Policy Gradient

• Likelihood ratio method

• REINFORCE

• Estimation

Policy Optimization

[AlphaZero, Silver et.al, 17] [OpenAI Five, 18] [OpenAI,19]

25

The Learning Setting:
We don’t know the MDP, but we can obtain trajectories.

The Finite Horizon, Learning Setting. We can obtain trajectories as follows:

• We start at .

• We can act for steps and observe the trajectory  

Note that with a simulator, we can sample trajectories as specified in the above.

s0 ∼ μ
H τ = {s0, a0, s1, a1, …, sH−1, aH−1}

26

Optimization Objective

27

•Consider a parameterize class of policies: 
	  
(why do we make it stochastic?) 

•Objective , where 

	  

•Policy Gradient Descent: 
	

{πθ(a |s) |θ ∈ ℝd}

max
θ

J(θ)

J(θ) := Es0∼μ [Vπθ(s0)] = Eτ∼ρπθ [
H−1

∑
h=0

r(sh, ah)]
θk+1 = θk + η∇J(θk)

Main question for today’s lecture:

how to compute the gradient?

What are parameterized policies?

[AlphaZero, Silver [OpenAI Five, [OpenAI,

A state:

• Tabular case: an index in

• Real world: a list/array of the relevant info about the world that makes the process Markovian.

• e.g. sometimes make a feature vector which we believe is a “good

representation” of the world

• we sometimes append history info into the current state

[|S |] = {1,… |S |}

ϕ(s, a, h) ∈ ℝd

28

Example Policy Parameterizations

1. Softmax linear Policy

Feature vector , and
parameter

ϕ(s, a, h) ∈ ℝd

θ ∈ ℝd

πθ(a |s, h) =
exp(θ⊤ϕ(s, a, h))

∑a′
exp(θ⊤ϕ(s, a′ , h))

2. Neural Policy:

Neural network
fθ : S × A × [H] ↦ ℝ

πθ(a |s, h) =
exp(fθ(s, a, h))

∑a′
exp(fθ(s, a′ , h))

Recall that we consider parameterized policy πθ(⋅ |s) ∈ Δ(A), ∀s

29

Example Policy Parameterization for “Controls”

3. Gaussian + Linear Model

Suppose , as it might be for a control problem.a ∈ Rk

30

• Sampling: 
	

 

• Implicitly, this is the same functional form 
as Case 2 (the neural policy case). 
 

	

a = θ ⋅ ϕ(s, h) + η, where η ∼ 𝒩(0,σ2I)

fθ,σ(s, a) =
∥a − θ ⋅ ϕ(s, h)∥2

2σ2k

• Feature vector: ,

• Parameters: ,  

(and maybe) 

• Policy: sample action from a (multivariate) Normal
with mean and variance , i.e. 
  

ϕ(s, h) ∈ ℝd

θ ∈ ℝk×d

σ ∈ R+

θ ⋅ ϕ(s, h) σ2I
πθ,σ(⋅ |s, h) = 𝒩 (θ ⋅ ϕ(s, h), σ2I)

Neural Policy Parameterization for “Controls”

• Feature vector: ,

• Parameters: ,  

(and maybe) 

• Policy: sample action from a (multivariate) Normal
with mean and variance , i.e. 
  

ϕ(s, h) ∈ ℝd

θ ∈ ℝk×d

σ ∈ R+

θ ⋅ ϕ(s, h) σ2I
πθ,σ(⋅ |s, h) = 𝒩 (θ ⋅ ϕ(s, h), σ2I)

3. Gaussian + Linear Model

Suppose , as it might be for a control problem.a ∈ Rk

31

4. Gaussian + Neural Model

• Neural network

• Parameters: , 

(and maybe) 

• Policy: a (multivariate) Normal  
with mean and variance , i.e. 
	  

gθ : S × [H] ↦ ℝk

θ ∈ Rd

σ ∈ R+

gθ(s) σ2I
πθ,σ(⋅ |s, h) = 𝒩(gθ(s, h), σ2I)

The Likelihood Ratio Method

• Suppose , and our objective is .

• Computing exactly may be difficult to compute (due to the sum over).

• Can we estimate ?

• Suppose we can: compute , , and & sample

• We have that:  
	

Proof:

J(θ) = 𝔼x∼Pθ [f(x)] = ∑
x

Pθ(x)f(x) max
θ

J(θ)

∇θJ(θ) x
∇θJ(θ)

f(x) Pθ(x) ∇Pθ(x) x ∼ Pθ

∇θJ(θ) = 𝔼x∼Pθ(x) [∇θlog Pθ(x) f(x)]
∇θJ(θ) = ∑

x

∇θPθ(x)f(x)

= ∑
x

Pθ(x)
∇θPθ(x)

Pθ(x)
f(x)

= ∑
x

Pθ(x)∇θlog Pθ(x)f(x)

The Likelihood Ratio Method, continued
• We have:  

	  

• An unbiased estimate is given by: 
, where  

• We can lower variance by draw i.i.d. samples from and averaging:

∇θJ(θ) = 𝔼x∼Pθ(x) [∇θlog Pθ(x) f(x)]

̂∇ θJ(θ) = ∇θlog Pθ(x) ⋅ f(x) x ∼ Pθ

N Pθ

̂∇ θJ(θ) =
1
N

N

∑
i=1

∇θlog Pθ(xi) f(xi)

Summary:

Feedback:

bit.ly/3RHtlxy

34

Attendance: 
bit.ly/3RcTC9T

•PG approach: let’s directly try to optimize the objective function of interest!

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

